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Abstract
Investigations into the etiology of autism spectrum disorders have been largely confined to two realms: variations in DNA 
sequence and somatic developmental exposures. Here we suggest a third route—disruption of the germline epigenome 
induced by exogenous toxicants during a parent’s gamete development. Similar to cases of germline mutation, these molecular 
perturbations may produce dysregulated transcription of brain-related genes during fetal and early development, resulting in 
abnormal neurobehavioral phenotypes in offspring. Many types of exposures may have these impacts, and here we discuss 
examples of anesthetic gases, tobacco components, synthetic steroids, and valproic acid. Alterations in parental germline 
could help explain some unsolved phenomena of autism, including increased prevalence, missing heritability, skewed sex 
ratio, and heterogeneity of neurobiology and behavior.
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Introduction

In the domain of autism spectrum disorder (ASD, or autism) 
and neurodevelopmental pathology research, it is commonly 
assumed that the etiological processes of concern are limited 
to variations in DNA sequence or somatic environmental 
insults (Dietz et al., 2020; Lord et al., 2020). In this com-
mentary, we propose that this binary approach—“genetics” 

or “environment”—is incomplete as it overlooks another 
critical dimension of risk for neurodevelopmental disorders. 
Specifically, we suggest that exogenously induced germ cell 
perturbations, including but not limited to disruptions of the 
transcriptional machinery, chromatin structure/organiza-
tion, or other epigenomic information such as non-coding 
RNAs, contribute to the heritable risk for neurodevelop-
mental pathology, which may manifest as autism or related 
disorders (Fig. 1).

To be clear, this “germline disruption” hypothesis is not 
addressing what is often referred to as “genes by environ-
ment,” or the possibility that environmental factors influence 
gene expression during the course of fetal or early develop-
ment, which is best understood as a subcategory of somatic 
exposure. Rather, we focus on exposures to, and perturba-
tions of, the germline of the affected individual’s parent(s) 
over the course of the parental gametogenesis. These 
insults to the germline may occur at various life stages, 
beginning when primordial germ cells are initially formed 
in the parents during embryonic life, continuing through 
puberty to the time of conception of the next generation, 
thus providing a prolonged opportunity for multiple types 
of exposures to disrupt transcriptional, epigenetic, or genetic 
programs (Fig. 1).
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The Missing Heritability of ASD

Our proposal goes straight to the question of the miss-
ing heritability of ASD. ASD is a broad category term 
that encompasses neurodevelopmental disorders of mostly 
unknown etiology that are characterized by impairments in 
social-communication, sensory dysfunction, the presence 
of restrictive interests and repetitive behaviors, and vary-
ing degrees of intellectual and adaptive disability (Lord 
et al., 2020). While there is no single pathophysiology of 
autism, studies point to dysregulation of genes during fetal 
and early life brain development, affecting cell prolifera-
tion, differentiation, neurogenesis, and migration, resulting 
in atypical patterning in the cerebral cortex, among other 
pathologies (Courchesne et al., 2019). Perturbed transcrip-
tional pathways are seen broadly in autism cases, both 
in studies based on peripheral tissues and post-mortem 
autism brains (Gazestani et al., 2019; Gupta et al., 2014; 
Quesnel-Vallières et al., 2019; Voineagu et al., 2011). The 
transcriptional dysregulation of autism seems to occur 
notwithstanding the absence of any detected genetic 
mutations.

Epidemiological studies have yielded puzzling findings. 
In what seems like an irreconcilable paradox, the preva-
lence of autism has been steadily increasing (Boyle et al., 
2011; Maenner et al., 2020; Nevison, 2014; Schendel & 

Thorsteinsson, 2018), reaching an estimated 1 in 54 U.S. 
children according to the Centers for Disease Control (Maen-
ner et al., 2020), while at the same time studies repeatedly 
demonstrate its strong heritability. This heritability, gener-
ally seen to be approximately 50–80%, has been observed 
in twin studies (Castelbaum et al., 2020; Sandin et al., 2017; 
Tick et al., 2016), in large national cohorts (Colvert et al., 
2015; Sandin et al., 2014), and across populations (Bai 
et al., 2019). In contrast, there is generally weak evidence 
for prenatal or “maternal” factors broadly influencing risk 
(Bai et al., 2019), although certain environmental factors 
such as maternal valproate intake, maternal immune activa-
tion, and adverse perinatal events such as preterm birth and 
neonatal hypoxia can increase risk (Bölte et al., 2019; Lord 
et al., 2020). In addition, autism is also known to have a 
high recurrence risk among siblings, estimated to be 6.1% 
to 18.7% (Palmer et al., 2017).

Autism’s strong heritability and recurrence rate, in 
addition to its basis in transcriptional dysfunction in brain 
development, has led many in the field to presume the 
disorder must be genetic in origin, inspiring a “genetics 
first” research orientation (e.g., The Simons Vip Con-
sortium, 2012) and a general assumption that a “genetic 
architecture” of autism will be identified (e.g., Pereanu 
et al., 2018). But there are many reasons for skepticism 
regarding the genetics-only view of ASD’s heritability.

Fig. 1   Conceptual Diagram of Non-Genetic Inheritance of Autism. 
The diagram illustrates a general overview of how non-genetic inher-
itance might occur in a case of autism. As an example, an exposure 
to a toxicant (e.g., anesthetic gas or EDC, as discussed in this paper) 
could cause epimutation in the germline (in this example, the pool 
of spermatogonial stem cells in the male, or the pool of oocytes in 
the female), at genes related to brain development. This then leads to 

DNA methylation abnormalities in the mature sperm or ovum. Upon 
the conception, the pattern is retained, perturbing gene expression 
and the normal process of brain development in the fetus and young 
child. The offspring exhibits a phenotype of abnormal neurodevelop-
ment and behaviors. This figure features childhood exposures as an 
example, but a similar phenomenon may occur in other periods as 
well
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First, despite massive investment in genetics research, 
genetic mutations are seen to contribute to only about 
10–20% of cases, with most of this genetic risk stemming 
from de novo germline mutations (Lord et al., 2020; Pugs-
ley et al., 2021), and with many, perhaps 10%, of the cases 
being rare syndromes involving multiple physiological and 
developmental pathologies extending beyond autism fea-
tures (Zafeiriou et al., 2013). There is insufficient evidence 
to establish ASD specificity of any so-called “autism genes” 
(Myers et al., 2020), and potentially relevant genetic muta-
tions, even when identified, often feature variable penetrance 
that may not result in an autism phenotype (De Rubeis & 
Buxbaum, 2015; Lord et al., 2020). Consistent with the 
observation that only about 10% of autism cases without 
syndromic features have a known genetic origin, a recent 
study conducted by the Simons Foundation for Autism 
Research Initiative identified genetic factors recognized to 
be causes or significant contributors to ASD in only 10.4% 
of cases that lacked a previous genetic diagnosis, while also 
identifying variants that are possibly associated with ASD 
in an additional 3.4% of families (Feliciano et al., 2019).

A role for common and normally harmless single-nucle-
otide polymorphisms acting additively is often speculated to 
exist, but despite much research regarding a possible role for 
common variants in explaining autism’s heritability, efforts 
to actually locate these variants have resulted in very weak 
explanatory power (Grove et al., 2019). A recent review and 
re-evaluation of genome-wide association studies found that 
almost no autism risk could be predicted accurately from 
single-nucleotide polymorphisms, and the authors cautioned 
that while twin studies tend to find strong heritability, unex-
amined epigenetic effects should be considered as playing a 
role (Patron et al., 2019). Furthermore, autism is associated 
with strong selective pressures against transmission, and 
reduced fecundity (Power et al., 2013; Pugsley et al., 2021), 
an expectation at odds with the steadily increasing rates of 
diagnosed autism.

Many studies have demonstrated an association between 
advanced paternal age and autism risk (Bölte et al., 2019), 
and to a lesser degree, advanced maternal age as well (Lord 
et al., 2020), both of which implicate aging germ cells. 
However, a father’s age-related germline mutations alone 
are unlikely to explain a significant portion of the increased 
risk for offspring autism (Gratten et al., 2016).

Studies using the full complement of genetic tool-
boxes have been unable to explain many other patterns 
seen in autism. While males are affected more often than 
females, at a ratio of about 4 to 1 (Fombonne, 2009; Maen-
ner et al., 2020), a genetics-based explanation has not yet 
emerged. The high recurrence risk among siblings has yet 
to be explained by genetic studies. Notably, having a sib-
ling with autism is the single strongest predictor of autism 
risk, stronger than any prenatal exposure or other known 

risk factor (Lord et al., 2020). Yet there is an unexplained 
genetic discordance among siblings who share an ASD diag-
nosis—in sibling pairs with ASD who carry rare autism-
related mutations, fewer than one-third share those muta-
tions (Yuen et al., 2015). Even in the relatively rare cases 
when a genetic diagnosis can be made, only a very small 
fraction of cases has implications for predicting risk in sib-
lings (D’Abate et al., 2019).

In this commentary we offer a counterpoint to the con-
ventional thinking about the roots of autism and suggest 
that the disorder’s etiology, heritability, sibling recurrence 
risk, increasing prevalence, neurobiology, heterogeneity and 
even its perplexing sex bias may at least in part be explained 
by the germline exposure history of parents and ancestors. 
This invokes the possibility that a toxicant-disturbed pool of 
parental germ cells (as opposed to, for example, harmless 
common genetic variants acting additively) should be the 
chief concern for autism causation research. To this end, we 
discuss (1) germ cell development and periods of vulner-
ability; (2) evidence for this germline disruption paradigm 
from both mammalian models and human studies; and (3) 
implications for future research.

A Primer on Vulnerabilities of the Germ Cell 
Epigenome and Genome

Because autism research has largely lacked experience 
with the biological complexity and dynamism of human 
germline and its multifaceted heritable contents, we offer 
a brief primer on germ cell biology and how the associated 
epigenetic processes can result in an altered transcriptional 
landscape, leading to abnormal gene expression.

Prior to a successful conception and subsequent birth of a 
baby, germ cells undergo a lengthy process of gametogenesis 
to produce mature sperm or oocytes (Larose et al., 2019): 
depending on the age of the parents at conception, precursor 
cells to the mature sperm or egg could have spent anywhere 
from approximately 14 to 50 years in the gonads. While 
exogenous factors disrupting replication and recombination 
during meiosis may increase the risk for de novo mutagen-
esis (DeMarini, 2012), these factors can also perturb epige-
netic and other non-genetic elements, including structural 
packaging of proteins, histone modifications, DNA methyla-
tion, coding and noncoding RNAs, and other cellular deni-
zens such as mitochondria in the oocyte (Lempradl, 2020; 
Perera et al., 2020; Sales et al., 2017; Yeshurun & Hannan, 
2019). Although toxicological paradigms tend to rely on the 
biological idea that “life starts at conception,” this is mis-
leading from a molecular point of view, as the elements of 
the heritable program are dynamically synthesized in the 
gametes over many years before that moment.
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The male and female germ cells initially develop in the 
same fashion. The diploid primordial germ cells (PGCs), 
the precursors of all germ cells, are first specified from the 
embryonic epiblast approximately 2–3 weeks after fertili-
zation in humans. As the PGCs proliferate mitotically and 
migrate to the genital ridge, the precursor of the fetal gonads, 
they shed their former somatic epiblast identity as their DNA 
methylation is largely stripped away, from approximately 
80% of the CpG dinucleotides methylated to approximately 
5% in week nine (Tang et al., 2015). The period of low DNA 
methylation and reprogramming in the early germ cell may 
represent an exquisite window of susceptibility to toxicants 
due to the unprotected nature of the genomic DNA. While 
the nature of this susceptibility is not well understood, many 
toxicants such as endocrine disrupting chemicals (EDCs) are 
able to bind to various nuclear hormone receptors, which 
are transcription factors (TFs), and may elicit changes in 
transcription and occupancy of other TFs at enhancers and 
promoters (Martini et al., 2020). Following demethylation, 
the germ cells are remethylated in a sex-specific manner, as 
discussed below. Loss and acquisition of DNA methylation, 
including acquisition of genomic imprints that are specific 
to either sperm or egg, are necessary for the proper develop-
ment of the future offspring, since abnormal methylation at 
imprinted genes can disturb gene expression, causing disor-
ders such as neurodevelopmental impairment (SanMiguel 
& Bartolomei, 2018). For example, improper methylation 
of a single allele can result in imprinting disorders such as 
Prader–Willi Syndrome and Angelman Syndrome (Buiting, 
2010). Another example is Rett syndrome, which is caused 
by deficiencies in MECP2 (an X-chromosome gene) and 
is associated with abnormal methylation in imprinted and 
autism candidate genes (Samaco et al., 2005). Apart from 
imprinted genes, TFs bound to specific sites in the sperm 
and oocyte genomes remain bound to the same sites in the 
embryo after fertilization (Jung et al., 2019). The altered pat-
terns of TFs occupancy in germ cells could result in changes 
in gene expression when the embryo starts transcribing at 
the 2-cell stage.

Considerations for Male Germline Development

The reprogramming of the male germline has been studied 
in greater detail than that of the female. In the male fetus, 
prospermatogonia undergo mitotic proliferation until enter-
ing mitotic arrest during the second trimester (Kurimoto & 
Saitou, 2019; Phillips et al., 2010). As directed by molecular 
signals coming from gonadal cells, male germ cells start 
DNA re-methylation by week 19 and this process is com-
pleted before birth (Wen & Tang, 2019). Shortly after birth, 
diploid prespermatogonia differentiate into type A spermat-
ogonia, which resume mitosis at age 5–7 years and begin 

meiosis at puberty. Spermatogonial stem cells (SSCs) serve 
as the source for continuous production of mature sperm 
in adulthood (Neto et al., 2016). Damage to the genome 
or epigenome of SSCs, if unrepaired, will impact the qual-
ity of the final mature sperm derived from these cells. The 
SSCs are not exempt from external influence; rather, they 
communicate with the surrounding somatic cells (Sertoli 
cells) through gap junctions, endocytosis and extracellular 
vesicles, receiving nutrients, small non-coding RNAs (sncR-
NAs), proteins, metabolites, hormones, and other signaling 
molecules (Bline et al., 2020). The Sertoli cell barrier (also 
known as the blood-testis barrier) does not protect the Ser-
toli cells or SSCs from toxicants, but rather helps to protect 
the meiotic (spermatocytes) and haploid (spermatids) male 
germ cells, particularly from immunological response. Also, 
it appears this barrier does not exist at birth, infancy, or 
youth; it develops in the early phase of puberty, around 11 
to 13 years of age (Mruk & Cheng, 2015).

During spermiogenesis, the final stage of spermatogen-
esis, haploid spermatids undergo profound changes in both 
the composition and the compaction state of their nuclear 
chromatin. When round spermatids differentiate into elon-
gating spermatids, histones are first replaced by transition 
proteins, and then by protamines, which condense the chro-
matin into the minute head of the spermatozoa while also 
offering protection of the paternal genome from potential 
damage caused by adverse factors (e.g., free radicals) (Wout-
ers-Tyrou et al., 1998). However, about 5–10% of histones 
persist in human sperm, including within promoter regions 
of genes enriched for developmental, neuronal and meta-
bolic pathways (Lempradl, 2020). Therefore, these retained 
histones and their covalent modifications, in combination 
with DNA methylation, are, in principle, candidates to carry 
epigenetic information between generations (Kremsky & 
Corces, 2020; Martini et al., 2020).

Considerations for Female Germline Development

Primordial germ cells, once arrived at the female genital 
ridge, become oogonia, which then multiply themselves 
via mitosis before entering meiosis between week 10 to 
20 (Kurimoto & Saitou, 2019). Soon after the initiation of 
meiosis, oocytes become arrested at the diplotene stage of 
the first meiotic prophase in the third trimester (Sanchez 
& Smitz, 2012). Unlike male germ cells, the female germ 
cells remain globally demethylated for a lengthy period of 
time, until puberty, when remethylation occurs during the 
course of folliculogenesis. While CpG methylation is largely 
established in oocytes of the germinal vesicle stage, non-
CpG DNA methylation continues to accumulate as oocytes 
mature into metaphase II (Yu et al., 2017). Overall, the 
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oocyte DNA methylation patterns are distinct from those in 
sperm and somatic cells.

Similar to the male germ cells, the oocytes engage in con-
tinuous interactions with their somatic support cells, namely 
the granulosa cells, which provide nutrients, sncRNAs, pro-
teins, metabolites, hormones, and other signaling molecules 
(Bline et al., 2020). Although there exists a blood-follicle 
barrier in the ovary, it is not ironclad, and chemicals that can 
pass the germ cell barrier include lipid-soluble compounds 
and the PPARγ agonist rosiglitazone (Janesick & Blumberg, 
2016). Studies have shown, for example, that anesthetic 
chemicals, which are lipid-soluble, are retained in follicular 
fluid following patient anesthesia (Christiaens et al., 1999), 
that excessive fluoride damaged oocytes in a mouse model 
(Wang et al., 2017), and that the halogenated anesthetic gas 
isoflurane resulted in a reduced number of developing fol-
licles and an increased number of atretic follicles in mice 
(Tang et al., 2020). Around 300,000 oocytes remain at the 
start of puberty and there is a continued loss of about 1,000 
follicles per month that accelerates with age, and reductions 
in the ovarian reserve are permanent, as female germ cells 
cannot be replaced (Orsi et al., 2014). Data from experi-
mental animal models and epidemiological studies indicate 
that exogenous chemicals can contribute to reduction in the 
ovarian reserve (Ge et al., 2019).

Pre‑implantation Reprogramming

One challenge to the idea of environmental exposures that 
affect the epigenome of the germline having any significant 
impact on the subsequent offspring is the wave of epige-
netic reprogramming that takes place in the preimplanta-
tion embryo, which erases much of the epigenetic informa-
tion, including histone modifications and DNA methylation 
which had been established in the egg and sperm during 
gametogenesis. This process, while robust, is incomplete as 
thousands of regions escape reprogramming and imprinted 
sites remain protected from reprogramming events (Seisen-
berger et al., 2013). Some loci associated with metabolic and 
neurological disorders are resistant to DNA demethylation, 
revealing potential for intergenerational epigenetic inherit-
ance that may have phenotypic consequences (Tang et al., 
2015). Therefore, alterations in DNA methylation induced 
by environmental factors during the course of gametogen-
esis may be retained if they are present at genomic sites that 
resist reprograming after fertilization (Schrott & Murphy, 
2020). However, even sites that become demethylated in 
the embryo may be able to maintain the memory of their 
germline methylated state if bound TFs in the gametes help 
guide the remethylation process in the post-implantation 
embryo (Kremsky & Corces, 2020). In addition to chro-
matin-based epigenetic content being passed directly from 
the gametes to the zygote, there is also the possibility that 

non-coding RNAs expressed in the germline can provide a 
source of heritable information between generations (Gapp 
et al., 2020).

De Novo Germline Mutation

Although we focus here on the epigenome, it is also pos-
sible that toxicants can act as germline mutagens, perhaps 
accounting for de novo germline mutations as well as 
somatic mosaic mutations in early embryonic development 
that correlate with ASD phenotypes (Pugsley et al., 2021). 
With respect to de novo germline mutagenesis, germ cells 
generally have a strong ability to cope with DNA damage 
(García-Rodríguez et al., 2018), but aging primary oocytes 
may exhibit a decreasing ability to repair DNA damage dur-
ing the lengthy postnatal period of meiotic arrest (Myers & 
Hutt, 2013). Mature spermatozoa have a limited capacity 
to perform DNA repair and are unable to complete apop-
tosis, which can result in the retention of spermatozoa with 
damaged and/or fragmented DNA (García-Rodríguez et al., 
2018). Accumulated DNA damage can result in genetic 
abnormalities in the offspring (Marchetti & Wyrobek, 2005). 
In addition, destabilizing germline insults such as benzo(a)
pyrene, a mutagenetic component of tobacco smoke and 
air pollution, should be considered as potential factors that 
raise risk for somatic mosaicism in the offspring (Beal et al., 
2019; Godschalk et al., 2015).

Evidence of Germ Cell Alterations Caused 
by Exogenous Factors in Mammalian Models 
and Human Studies

We will briefly discuss four categories of substances for 
which germline exposure has been linked to abnormal brain 
development and/or behavior in offspring: halogenated anes-
thetic gases; hormone-disrupting exposures; products related 
to smoking; and valproic acid. This is not intended as an 
exhaustive list, but merely to illustrate the principle with 
actual exposures that are common in the human population 
and that to some extent have been investigated for heritable 
impacts on offspring neurodevelopment.

Halogenated General Anesthetic Gases

Based on studies to date, the toxicants that are perhaps of 
paramount concern are halogenated anesthetic gases. The 
first of these gases, halothane, was introduced into prac-
tice in 1956, followed by many others including enflurane 
(1972), isoflurane (1981), desflurane (1992), and sevoflurane 
(1995) (Whalen et al., 2005). The rate of surgical proce-
dures in the U.S. has been increasing annually. In 2006, an 
estimated 53.3 million surgical and nonsurgical procedures 
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were performed in U.S. ambulatory surgery centers, and in 
2010, 51.4 million inpatient procedures were performed in 
nonfederal hospitals in the U.S. (Forum, 2017). The number 
of surgeries performed globally has rapidly increased, from 
226.4 million in 2004 to 312.9 million in 2012, according to 
World Health Organization estimates (Weiser et al., 2016). 
The most commonly used inhaled anesthetics in these pro-
cedures are nitrous oxide and the halogenated gases, which 
are typically administered in combination with intravenous 
anesthetic agents such as midazolam or propofol (Clar et al., 
2021).

The halogenated anesthetic agents commonly employed 
in surgical procedures are small, potent, lipophilic mole-
cules that diffuse through vessel-rich tissues, including the 
gonads, with the clinical purpose to interrupt nerve signals 
and induce a global suppression of the nervous system. They 
may be used in unusually high concentrations in young chil-
dren owing the immaturity of their GABAergic system (Li 
et al., 2019). Anesthetic gases can cause significant DNA 
damage (Schifilliti et al., 2011), changes in gene expression, 
and epigenetic alterations (Martynyuk et al., 2020; Wang 
et al., 2021), in both exposed somatic and germ cells (Escher 
& Ford, 2020; Kaymak et al., 2012; Martynyuk et al., 2020; 
Wang et al., 2021). The damage caused by the gases also 
manifests in morphological and functional impairments in 
sperm (Coate et al., 1979; Land et al., 1981; Tang et al., 
2020; Wang et al., 2008). The gases are also widely observed 
to act as steroid hormone disruptors, inducing dysfunction in 
the gonadal tissues and cells, with adverse impacts on germ 
cell integrity (Arena & Pereira, 2002; Kaya et al., 2013; Xu 
et al., 2012).

Studies in rodent models have repeatedly demonstrated 
that germline exposure to halogenated anesthetic gases can 
exert adverse brain and neurobehavioral outcomes in live-
born progeny. The first of these dates back to 1981, a small 
study finding maternal line F2 generation of halothane-
exposed gestating F0 female mice to be “significantly slower 
than control mice throughout the training” on all days of 
testing and all configurations of a maze test. Specifically, 
in a maze test used to assess learning, control mice made 
significant progress in all maze settings by the third training 
period. In contrast, F2 mice, born to the F1 females exposed 
to halothane in utero took until the seventh training period 
to learn the maze. The authors concluded that the impaired 
learning in the F2 “suggests that the anesthetic agent may 
have caused a genetic aberration” in the exposed mothers’ 
fetal eggs (Chalon et al., 1981). In a 1984 paper, the same 
lab reported that enflurane caused impaired learning func-
tion in the generation born of the exposed germ cells, this 
time later-stage sperm instead of early-stage eggs (Tang 
et al., 1984). The researchers remarked that it “seems likely 
that spermatogenetic changes, caused by enflurane, are asso-
ciated with genetic alterations” that affected the pups’ brain 

development. After these papers raised the specter of poten-
tial adverse heritable impacts of general anesthesia, this 
important question for public health seemed to fall into the 
abyss, and more than three decades passed before another 
paper was published on this topic.

In the past few years several studies have revisited this 
question and have reached similar conclusions, while add-
ing the dimension of implicating epigenetic mechanisms. 
In the first of these studies, sub-clinical concentrations of 
sevoflurane (2.1% sevoflurane for 6 h) were administered to 
male and female neonate rat pups and the directly exposed 
F0 animals and their F1 progeny were examined (Ju et al., 
2018). Using the elevated plus maze and the Morris water 
maze tests, it was found that the F0 and F1 male animals 
exhibit abnormal behaviors in both tests, indicating increase 
in anxiety and impairment in spatial memory. These behav-
ioral abnormalities were associated with changes in gene 
expression of the potassium chloride cotransporter 2 (Kcc2). 
Kcc2 expression is reduced by 20–40% in the hypothalamus 
and less than 20% in the hippocampus of F0 and F1 male 
animals compared to unexposed controls (Ju et al., 2018). 
DNA methylation in the promoter of the Kcc2 gene was 
examined in sperm of F0 males and hypothalamus and hip-
pocampus of F1 males, and found to increase significantly 
in the six CpG sites examined after sevoflurane exposure. 
These data suggest that the down-regulation of Kcc2 gene 
expression and increased promoter CpG methylation in the 
F1 hypothalamus is associated with the increased in Kcc2 
promoter CpG methylation of the F0 sperm. Kcc2 is a central 
nervous system (CNS) neuron-specific chloride potassium 
symporter localized at excitatory synapses that is essential 
for synaptic inhibitions, synaptic spin morphogenesis and 
neuroplasticity. Mutations or changes in Kcc2 expression 
are involved in many neurological diseases including brain 
trauma, epilepsies, autism and schizophrenia (Agez et al., 
2017). These findings suggest that sevoflurane could induce 
a nongenetic effect in early-stage germ cells, causing some 
sex-specific brain and behavioral abnormalities in the next 
generation, even when used at low concentrations. An edi-
torial accompanying the paper reporting these results noted 
that general anesthetics may modulate developmental neuro-
plasticity in the next generation via changes in gene expres-
sion and DNA methylation (Vutskits et al., 2018).

Studies by the same group found that expression of DNA 
methyltransferase 3a and 3b (Dnmt3a and Dnmt3b, enzymes 
that catalyze the transfer of a methyl group to DNA) in the 
hypothalamus of F1 animals was increased by more than 
40% compared to unexposed control males (Xu et  al., 
2020). When the animals were treated with Decitabine, a 
methyltransferase inhibitor, prior to sevoflurane exposure, 
the expression of Dnmt3a, Dnmt3b, and Kcc2 in the hypo-
thalamus of F1 animals were similar as unexposed control 
animals and the animals exhibit normal behaviors. These 
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data suggest that DNA methyltransferase activity might 
be involved in the response to sevoflurane exposure at the 
Kcc2 locus. In the future, it would be interesting to perform 
genome-wide analyses of changes in gene expression and 
DNA methylation in this system.

In addition, administration of sevoflurane to young adult 
rats (with more mature germ cells) resulted in similar, 
though not identical, abnormalities in parental germ cells 
and in male offspring of exposed sires and dams (Ju et al., 
2019). Notably, the lab’s experiments suggested that com-
pared to the somatic cells, the germ cells are more sensitive 
to the deleterious effects of sevoflurane, raising the possi-
bility that male offspring may be affected even when the 
anesthesia level/duration is insufficient to induce significant 
abnormalities in exposed parents (Martynyuk et al., 2020).

Another lab recently performed experiments with some 
similar aims but looking only at the offspring brain as an 
endpoint rather than the parental germ cells or offspring 
behaviors. After exposing neonatal female rats to sevoflu-
rane, they bred the females and found their F1 offspring’s 
brains exhibited epigenetic abnormalities, including reduced 
DNA methylation in hippocampal neurons and upregulation 
of Arc and Junb mRNA expression in F1 males born to F0 
exposed females, an effect linked to functional decline in 
learning and memory. This effect was sexually dimorphic, 
again only noted in the F1 male progeny (Chastain-Potts 
et al., 2020).

A recent study from another lab demonstrated the molecular 
basis for neurodevelopmental pathology in offspring of sperm 
of F1 sons of pregnant mice exposed to sevoflurane (Wang 
et al., 2021). Gestating F0 mice were exposed at day E12.5 of 
F1 embryonic development for 2 h, as this is the time when 
the germline of the exposed fetus is fully demethylated and 
may be more susceptible to environmental exposures. Adverse 
behavioral defects were observed in more than 38% of the 
directly exposed F1 males, including sociability deficits and 
increased anxiety as measured by the three-chamber sociability 
test, bedding shredding and marble burying tests. By outcross-
ing the F1 males to unexposed females for two generations, 
sevoflurane was found to have both “intergenerational” (F2 
derived from exposed germline) and “transgenerational” (F3 
derived from germline never exposed to sevoflurane) actions. 
In fact, 44–47% of the F2 and F3 showed the same behavioral 
problems as the F1 males (females were not tested). Based on 
preliminary data from one of our labs (VGC), these behav-
ioral phenotypes correlate with reduced neonatal brain size 
and weight. However, the brain size and weight differences 
were not apparent in the mature adult mice. The inter- and 
transgenerational inheritance through the male germ cells was 
confirmed by Assay for Transposase-Accessible Chromatin 
sequencing (ATAC-seq) experiments in sperm of the F1 and 
F2 generations, which showed a dramatic recruitment of TFs 
to enhancer sequences of genes found to be associated with 

ASD, including Arid1b, Ntrk2, and Stmn2 (Wang et al., 2021). 
These results and the ones described above point to a correla-
tion between exposure of laboratory animals to sevoflurane, 
alterations of the transcriptional landscape in the germline, 
changes in progeny’s neural cell epigenomes, and the develop-
ment of behavioral phenotypes similar to those displayed by 
humans diagnosed with autism. Therefore, evidence obtained 
in mouse models by independent laboratories suggest that 
sevoflurane, one of the most commonly utilized GA agents in 
surgery, could led to heritable alterations in the epigenome of 
the germ cells and brain, through changes in DNA modifica-
tions, gene expression and transcription factor occupancy.

In human cohorts, research on germ cell impacts of gen-
eral anesthesia has been surprisingly sparse, but intriguingly 
two studies point to significant molecular vulnerabilities. 
In terms of the epigenome, one study examining obesity 
and bariatric surgery found significant changes in sperma-
tozoa DNA methylation in 1509 genes approximately one 
week after surgery, with persistent effects in 1004 genes 
and 1116 CpG positions a year later (Donkin et al., 2016). 
Though the authors attributed these changes to weight loss 
and nutritional factors, the sudden nature of the effects point 
to the anesthesia as possibly the more salient exposure (Mar-
tynyuk et al., 2020). A 2012 study on DNA damage in sperm 
in vitro after exposure to various concentrations of halo-
thane, isoflurane, desflurane and sevoflurane was conducted 
by the classic DNA damage “comet” assay (Kaymak et al., 
2012), which assesses DNA damage via single cell gel elec-
trophoresis (Azqueta & Collins, 2013). The genotoxic effect 
was dose-dependent for isoflurane and sevoflurane, and 
halothane was most strongly genotoxic, but this effect was 
not dose dependent. No genotoxic effect was observed for 
desflurane. The study was preliminary in nature, however, 
offering no data on repeated exposures or different durations 
(Kaymak et al., 2012). It is also worth noting that a recent 
epidemiological study on a large Danish cohort found a two-
fold higher autism risk in offspring of parents who had been 
born very preterm, that is, less than 32 weeks of gestation 
(Xiao et al., 2021). Although this was not part of the study’s 
evaluation, it is well known that premature infants, and in 
particular very preterm infants, undergo sharply higher rates 
of early life drug exposure, including anesthesia for surgery, 
opiates, oxygen, and corticosteroids (Smrcek et al., 2005).

Taken together, the studies offer evidence that agents of 
general anesthesia can induce molecular changes in ger-
mline, changing transcription of key brain development 
genes and inducing adverse neurodevelopmental outcomes 
in progeny, particularly males.
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Synthetic Steroids, Endocrine‑Disrupting Chemicals 
and Endocrine Disease

In recent decades, humans have been increasingly treated 
with synthetic hormone drugs and exposed to many envi-
ronmental substances that act as EDCs (Diamanti-Kanda-
rakis et al., 2009). Most of these substances affect molecu-
lar signaling through the superfamily of nuclear receptors, 
which act as DNA-binding TFs with powerful capabilities 
of modifying the epigenetic landscape and gene expression 
programs (Ozgyin et al., 2015). Numerous studies support 
the hypothesis that alterations in endocrine systems influ-
ence the epigenetic information of the germline which may 
lead to neurodevelopmental and behavioral abnormalities in 
subsequent generations.

Several studies have investigated heritable impacts of 
synthetic steroid drugs. In a guinea pig model, F0 gestational 
treatment with a clinically relevant dose of the synthetic glu-
cocorticoid betamethasone led to abnormalities in the F2 
generation, including modified physiology of the hypotha-
lamic–pituitary–adrenal (HPA) axis and increased locomo-
tor activity in a novel location (Moisiadis et al., 2017). In 
a mouse study, elevated paternal glucocorticoid exposure 
altered the profile of small noncoding RNA profile in sperm 
and resulted in increased anxiety-like behavior in next-gen-
eration (F1) males, but decreased the same behaviors in F2 
male and female offspring. In F2 males only there was evi-
dence of enhanced depression-like behaviors (Short et al., 
2016). In humans, grandchildren of pregnant women admin-
istered the notorious synthetic estrogen diethylstilbestrol 
(DES) (data from descendants of over 47,000 DES-treated 
women) exhibit significantly increased risk for ADHD 
through the maternal line (Kioumourtzoglou et al., 2018).

In addition to endocrine alterations due to exogenous 
administration of drugs, aberrant status of endogenous hor-
mones may also impact germline and influence neurological 
phenotypes in subsequent generations. This may occur due 
to chronic stress, which elevates circulating levels of gluco-
corticoids. Neonatal, juvenile and adult stress may change 
the profile of microRNAs, a category of sncRNAs, in the 
sperm and lead to aberrant programming of the HPA axis 
and to anxiety and other neurological phenotypes in subse-
quent generations (Dickson et al., 2018; Gapp et al., 2014; 
Jawaid et al., 2018; Manners et al., 2019; Morgan & Bale, 
2011; Rodgers et al., 2013, 2015; Saavedra-Rodríguez & 
Feig, 2013). Alterations in thyroid hormone, which occurs 
in women with thyroid disease, can also cause intergenera-
tional effects, affecting neuroendocrine function (Anselmo 
et al., 2019; Bakke et al., 1977). Furthermore, sperm epige-
netic information is altered in a mouse model of develop-
mental overexposure to thyroid hormone (Martinez et al., 
2020). This exposure causes hypomethylation in the pro-
moter of genes involved in brain development that are also 

implicated in ASD and other neurological disorders. F2 
generation descendants of exposed male and female mice 
exhibit altered neonatal brain gene expression programs and 
abnormal behaviors (Martinez et al., 2020).

Studies involving environmental EDCs have also found 
links between germline exposure and abnormal neurobehav-
ioral outcomes in the offspring. Exposure of F1 fetal rats 
to the androgenic fungicide vinclozolin or to polychlorin-
ated biphenyls, which mimic the structure of thyroid hor-
mones, led to socio-sexual behavioral abnormalities in the 
F2 progeny, with males most affected (Krishnan et al., 2018, 
2019). This was associated with abnormal expression of 
steroid hormone receptors (estrogen receptor α, androgen 
and progesterone receptors) in the medial preoptic area and 
ventromedial nucleus of the hypothalamus (Krishnan et al., 
2018, 2019). Several studies have examined the effects of 
bisphenol A (BPA), a compound with estrogenic properties, 
on social behaviors in mice of the first and subsequent gen-
erations (Goldsby et al., 2017; Wolstenholme et al., 2012, 
2019). Mice exposed to BPA in utero exhibited reduced 
social interest compared to control mice, but sociability was 
increased in subsequent generations (Wolstenholme et al., 
2012). The brains of BPA-exposed fetal mice exhibited 
reduced expression of oxytocin and vasopressin, critical neu-
ropeptides controlling social behaviors in mice and humans 
which have been implicated in ASD and schizophrenia. The 
brain expression of vasopressin and estrogen receptor α, 
which regulates the expression of oxytocin (Young et al., 
1998) and vasopressin (Scordalakes & Rissman, 2004) was 
also reduced in BPA mice (Wolstenholme et al., 2012). The 
decrease in vasopressin expression persisted until the F3 
generation in the BPA lineage, which also exhibited severe 
deficits in social recognition and the expression of postsyn-
aptic density genes (Wolstenholme et al., 2019). Interest-
ingly, BPA-line F3 generation mice also exhibited marked 
abnormalities in the expression of imprinted genes, espe-
cially the maternally expressed gene Meg3 (Drobna et al., 
2018). It is worth noting that these changes in gene expres-
sion were found in areas related to the sexual differentiation 
of the brain, including the lateral septum, amygdala, preoptic 
area, hypothalamus and bed nucleus of the stria terminalis 
(Drobna et al., 2018; Goldsby et al., 2017).

Mechanistically, EDCs may behave similarly to the 
endogenous hormones that they mimic and bind to or inter-
fere with the binding of endogenous hormone receptors (e.g., 
steroid receptors) or other binding proteins involved in hor-
mone physiology and action, ultimately impacting receptor 
chromatin modification and transcriptional functions (Lak-
shmanan & Shaheer, 2020; Martini et al., 2020). Directly, 
by binding to hormone receptors, or indirectly, by changing 
recruitment patterns of TFs, including Ctcf, EDCs could 
reprogram the germline at different stages of development 
(Fiorito et al., 2016). DNA-bound TFs could then modify 



4616	 Journal of Autism and Developmental Disorders (2022) 52:4608–4624

1 3

accessibility of epigenetic modifiers to specific genomic loci. 
For example, ATAC-seq experiments carried out with sperm 
from the F1 through F6 progeny of mice exposed to BPA in 
utero reveal disruptions at binding sites for Ctcf, Foxa1, Esr1 
and Ar (Jung et al., 2020). The sperm disruptions persist (or 
lead to subsequent disruptions) after fertilization in somatic 
cells of the post-implantation embryo, affecting cell differ-
entiation and development in the next generation, eliciting 
abnormal phenotypes in the adult organism. These abnormal 
patterns of transcription may affect genes critical for the 
development of neurological and endocrine functions in the 
offspring (Martini et al., 2020). This has been shown to be 
the case for BPA-induced alterations in sperm in the binding 
of Ctcf to an enhancer of the Fto gene. These alterations are 
maintained in the hypothalamus and affect the differentia-
tion of POMC and AgRP neurons in the arcuate nucleus, 
leading to increased food consumption and obesity (Jung 
et al., 2020).

Given the dramatic surge in the medical use of synthetic 
hormones and environmental exposure to EDCs over the 
course of the past six decades, it is possible that some of 
these exposures are altering the transcriptional program of 
germline, conferring risk for dysregulated brain develop-
ment and abnormal behaviors.

Tobacco and Related Products

Whether germline exposure to tobacco, its metabolites, or 
related products can influence autism risk may depend on 
timing and dose. While maternal smoking either before or 
during pregnancy may be associated with a variety of risks 
to the fetus, evidence for an increase in autism risk is low 
(Lee et al., 2012; Rosen et al., 2015), with perhaps only a 
slightly elevated risk when the mother was a heavy smoker 
(von Ehrenstein et al., 2020). However, in contrast to earlier 
studies, a recent epidemiological study based on two large 
cohorts in Korea found paternal smoking correlated to an 
increased likelihood of ASD in offspring. The authors con-
cluded that elimination of paternal smoking might reduce 
the risk of having a child with ASD by as much as 11–14% 
(Kim et al., 2021). Fetal germline impacts were the subject 
of study in the Avon Longitudinal Study of Parents and Chil-
dren (ALSPAC) cohort, which linked grandmaternal smok-
ing in pregnancy with an increased risk for autism traits and 
diagnosed autism in grand-offspring through the maternal 
line (Golding et al., 2017), though it lacked data on dose 
effects.

Both mutagenic and epimutagenic factors may be at 
play. Paternal smoking affects the mutation rates in sperm 
(Axelsson et al., 2018; Haervig et al., 2020), for example by 
increasing DNA adducts caused by a metabolite of benzo(a)
pyrene (BaP), a known carcinogen and main component of 
tobacco smoke (Beal et al., 2019; Laubenthal et al., 2012; 

Linschooten et al., 2013). Studies in rodents demonstrate 
that ingestion of nicotine by gestating dams increased risk 
for ADHD-like behaviors in the F2 generation (Buck et al., 
2019; Zhu et al., 2014), with epigenetic mechanisms in the 
exposed germline being implicated (Buck et al., 2019). More 
recently, a study showed that mouse sires exposed to nico-
tine and saccharin, a mixture common in vaping products, 
produced male (females were not examined) offspring with 
elevated activity and reduced spatial memory (McCarthy 
et al., 2020). Both nicotine and saccharine exposure pro-
duces significant changes in DNA methylation at promoter 
regions of dopamine receptor genes in spermatozoa, sug-
gesting that epigenetic modification of sperm DNA may link 
the exposure to the behavioral phenotypes (McCarthy et al., 
2020).

The generational effects of cannabis use have also 
emerged as a concern for heritable neurobehavioral effects. 
One study has reported alterations in DNA methylation in 
human sperm in men that were frequent cannabis users as 
compared with non-smokers (Murphy et al., 2018). A fol-
low-up study looked at the effects of cannabis exposure on 
DNA methylation of the gene Disks-large associated protein 
2 (DLGAP2), which is implicated in ASD (Schrott et al., 
2020). This gene exhibited 17 differentially methylated CpG 
sites by Reduced representation bisulfite sequencing (RRBS) 
in the sperm of cannabis-exposed men compared to controls. 
In the brains of rats born to THC-exposed fathers, significant 
loss of methylation was detected at the same CpG sites in the 
nucleus accumbens as in the sperm of the exposed fathers, 
suggesting paternal exposure could alter the epigenetic pro-
file of the offspring.

Valproic Acid

Histone deacetylase (HDAC) inhibitors are drugs commonly 
used to treat seizure disorders and other mental conditions 
that act directly on the epigenome, by inhibiting removal of 
the acetyl groups from lysine residues on histones, leading 
to the establishment of a transcriptionally silenced chro-
matin. Fetal exposure to the HDAC inhibitor valproic acid 
(VPA) induces an autism-like neurobehavioral phenotype in 
mice and is known to cause autism-related neurobehavioral 
impairment in humans (Roullet et al., 2013). Evidence from 
rodent models is also emerging that VPA causes neurobe-
havioral impacts on the next generation via an exposed ger-
mline. VPA induced epigenetic inheritance of an autism-like 
phenotype in mice through the paternal germline in the first 
and second generation (Choi et al., 2016). Similarly, paternal 
VPA exposure increased behavioral abnormalities in adult 
offspring, with increased levels of acetylated histone H3 in 
the testicular tubules of sires, but, surprisingly, decreased the 
levels of acetylated histone H3 in the brain of adult offspring 
(Ibi et al., 2019). In this case, the relationship between 
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effects in the germline and somatic tissues would have to be 
indirect. In another mouse study on a fetal germline expo-
sure to VPA, the offspring exhibited early behavioral altera-
tions and increased expression of endogenous retroviruses 
(Tartaglione et al., 2019).

To our knowledge, no human study has investigated out-
comes after fetal germline exposure to HDAC inhibitors. 
However, paternal use of antiepileptic medications (which 
are often HDAC inhibitors), prior to conception tend not to 
be associated with an increased risk of autism in offspring 
(Tomson et al., 2020). Earlier stage exposures remain to be 
investigated.

Implications for Autism Research

Here we have described how non-genetic heritable infor-
mation induced in the germline by exposure to exogenous 
toxicants and other environmental factors could contribute 
to the etiology of neurodevelopmental and behavioral abnor-
malities, some of relevance to ASD. While the field largely 
focuses on genetic architecture, we instead stress the impor-
tance of an epigenetic landscape that may be perturbed by 
molecular events in the parental germ cells. This paradigm 
has many implications for future research directions.

Mammalian Models

Mammalian models can be employed to look at exposures 
to both male and female germline with various agents, mix-
tures, and intensities across the span of germ cell develop-
mental windows. Endpoints may include impacts on ger-
mline genetics and epigenetics and neurological phenotypes 
in the offspring and descendants, including brain gene tran-
scription and epigenetic profiles in brain, neuromorphology 
and cytoarchitecture and behavior. Agents of interest may 
include those reviewed above, but there may be many other 
factors capable of exerting intergenerational effects. In this 
regard, some medications given to women during pregnancy 
(for example, anti-nausea drugs, anti-preterm birth steroids, 
psychoactive drugs), especially those with known mutagenic 
or epigenetic properties, such as chemotherapeutic agents, 
should raise concern (Kaplanis et al., 2021). A similar con-
cern applies to an increasingly long list of environmental 
chemicals that act as endocrine disruptors which could affect 
the germline directly, or indirectly via altering endogenous 
endocrine systems. Other exposures may derive from spe-
cific occupational hazards in subsets of the population. For 
example, it has been observed that maternal occupational 
exposure to solvents may increase the risk for ASD in the 
offspring (McCanlies et al., 2019).

Epidemiology

Although prospective human studies would be difficult, 
retrospective studies should be feasible in many available 
cohorts with reliable data about specific exposures (for 
example, surgery histories of the parents, medications dis-
pensed to women during pregnancy, medication history 
of the fathers) and neurodevelopmental outcomes in off-
spring of the exposed germ cells. Additionally, in light of 
a machine-learning based study from Denmark finding that 
family history of multiple mental and non-mental condi-
tions can identify more individuals at highest risk for ASD 
than only considering the immediate family history of ASD 
(Ejlskov et al., 2021), further big data approaches focusing 
on specific exposures such as surgery, that are associated 
with health conditions, warrant further investigation. While 
register-based studies from the Nordic countries may be the 
most suitable for epidemiological studies involving more 
than one generation, other specific cohorts in other coun-
tries may also be possible, as has already been seen with 
ALSPAC (Golding et al., 2017), and Nurses Health Study II 
(Kioumourtzoglou et al., 2018). Epidemiologic approaches 
for performing intergenerational associations were recently 
explored in McGee et al. (2020).

Sex Bias of Autism

Studies in mammalian models often show that males born 
of toxicant-exposed germ cells at increased risk for brain 
and/or neurobehavioral abnormality, as compared to females 
(Chastain-Potts et al., 2020; Ju et al., 2018, 2019; Krishnan 
et al., 2018), although the underlying mechanisms for this 
sex bias have not been ascertained. Given the sex steroid-like 
properties of many of the drugs and chemicals discussed 
in this paper, epigenetic programming of sex steroid target 
genes, including those regulating the HPA-gonadal axis and 
sex hormone output, may occur. This in turn may impact 
processes of brain maturation in a sex-specific manner, ulti-
mately resulting in sexually dimorphic neurobehavioral out-
comes. Sexual dimorphism in intergenerational effects may 
also be the result of altered epigenetic information affecting 
the X chromosome; due to X chromosome inactivation in 
females, cell mosaicism may result in less severe and more 
variable impacts. However, these and other questions remain 
to be investigated.

Broader Autism Phenotype (BAP)

The BAP, a collection of sub-diagnostic traits sometimes 
seen in parents of children with autism (Rubenstein & 
Chawla, 2018) could in some cases be accounted for by 
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that parent’s developmental exposures, for example in utero 
exposure to synthetic sex steroids, or early life exposure to 
high doses of general anesthesia, as both exposures are asso-
ciated with neurobehavioral difference and impairments (Ing 
et al., 2021; Reinisch & Karow, 1977; Warner et al., 2018). 
Indeed, there is some early evidence that perinatal exposure 
to general anesthesia administered as part of a C-section, 
may increase risk for autism in the exposed individual 
(Huberman Samuel et al., 2019; Yang et al., 2021).

Case Studies of Idiopathic Multiplex Families

The autism family population represents a vast and gener-
ally untapped resource for addressing novel questions about 
germline exposures. In particular, parents who have strong 
recurrence of autism in their offspring could be questioned 
about their (and therefore their germ cells’) exposure histo-
ries or that of their parents (Escher, 2021). While such data 
would be anecdotal in nature, it could contribute valuable 
information to generate new hypotheses about the heritable 
origins of autism. Similarly, the phenotypic heterogeneity 
of autism, seen even within families, may be explained by 
differences in molecular impacts within the pool of affected 
parental germ cells.

Studies of Sperm of Exposed Males

Considering the dramatic increase in the use of genotoxic 
and epigenotoxic drugs and chemicals, relatively little atten-
tion has been paid to how these exposures affect the quali-
ties of human sperm. A small study found that DNA from 
the sperm of men whose children had early signs of autism 
shows distinct patterns of regulatory tags that could con-
tribute to the condition (Feinberg et al., 2015). While the 
study did not explore paternal exposure history, it found 193 
differentially methylated regions (DMRs) where the pres-
ence or absence of DNA methylation was statistically related 
to autism scores based on the Autism Observation Scale 
for Infants (AOSI) in their offspring. Interestingly, 24% of 
AOSI-associated DMRs are also found in the cerebellum 
of autistic individuals, lending support to the idea of causal 
relationship between epigenetic alterations in sperm and in 
adult tissues. Similarly, a small study on sperm of fathers 
who have children with ASD observed a set of 805 DMRs in 
sperm that could potentially act as a biomarker for paternal 
offspring autism susceptibility (Garrido et al., 2021). Evalu-
ating the genetic and epigenetic signatures in the sperm of 
males against the backdrop of their known environmental 
exposures and lifetime clinical histories may yield provoca-
tive insights currently unexamined in the literature. Unfor-
tunately, it is relatively difficult to directly study the eggs of 
exposed mothers except perhaps as part of assisted repro-
duction procedures, and even then, harvesting procedures 

involve the use of exogenous hormones and anesthetics 
which may influence oocyte content.

Critical Reevaluation of the Current Literature

Another important undertaking, and one not requiring any 
clinical, experimental or epidemiological studies, would 
simply involve a critical reevaluation of the current autism 
literature to take into account this third dimension of risk. 
Studies warranting reevaluation include but are not limited 
to those involving sharply increasing prevalence across the 
past several decades, heritability modeling and heightened 
sibling risk, broader autism phenotype among family mem-
bers, sex ratios among affected offspring, and even the sex-
specific differential ASD clinical manifestations. Of course, 
the study of genetic transcriptional dysregulation of autism 
brains would also benefit from taking into account these 
non-genetic factors.

Conclusion

Despite decades of diligent effort, autism’s etiology, increase 
in prevalence, heritability, sibling recurrence, sex bias, het-
erogeneity and basis in early transcriptional dysregulation 
remain largely unexplained. In order to accelerate progress 
with respect to all of these questions, we propose adding 
the phenomenon of germline disruption to the conventional 
approaches of genetics and somatic environmental expo-
sures. Expanding our notions of pathogenesis may not only 
help explain many unsolved questions, it may also inform 
future directions for prevention, diagnosis and effective 
treatment.
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