Skip to main content
. 2022 Mar 1;9(12):2106004. doi: 10.1002/advs.202106004

Table 2.

Comparison of the electrochemical performance of Li–S Batteries fabricated with various sulfur hosts

Host materials Sulfur loading [%] Mass loading [mg cm−2] Operation voltage [V] Initial capacity [mAh g‐1]/C rate Final capacity [mAh g‐1]/cycle numbers Capacity retention/decay rate [%] Refs.
Physisorption‐confinement
DHPCs 70 1.7–2.8 746/2 C 520/500 cycles 70/0.06 [ 32 ]
PCMSs 70 2.0 1.8–2.7 722/4 C 673/500 cycles 93.1/0.014 [ 33 ]
Carbon nanofiber 75 1.0 1.7–2.6 –/– 630/150 cycles –/– [ 18 ]
BCN@HCS 70 4 1.7–2.8 845/1 C 700/500 cycles 82.8/0.034 [ 34 ]
Nano‐S:rGO:PAQS 70 1.5–2.8 1255/0.5 C 559/1200 cycles 44.5/0.046 [ 35 ]
C/S+BTO 60 2.4 1.5–3.0 1143/0.2 C 835/100 cycles 73/0.27 [ 36 ]
Vermiculite 80 2 1.4–2.8 –/0.5 C –/550 cycles 75/0.045 [ 37 ]
YF3‐doped 1D carbon Nanofibers 80 1.02 1.8–2.8 778.2/2C 597.7/800 cycles 76.8/0.029 [ 38 ]
636.5/5 C 386.6/700 cycles 60.8/0.056
CNTs/BNFs 60 1.7–2.8 617/4 C 482/500 cycles 78/0.044 [ 39 ]
PCNF/S/BPQD 68 1.7–2.8 810/2 C 589/1000 cycles 73/0.027 [ 40 ]
Polar–polar/Lewis acid–base interactions
Nitrogen‐doped graphene 55 3.6 1.7–2.8 968.3/0.5 C 556.8/500 cycles 57.4/0.08 [ 41 ]
HNPC 65 1.5–3.0 1010/0.5 C 788/400 cycles 78/0.055 [ 17 ]
HNCM800 80 1.5 1.7–2.8 902/0.5 C 804/1000 cycles 88/0.011 [ 24 ]
HCMs 78 1.5 1.8–2.7 880/2 C 533/900 cycles 74/0.04 [ 26 ]
NPDSCS 72.4 1.5–3.0 952/1 C 814/500 cycles 85.5/0.029 [ 27 ]
Ti4O7 70 1.5–1.8 1.8–3.0 850/2 C 595/500 cycles 70/0.06 [ 42 ]
Ni/Fe LDH 2–3 1.7–2.8 844/1 C 501/1000 cycles 59.3/0.004 [ 43 ]
TCD‐TCS/S 67.6 1.8 1.5–3.0 1058/2 C 815/400 cycles 77.2/0.057 [ 31 ]
Ti3C2/S@PDA 78.3 1.5 1.7–3.0 1197/0.5 C 1096/200 cycles 91.6/0.042 [ 44 ]
ZDC@ZIF‐8 74.47% 1.6–2.8 1118/1 C 683/300 cycles 52/0.16 [ 30 ]
Chemisorption catalysis
Co/N‐PCNF 62.2 2.0 1.7–2.8 878/1C 728/200 cycles 83/0.07 [ 45 ]
N‐PC@uCo 76 1.8 1.7–2.8 912/1 C 780/500 cycles 86/0.028 [ 46 ]
E‐Co x Sn y /NC 72 1.8–2.7 840/1 C 681/500 cycles 81.2/0.037 [ 47 ]
CoFe‐MCS 78.2 1.7–2.8 –/2C C –/500 cycles –/0.062 [ 48 ]
HCPT@COF 69.3 1.7–2.8 1149/0.5 C 875/800 cycles 76.2/0.03 [ 49 ]
a‐Ta2O5‐ x /MCN 66.2 1.8–2.6 –/1 C –/1000 cycles –/0.029 [ 50 ]
CNT@TiO2‐ x 70 ≈2.2 1.7–2.8 –/1 C 598/500 cycles –/– [ 51 ]
NMRC/S@ MnO2 72 1.8 1.4‐2.8 1072/2 C 590/1000 cycles 55/0.045 [ 52 ]
CoS2/graphene 75 1.7–2.8 1003/2 C 321/2000 cycles 32/0.034 [ 53 ]
3DOM N‐Co9S8‐ x 69.4 1.8–2.6 1158/1 927.8/500 cycles 80/0.04 [ 54 ]
V‐MoS2‐CNF 2.0 1.7–2.6 1068/0.5 800/300 cycles 75/0.083 [ 55 ]
MoS2‐ x /rGO 78 1.8–2.6 1159.9/0.5 628.2/600 cycles 50.2/0.083 [ 56 ]
VS4@RGO 70 3.0 1.7–2.8 937/1 C 601/500 cycles 65/0.07 [ 57 ]
ZnSe/NHC 70.1 3.2 1.7–2.8 659/1 C 540.5/600 cycles 82/0.03 [ 58 ]
CC@CS@HPP 72 1.7–2.8 796.8/2 C 478/1000 cycles 60/0.04 [ 59 ]
Mo2C‐C NOs 72.15 1.7–2.8 1050/1 C 762/600 cycles 73/0.045 [ 60 ]
Fe3‐ x C@C‐500 74 1.7–2.8 –/1C 1000 cycles cycles 60.3/0.039 [ 61 ]
TSC/NbC 1.7–2.8 1287/0.1 C 1043/500 cycles 81.3/0.037 [ 62 ]
VN/G composite 3 1.7–2.8 1128/1 C 917/200 cycles 81/0.095 [ 63 ]
VN/N‐rGO 78.46 1.7 1.7–2.8 1101/0.5 C 959/500 cycles 87/0.026 [ 64 ]
C@TiN‐S 70 1.7–2.8 –/1 C 741/150 cycles –/– [ 65 ]
Fe2N@C 80 1.7–2.8 910/1 C 734/200 cycles 80.6/0.09 [ 66 ]
h‐Co4N@NC/S 75.5 1.5 1.0–3.0 786/5 C 658/400 cycles 83/0.04 [ 67 ]
609/8 C 481/400 cycles 78/0.05
Co4N 70 1.7–2.7 –/2 C 761/1000 cycles –/– [ 68 ]
–/5 C 494/1000 cycles –/–
FeCFeOC 72 1.8–2.7 801/3 C 513/1000 cycles 64/0.036 [ 69 ]
TiO2‐TiN heterostructure 88 1.2 1.7–2.8 790/1 C 704/2000 cycles 89.1/0.005 [ 70 ]
3.1 688/1 C 503/2000 cycles 73.1/0.013
4.3 523/1 C 331/2000 cycles 63.2/0.018
TiO2–Ni3S2 heterostructure 80 1.7–2.8 980/0.5 C 638/500 cycles 65.1/0.06 [ 71 ]
CNF/PANi 67.1 2.0 1.7–2.8 629/0.2 C 711/300 cycles –/– [ 72 ]
SPANI 65 1.2–2.8 817/0.3 C 734/200 cycles 89.8/0.051 [ 73 ]