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Applications of Machine Learning in Alloy Catalysts:
Rational Selection and Future Development of Descriptors

Ze Yang and Wang Gao*

At present, alloys have broad application prospects in heterogeneous
catalysis, due to their various catalytic active sites produced by their vast
element combinations and complex geometric structures. However, it is the
diverse variables of alloys that lead to the difficulty in understanding the
structure-property relationship for conventional experimental and theoretical
methods. Fortunately, machine learning methods are helpful to address the
issue. Machine learning can not only deal with a large number of data rapidly,
but also help establish the physical picture of reactions in multidimensional
heterogeneous catalysis. The key challenge in machine learning is the
exploration of suitable general descriptors to accurately describe various types
of alloy catalysts, which help reasonably design catalysts and efficiently screen
candidates. In this review, several kinds of machine learning methods
commonly used in the design of alloy catalysts is introduced, and the
applications of various reactivity descriptors corresponding to different alloy
systems is summarized. Importantly, this work clarifies the existing
understanding of physical picture of heterogeneous catalysis, and emphasize
the significance of rational selection of universal descriptors. Finally, the
development of heterogeneous catalytic descriptors for machine learning are
presented.

1. Introduction

Alloy catalysts have shown extraordinary catalytic ability in a
variety of catalytic reactions of interest, including carbon diox-
ide reduction reaction (CO2RR), [1] hydrogen evolution reaction
(HER),[2] oxygen reduction reaction (ORR),[3] nitrogen reduc-
tion reaction (NRR), [4] and ammonia decomposition reaction,[5]

etc. It is well known that alloying combines together the in-
trinsic properties of different elements to obtain a unique cat-
alytic performance.[6] For the design of alloy catalysts, the main
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challenge is to fine-tune their activity, se-
lectivity and stability simultaneously.[7] De-
pending on the structure and composi-
tion, alloys exhibit increasingly complicated
properties, from single-atom-alloys (SAAs),
near-surface alloys (NSAs), bimetallic alloys
to high-entropy-alloys (HEAs), as shown in
Figure 1. To obtain unusual catalytic ac-
tivity and selectivity, the local active cen-
ters are constructed by dispersing the cat-
alytic active atoms on a host surface for
SAA systems.[8] For NSA systems, the near-
surface chemical properties are tuned by
introducing the secondary alloy solutes.[9]

The unique point-defect structures usually
enable SAAs to break the scaling relation-
ship of conventional transition metal (TM)
catalysts, while NSAs have been a long-
term and in-depth topic in the field of
heterogeneous catalysis. Bimetallic alloys
can be complex and have been intensively
studied, due to the diverse element com-
binations and variation of proportion, as
well as the order, strain, charge and other
factors. The further study of alloying ef-
fect promotes the development from binary

and ternary alloys to the multicomponent HEA systems.[10] Ow-
ing to the inherent surface complexity, the influencing factors
of binary alloys will become more complex in HEAs. HEAs can
regulate the electronic structures to a great extent by randomly
mixing multiple elements, and thus serve as a platform for the
construction of potential catalysts with multiple active sites.[11]

For catalysis, bimetallic alloys have a more solid research foun-
dation, while the researches of HEAs are still in the embryonic
stage. Apart from the contribution of electronic structures of al-
loys to catalysis, the surface geometry of alloys also greatly af-
fects the catalytic performance due to the different crystal facets
and defects.[12] For example, the alloy nanoparticles (NPs) with
atomic-scale defects, are of great significance for the quantitative
modulation of geometric effects on catalytic activity.[13] However,
the exploration and discovery of potential alloy catalysts are still
in infancy stage, due to the complex geometry and alloying effect
of alloy catalysts and the limit of time-consuming conventional
experimental/theoretical methods.[1b]

For a given catalytic reaction, there are always multiple re-
action pathways and competitive reactions simultaneously. The
process of heterogeneous catalysis is usually complicated by the
presence of multiple intermediates, which determine the reac-
tion thermodynamics and kinetics.[14] Moreover, the coupling of
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Figure 1. The increasing complexity of structure and composition of various alloy catalyst models.

the various pathways makes it more difficult to understand the
entire reaction mechanism. For instance, the reaction mecha-
nism of CO2RR is still a controversial issue, mainly due to the
competitive reaction pathways corresponding to the diverse prod-
ucts of CO2RR, as well as the inevitable side reaction of HER.
Specifically, the key selectivity-determining steps of O–H, C–H,
and C–C bond formation, which lead to various hydrocarbon
products, are still intensely debated.[15] ORR is also a challeng-
ing catalytic reaction, because catalysts must be stable under ex-
treme corrosion conditions and exhibit the moderate activity to
activate O2 and to release H2O.[16] For catalysis on complex al-
loys, the high-throughput calculations and large-scale screening
by density functional theory (DFT) methods have always been a
kind of high-cost solutions. Therefore, it is definitely necessary
to take advantage of the predictive power of machine learning
(ML) techniques, which can capture the structure-property rela-
tionship with a much lower cost.[17] ML can not only deal with
a large number of data rapidly, but also help establish the phys-
ical picture of heterogeneous catalysis.[18] With the enrichment
of material databases and the enhancement of computing power,
ML techniques have been widely used in the prediction of the
activity, selectivity and stability of catalysts.[19] According to the
well-known Sabatier principle, moderate binding strength of key
intermediates should be carefully tuned to achieve the highest
activity.[20] The adsorption energy of key intermediates is thus
usually used as the numerical target variable in the ML scheme
of heterogeneous catalysis.[21] However, the inherent problem in
the large-scale screening of catalysts is that expensive DFT calcu-
lations are still required to obtain the adsorption energy of each
intermediate of interest. Therefore, it is essential to identify the
intrinsic properties of catalysis, i.e., fingerprints or descriptors,
which are not only closely related to the adsorption properties,
but also effectively obtainable through the theoretical methods,
preferably those properties easily accessible. The appropriate de-
scriptors that reflect prior knowledge of application domain, are
also one of the most important ingredients for ML. To date, gen-
erous efforts have been spent in the investigation of descriptors
of catalysts.[22] More specifically, the basic properties of active el-
ements in catalysts, and the electronic structure and local geom-
etry of substrate surfaces have been investigated and utilized as
the descriptors of catalysts in ML schemes.

In this review, we attempt to provide an overview of some re-
cent successful applications of ML techniques in alloy catalysts,
and discuss various reactivity descriptors in different alloy cat-
alyst systems. After a brief outline of basic concepts and work-
flow of ML scheme, we will introduce the development of ML in

the design of alloy catalysts and focus on the opportunities and
prospects of catalysis descriptors in this field.

2. Machine Learning Concepts

Taking into account both efficiency and cost, ML has been grad-
ually applied in numerous fields of material science, such as ma-
terial discovery, structure analysis, property prediction, reverse
design and so on. Suitable for solving large-scale combinatorial
space, nonlinear process and other complex problems, ML can ef-
fectively save the material resources and shorten the research and
development cycle. In the application of ML, the most influential
factors are the appropriate algorithm and effective descriptors.
ML algorithm realizes the human-like learning and prediction of
machine for different situations through a variety of mathemat-
ical logics. Appropriate descriptors determine the upper bound
of prediction accuracy of ML algorithm. Besides, there are other
important factors in the ML process that also affect the ultimate
performance of ML models. The quantity and quality of original
data in databases are the basis of ML training, while the model
validation is helpful for the rational selection of models, datasets
and their representations.

2.1. Workflow of Machine Learning

Generally speaking, the workflow of ML is to build models based
on the existing data and the selected algorithm, to optimize the
models continuously, and to predict the target eventually, as il-
lustrated in Figure 2. The construction of standardized data set
demands preprocessing, i.e., data cleaning, which reviews and
verifies data to remove duplicate information, correct existing er-
rors and provide data consistency.[23] Feature engineering mainly
deals with the feature extraction and dimension processing of
data set, and it is often considered as the most creative part of
data science.[24] After splitting the training set and test set, an
algorithm can learn in a certain way according to the provided
data. To avoid over-fitting and evaluate the generalization ability
of a model, it is common to use about 20% of available data as
the test set when performing a supervised ML process, in which
the test data shall not be used for model adjustment and opti-
mization. Then, the generalizability of a model is verified by the
model evaluation on the test set and the hyperparameter settings
are adjusted to further optimize the model. With the increase of
training times, the model can continuously learn and improve its
performance progressively.
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Figure 2. Schematic diagram of machine learning workflow.

2.2. Material Databases

The quantity and quality of original data in databases are the
basis of ML training. The data collection methods should min-
imize the noise and ensure the unbiased sampling. For hetero-
geneous catalysis, the related data are usually collected through
experiments and ab initio calculations. However, the results can-
not be naively unified on an equal footing due to the systematic
errors caused by the different experimental conditions and/or
computational parameter settings. Therefore, the key is the con-
struction of the standardized database of various materials. Re-
cently, some popular materials databases for inorganic crystals
have been a good choice for ML, including Materials Project,[25]

Open Quantum Materials Database (OQMD),[26] Inorganic Crys-
tal Structure Database (ICSD),[27] Cambridge Crystallographic
Data Centre (CCDC),[28] American Mineralogist Crystal Structure
Database (AMCSD),[29] etc. Most of these databases provide the
open-source, user-friendly, and interoperable Application Pro-
gramming Interfaces (API).[30] For heterogeneous catalysis, it
is the substrate-adsorbate interactions that determine the activ-
ity and stability of catalysts. CatApp[31] and Catalysis-Hub.org[32]

have been presented as specialized databases for reaction and
activation energies on catalytic surfaces. What’s more, Catalysis-
Hub.org contains over 100 000 optimized geometries and adsorp-
tion energies obtained from electronic structure calculations. De-
spite all this, the currently available databases are sometimes
still insufficient for the exploration of novel catalysts and the un-
derstanding of complex reaction mechanism. Researchers usu-
ally have to rely on the high-throughput calculations to build
their own data sets. There are a variety of existing open-source
automated packages for the high-throughput ab initio simula-
tions, such as Atomic Simulation Environment (ASE),[33] Python
Materials Genomics (pymatgen),[34] Automated Interactive In-
frastructure and Database (AiiDA),[35] etc. These packages pro-
vide modules to perform a variety of simulation tasks, includ-
ing but not limited to the single-point energy calculation, ge-
ometry optimization, molecular dynamics, and transition-state
search.

2.3. Feature Engineering

The features of data determine the upper limit of ML, while the
algorithms only make the models as close to the upper limit as
possible.[19h] Feature engineering is the process of transform-
ing the original data into some training features, and its main
goal is to obtain a better sample set to train the learning model.
Features should preferably have physical meanings and be ac-
cessible, i.e., easy to compute or look up. Ideally, the promis-
ing descriptors can directly describe the activity and stability and
infer the desired catalysts with a minimum of computation.[36]

For heterogeneous catalysis, it is crucial to transform the non-
numerical physical or chemical properties of substrates and ad-
sorbates into efficient numerical descriptors that can be recog-
nized by the ML algorithms.[19j] Since heterogeneous catalysis
is a multi-scale phenomenon, it is generally described by var-
ious information based on the macroscopic, atomic and elec-
tronic properties. The synthesis conditions and mesoscale struc-
tures are popular for the description of high-throughput exper-
iments, while most of the computational researches are based
on the electronic-structure methods due to their accuracy in de-
scribing the chemical bonds.[37] The choice of optimal descrip-
tors, however, usually requires the expert knowledge of learning
algorithms as well as the domain scientific problems. To inves-
tigate the activity of catalysts at the atomic scale, the direct map-
ping from the structure and composition of an active phase to its
performance, i.e., the structure-property relationship of catalysts,
is particularly significant. Therefore, the interpretability of ML
models is usually as important as their prediction accuracy.[38]

However, the model that can make the most accurate prediction
is usually obtained through the more complex feature space and
decision rules, which is hardly interpretable and hinders the fur-
ther understanding in the application domain. There are indeed
several ways to get feature “importance”, but there is no strict
consensus on the meaning of the word as often.[38–39] In scikit-
learn, the implemented importance is defined as the average to-
tal reduction of node impurity over all decision trees of ensem-
ble, and is sometimes referred to as gain importance or average
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Figure 3. Mainstream machine learning algorithms and their application classification.

impurity reduction.[40] Although there are different importance
evaluation indexes based on the algorithm principle in different
ML algorithms, these indexes are still used as an important ref-
erence to evaluate the importance of features to a certain extent.
Feature importance analysis is thus helpful for the preliminary
screening in feature engineering and the post-assessment of the
correlations between features and ultimate model performance.
The selection of features and the construction of descriptors of
catalytic materials are the core content of this review, and the
specific examples will be introduced in detail in Section 3. The
reactivity descriptors developed by predecessors include basic el-
emental properties, electronic descriptors, geometric descriptors
and their derived properties. For the realization of globally uni-
versal descriptors, it is crucial to design and develop descriptors
that can apply to most catalysts and reactions.

2.4. Machine Learning Algorithms

At present, ML algorithms can be divided into several categories
in principle as shown in Figure 3, including supervised learn-
ing, unsupervised learning,[41] semi-supervised learning,[42] and
reinforcement learning.[43] In supervised learning, each sample
consists of an input object (usually a vector) and an output value
(also known as a label that plays the role of supervision). Super-
vised learning algorithms analyze the training data and generate
an inference function to map on new samples. In unsupervised
learning, a machine learns to observe features of various data and
explore underlying laws, without demand of the label informa-
tion. Semi-supervised learning combines together characteristics
of supervised learning and unsupervised learning, mainly con-
sidering how to make use of the minor labeled sample set and
the major unlabeled sample set for training and prediction. Re-
inforcement learning, which is famous as AlphaGo,[44] obtains
learning information and updates model parameters by receiv-
ing feedback from the environment without any prior data. So

far, most of the ML algorithms used to explore heterogeneous
catalysis are supervised learning algorithms. Some existing open-
source packages can help non-expert users build ML models con-
veniently, such as scikit-learn,[39a] Tensorflow,[45] and Pytorch.[46]

The essence of model selection is to select the optimal method
and parameters for a specific task. Besides, it is generally ac-
cepted that the selection of an optimal algorithm should prefer-
ably rely on the known physical picture of descriptors and target
properties. First of all, processed data should be analyzed to de-
termine whether datasets have labels, i.e., target variables. Su-
pervised learning algorithms should take precedence when la-
bels exist in datasets, otherwise the situation should be classi-
fied as an unsupervised learning issue. Secondly, classification
or regression algorithms can be selected according to the type of
labels (discrete values or continuous values). Subsequently, one
can adopt a variety of algorithms to train data, and then select
the optimal one based on the prediction accuracy. In addition,
the size of datasets and dimension of features can also play an
important role in model selection. As shown in Figure 4, we will
briefly introduce the commonly used ML algorithms in hetero-
geneous catalysis, which mainly fall into following three major
categories: kernel-based learning methods, decision tree ensem-
ble methods, and artificial neural network.

2.4.1. Kernel-Based Learning Methods

Kernel method has been used in different ML algorithms includ-
ing kernel ridge regression (KRR),[47] support vector regression
(SVR),[48] Gaussian process regression (GPR),[49] etc., which have
been widely used in the heterogeneous catalysis. The function
of kernel methods is to transform a nonlinear problem in low
dimensional space into a linear problem in high dimensional
space.[50] Specifically, KRR generalizes a linear ridge regression
model to a nonlinear model through a kernel method. For a com-
mon nonlinear transformation, a large number of inner products
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Figure 4. Schematic diagram of algorithmic structures of three categories of commonly used machine learning regression algorithms. a) Kernel-based
learning methods. b) Decision tree ensemble methods. c) Artificial neural network.

in high-dimensional feature space need to be calculated, while
the so-called kernel trick can solve this issue. Kernel trick calcu-
lates features in low dimension in advance and directly presents
products in high dimension. Kernel trick can be completed in
a single operation, and leave the mapping function and feature
space completely implicit. This operation circumvents complex
calculations in high dimension and accelerates the procedure
of the algorithm. Specifically, kernel functions used to imple-
ment the kernel trick include linear kernel function, polynomial
kernel function, Gaussian kernel function, sigmoid kernel func-
tion, etc.[51] Among them, Gaussian kernel function is the most
commonly used kernel function and is also known as radial ba-
sis function (RBF), which can map data to infinite dimension.
With its simple algorithm principle, KRR has recently been ap-
plied to the field of face recognition and quantum chemistry.[52]

Different from KRR, the decision boundary of SVR is the maxi-
mum margin hyperplane for the learning sample solution. The
few data points nearest to the hyperplane are called support vec-
tors, which play the most important role in SVR.[53] Combined
with a kernel method for nonlinear regression, SVR is one of
the most common kernel-based learning methods with sparsity
and robustness, and has been applied in pattern recognition such
as portrait recognition and text classification.[54] For GPR algo-
rithm, the difference from other regression algorithms is that
the correlation among the features are mainly analyzed, which
is reflected by the covariance matrix. Kernel trick is thus used in
GPR to reduce the huge amount of calculations of covariance be-
tween various dimensional features. Based on the convenience
of Gaussian process and its kernel function, GPR has been ap-
plied in the fields of time series analysis, image processing and
automatic control.[55] In a word, in the procedure of kernel-based
learning methods, kernel trick achieves the efficient dimension-
ality promotion of features, and then makes the fast simple lin-
ear algorithm be able to solve the nonlinear problems. However,
due to the sensitivity of kernel-based learning methods to hy-
perparameters, it is necessary to constantly adjust hyperparam-
eters through cross validation, which will lead to the increase of
training cost.

2.4.2. Decision Tree Ensemble Methods

Decision tree is a simple graphic method to analyze data intu-
itively by applying probability analysis.[56] The construction pro-
cess of decision tree is to select attributes as split nodes and de-
termine the topological tree structure. Owing to the simple struc-
ture and strong interpretability, decision tree requires neither
much domain knowledge from users, nor the data standardiza-
tion or hyperparameter adjustment. However, the simple struc-
ture of decision tree also suffers instability and the tendency of
overfitting. The idea of ensemble methods is to combine together
several weak learning models to produce a new strong learning
model.[57] Therefore, the combinations of decision tree algorithm
and ensemble methods, including random forest (RF),[58] gradi-
ent boosting decision tree (GBDT),[59] extra tree (ET),[60] etc., are
more robust for the rapid prediction of large data sources. Specif-
ically, RF is composed of numerous randomly constructed deci-
sion trees.[61] The ultimate result of RF is determined by voting
results of multiple decision trees. Due to the randomness of the
bootstrap sampling method and the features selection, RF can
be far more robust than a single decision tree, and has been ap-
plied in remote sensing and bioinformatics.[62] Unlike bagging
concept used in RF to generate decision trees in parallel, boost-
ing concept used in GBDT is to serially build the model by con-
sidering the results of every previous tree.[63] The basic principle
of GBDT is to train the weak prediction model according to the
negative gradient information of a loss function at each step, and
then to combine together the trained weak models in the form
of weighted accumulation. GBDT is an accurate and effective off-
the-shelf procedure that can be used for both regression and clas-
sification problems in a variety of areas including Web search
ranking and signal processing.[64] Moreover, decision tree-based
methods can quantify the importance of a specific input feature
for the model accuracy by analyzing the reduction of the error at
each node. Because of the simple algorithm principle of decision
tree ensemble methods, the training cost of hyperparameters ad-
justment can be greatly saved, but the generalization ability is
relatively poor.
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2.4.3. Artificial Neural Network

Artificial neural network (ANN) has become one of the most pop-
ular ML algorithms in various fields of materials science due
to its accuracy, robustness and flexibility.[19q,65] Classical applica-
tions of ANN involve various fields: pattern recognition,[66] sig-
nal processing,[67] knowledge engineering,[68] expert system,[69]

robot control,[70] etc. With the development of ANN algorithms,
a large number of ANN variants have been recently used in dif-
ferent practical applications due to their characteristics, such as
back-propagation neural network (BPNN),[71] general regression
neural network (GRNN),[72] extreme learning machine (ELM),[73]

deep neural network (DNN),[74] convolutional neural network
(CNN),[75] recurrent neural network (RNN),[76] generative adver-
sarial network (GAN)[77] and so on. Among the recent popular
ANN variants, CNN, which introduce the idea of local percep-
tion, is suitable for image recognition and speech recognition,[78]

while RNN, which introduce the idea of time series, is impor-
tant for natural language processing, speech recognition, hand-
writing recognition applications.[79] GAN is a new framework
for generating models through confrontation process in recent
years for unsupervised learning on complex distribution, and is
usually used for image generation.[80] For all kinds of networks,
there are always three basic components. The first component
is the network architecture, which describes the hierarchy and
interconnection of neurons. Each neuron implements a basic
computation, typically including a linear weighting of the con-
nection signal and a nonlinear activation function processing.
The second component is the activation function which provides
the nonlinear fitting ability. The third component is the learn-
ing and iterative methods, which search for the optimal value of
weight parameters in the network. The outstanding performance
of ANN mainly comes from its easy-training, adaptive structure
and adjustable training parameters. In addition to the most com-
monly used traditional ANN, another neural network (NN) vari-
ant, CNN, has recently been used in material science.[81] CNN
is a kind of feedforward NN with the convolution operations and
deeper network structure, and it is one of the representative algo-
rithms of deep learning in the image classification, object recog-
nition and other computer vision fields.[82] The connection of
convolution layers in CNN is called sparse connection, that is,
the neurons in convolution layer are only connected with the ad-
jacent neurons rather than all the neurons in the previous layer.
The sparse connection of CNN improves the stability and gen-
eralizability of the network structure. Meanwhile, the parameter
sharing mechanism of the convolutional kernel reduces the to-
tal amount of weight parameters, which reduces the calculation
cost and is helpful for the fast learning. For most types of cur-
rent ANN algorithms, however, the convergence speed is rela-
tively slower than most of the other ML algorithms. What’s more,
the construction of network topology has great arbitrariness and
flexibility, and thus the lack of theoretical guidance leads to poor
interpretability and high training cost.

2.5. Model Evaluation

Model selection is to select the best algorithm in a certain al-
gorithm class, while model evaluation is to objectively evaluate

the prediction ability of the model and to determine the hyperpa-
rameter settings. In the practical model evaluation, commonly
used evaluation indexes are usually selected to facilitate hori-
zontal comparison among different models, such as the coeffi-
cient of determination (R2), mean absolute error (MAE) and root
mean squared error (RMSE), etc. for regression algorithms.[83]

For classification algorithms, error rate, accuracy, balanced F
score (F1 Score), etc. are usually used to evaluate the model
performance.[84] Especially for the commonly used binary classi-
fiers, receiver operating characteristic (ROC) curve is one of the
most important indexes to evaluate the model performance, and
the area under ROC curve (AUROC or AUC) can quantitatively
reflect the model performance.[85] The purpose of ML is to accu-
rately predict the unknown based on the known, and some ran-
dom errors can be avoided or reduced by the process of model
evaluation. However, a common situation that must be avoided is
called over-fitting, which regards the noise as a general feature.[18]

In the training process, the issue of over-fitting can be solved by
regularizing the loss function or increasing the size of training
set.[86] In contrast, under-fitting means the failure of extracting
general features from the training samples, and this issue can
be solved by increasing the polynomial dimension and reducing
regularization parameters. Cross validation method, a statistical
method to evaluate robustness and generalizability, partitions the
training sample of size k into a calibration sample of size k-1 and
a validation sample of size 1 and repeats the process k times. The
validation set is divided to test the parameters generated by the
training set, so as to judge the compliance of these parameters
with the data outside the training set relatively objectively and se-
lect the optimal model.[18] Stability and fidelity of the evaluation
results of cross validation method largely depend on the value of
k, thus the cross validation method is usually called k-fold cross
validation, in which the most commonly used value of k is 5 and
10. Leave-one-out cross validation (LOOCV) method is a special
form of cross validation in the case of a small number of data sets,
that is, only one sample in the original training set is used as the
validation set, and the rest is used as training data. For the case of
small data sets, another helpful method is bootstrapping method,
which can generate training sets of desired size from the ini-
tial data set through the sampling method with replacement.[87]

However, the distribution of the data set generated by the boot-
strapping method differs from that of the initial data set, which
will introduce estimation bias. Therefore, when the amount of
data is sufficient, cross validation method is more commonly uti-
lized. In addition to the evaluation of prediction performance of
model, the efficiency, complexity, robustness and transferability
of model should also be considered in the model evaluation.

3. Design of Reactivity Descriptors for Machine
Learning

Designing effective descriptors is essential for constructing a ML
model for catalyst prediction. Diverse alloys, various adsorbates,
as well as the complex reaction mechanism caused by their cou-
pling, make it difficult to extract useful descriptors for hetero-
geneous catalysis. There are several strategies to select the ap-
propriate descriptors of alloy catalysts as input features for a ML
model: i) the descriptors should be able to represent electronic
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Figure 5. a) DFT-calculated adsorption energies of CH3*, CH2*, CH*, C* and H* adsorbates on the Cu-based SAAs. Feature importance scores of the
descriptors for the ETR prediction of the adsorption energies of b) CH3* and c) other adsorbates on Cu-based SAAs. Reproduced with permission.[89d]
Copyright 2018, American Chemical Society.

and geometric structures of the local environment of surface ac-
tive sites; ii) the descriptors should reflect characteristics of vari-
ous adsorbates in heterogeneous catalysis; iii) last but not least, it
is necessary to obtain the descriptors directly from databases or
by simple DFT calculations as possible, to improve the efficiency
of ML schemes.

Most descriptors are based on the known physical picture,
including basic elemental properties and other low-cost com-
putable properties representing electronic and/or geometric
structures of catalyst surfaces. In the design of descriptors, re-
searchers often focus on the interactions between descriptors and
target variables, and analyze them to further explain and explore
the structure-property relationship of catalysts. In addition, there
is another way to construct descriptors by numerical fitting, rep-
resented by sure independence screening and sparsifying opera-
tor (SISSO) in the framework of the compressed-sensing based
dimension reduction.[88] SISSO applies algebraic/functional op-
erators such as addition, multiplication, exponentials, powers,
roots, etc. to construct candidate features based on the primary
features, and then recognizes the optimal effective descriptors
from the immense feature space. Importantly, numerical fitting
methods of descriptor construction enable the low-cost system-
atic screening of catalysts with high accuracy, which paves the
way for active understanding of the uncertainty in catalytic sur-
faces.

3.1. Basic Elemental Property Descriptors

Widely used in ML for predicting alloy performance, basic el-
emental properties descriptors (BEPD) have the advantages of

their accessibility and reliability.[81a,89] These intrinsic properties,
such as atomic number (AN), group number (GN) and period
number (PN) in the periodic table, atomic radius (AR), elec-
tronegativity (EN), etc., can be obtained directly from the periodic
table, handbooks or material databases.

For SAA systems with a given metal substrate, only the doping
element varies from one system to the next, and thus one can use
accessible BEPDs of the doping elements to easily describe the
differences of SAAs. Toyao et al. employed a simple ML model to
predict adsorption energies of the methane (CH4) related species
on Cu-based SAAs, based on 12 BEPDs of doped metals, such
as GN, PN, AR, etc. (Figure 5).[89d] Owing to the large resource
of CH4 in the form of the natural gas and renewable biogas,
there is a strong economic incentive to convert CH4 into value-
added products.[90] Industrial CH4 conversion includes the gas-
based steps to produce synthesis gas. However, catalyst deacti-
vation, caused by coking and sintering of active metals in gas-
based steps, has a negative impact on the overall CH4 reforming,
but this issue can be overcome by the electrochemical catalysis
process.[91] A mild electrochemical environment and novel elec-
trochemical catalysts are thus required for the efficient utilization
of CH4. Among the CH4 related species, CH3* is the key interme-
diate for both the reactions of the oxidative coupling of methane
to ethylene and the partial oxidation of methane to methanol.[92]

Therefore, it is crucial to design a surface with strong adsorption
of CH3* species, to stabilize CH3* with respect to CH2* and avoid
the further dehydrogenation. To design SAA catalysts for the ef-
fective CH4 utilization, Toyao’s work shows a standard workflow
of a simple ML scheme. The adsorption-energy sample set of CH4
related adsorbates, including CH3*, CH2*, CH*, C* and H*, was
firstly prepared by DFT calculations. Then the pre-evaluation for
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selecting ML algorithms suggests that tree ensemble methods
are significantly better than kernel-based learning methods, and
the ETR method can readily predict CH3* adsorption energies
with the RMSE of 0.24 eV without demanding hyperparameter
tuning. Through the feature importance analysis of ETR, it is
found that GN, surface energy, and melting point are the top 3
descriptors. When using even only the top 3 descriptors, the ro-
bust ML prediction performance remains constant, which also
demonstrates the necessity and significance of feature engineer-
ing. The investigation of training data ratio shows that 50% of the
training data can achieve the moderate accuracy of ETR model,
providing guidance for the trade-off between data availability and
prediction performance. The robust model is also applicable for
other adsorbates, including CH2*, CH*, C* and H*, with the
same top 3 descriptors as that of CH3*. The model was eventually
used to predict the adsorption energy differences (ECH3-ECH2) to
optimize the efficient utilization of methane. According to their
findings, Te, Sn and Mg-doped Cu-based SAAs with smaller value
of ECH3-ECH2 are the most promising candidates, while the el-
ements with larger value of ECH3-ECH2 (e.g., Cr, V, and Mo) in-
duce the undesired reactions. Similarly, Lu et al. used the same 5
BEPDs included in Tayao’s descriptor set to study the Cu-based
SAAs.[89e] Differently, they focused on the active learning of SAA
site aggregation energies as well as O* adsorption energies and
used the uncertainty quantification ability of GPR algorithm to
understand the effect of training dataset selection. The feature
importance analysis shows that GN, EN and AR play a more im-
portant role, while AN and PN contribute less to the prediction.
Interestingly, although the studied adsorbates and algorithms are
different in the two references, the importance ranking of the
mutual BEPDs for Cu-based SAAs is surprisingly consistent, that
is, from high to low they are GN, EN, AR, AN and PN, respec-
tively. This indicates that the same type of catalyst substrates are
likely to have the similar adsorption mechanism for different ad-
sorbates. Additionally, it is worth noting that Dasgupta et al. did
just the opposite of the traditional prediction schemes, focus-
ing on the outliers that cannot be identified by the conventional
design.[89f] Generally speaking, tuning binding energy by alloying
(e.g., NSA) is still limited by the Brønsted−Evans−Polanyi (BEP)
scaling, i.e., there must be a trade-off between low activation en-
ergy and weak binding.[93] As an extreme example of reaction
site regulation, SAAs are expected to break the BEP scaling and
achieve unexpected performance, due to the extreme dispersion
of catalytic metal atoms and the unique synergetic effect with host
metal substrates.[94] Based on 21 BEPDs, they employed the GPR
algorithm to predict reaction energies and adsorption energies
for 5 different adsorbates on 300 hypothetical SAAs. Through the
local outlier factor analysis, they identified a limited number of
SAA outliers, which are most likely to break the established scal-
ing law. Note that the chemistry space of hypothetical SAAs con-
sidered in Dasgupta’s work involves multiple SAAs with different
metal bases. Although eight of the selected BEPDs are the same
as those in Toyao’s work, their importance ranking is very dif-
ferent from that in Toyao’s work. Here one can see that it is not
common for BEPD importance analysis to have the similar im-
portance ranking or change trend of different systems. Usually,
a consensus of the importance of BEPDs is still hard to reach
in various alloy systems. These pioneering works on SAAs have
made a good demonstration of ML applications, but it is difficult

to extend the ML schemes to more complex alloys, due to the lim-
itation of size and type of the studied systems. Generalization of
ML schemes usually demands the introduction of other descrip-
tors to complement the aspects that BEPDs cannot describe, e.g.,
electronic and geometric characteristics of the local surface envi-
ronment.

HEAs are originally known for their novel mechanical prop-
erties, and have become a kind of promising catalysts recently,
due to their huge chemical space and adjustability.[10,95] Two fac-
tors that greatly contribute to the variation in active sites are al-
ways entangled together, i.e., ligand effect and coordination ef-
fect. High-entropy environment also makes it difficult for BEPDs
to predict the catalytic performance. But Lu et al. constructed a
clever and simple representation of atomic identity to deal with
the difficulty, by introducing the coordination number of metal
atoms in active sites as well as the proximity between the ad-
sorbate and the individual metal atom (see Figure 6).[89h] They
described the atomic identity of quinary IrPdPtRhRu HEAs and
captured the influence of ligand effect by using only three BEPDs,
including PN, GN and experimentally measured AR. For coordi-
nation effect, they adopted the long-established concept, i.e., co-
ordination number (CN), which is likely the most intuitive ge-
ometric descriptor. In addition to the ligand and coordination
descriptors, there is another descriptor indicating whether the
metal atom is a part of the active site or its nearest neighbor. The
ligand, coordination, and proximity descriptors are concatenated
into a descriptor vector for each metal atom, and the descriptor
vectors from all considered atoms are joined into a matrix, form-
ing a single sample input. To date, ligand and coordination ef-
fects have mostly been quantified separately, and their interac-
tions and influence on the catalytic performance still remain un-
clear, especially for HEAs. To understand the interplay between
ligand effect and coordination effect on the catalytic performance
of HEAs, Lu et al. utilized the predictive power of NN algorithm
to predict adsorption energies of OH* on HEAs under 12 differ-
ent coordination environments with the MAE of 0.09 eV. Differ-
ent from the ordinary NN structure, NN prediction of the entire
HEA site is achieved by summing individual contributions from
each metal atom in the active center corresponding to the input
form, which is similar to the approach used in Atom-Centered
Symmetry Functions method.[96] Moreover, the model parame-
ters of the network structure are shared for all atoms. This idea
of parameter sharing makes the NN model compact (36 parame-
ters in total), and reduces the required training data size. Leverag-
ing the NN design, the contribution of the individual HEA atom
to the final OH* adsorption energy can be decomposed by vary-
ing the input to the isolated dense layer and observing its output
without summation over all atoms. Through the 6-node dense
NN layer, they quantified the exact effects of element identity, CN
and proximity. According to the frequency distribution of OH*
adsorption energies, the adsorption energy of HEA bridge sites
is mainly determined by the mixing contributions of the two ac-
tive bridge atoms that directly bond with OH*. That is to say, for
active centers with different elements, X-Y, the adsorption energy
lies at the average of that of X-X and Y-Y. Compared with the cen-
tral bridge atoms with strong ligand effect, the nearest neighbor
atoms have a stronger coordination effect to regulate the HEA
catalytic activity. To further simplify the NN model to a linear
scaling relationship, they weighted the contribution of each atom
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Figure 6. Neural network prediction scheme, example input features, and model parity plot. a) Input features and the example input (green, blue
and red blocks indicate ligand, coordination, and nearest-neighbor descriptors respectively), and the neural network layout depicted in the inset. b) The
structure corresponding to the example in panel a, where labeled metal atoms are the active site and its nearest neighbors. c) Parity plot and performance
metrics following a random data shuffling and a 50%/50% training-test data splitting. Dotted lines indicate the errors of <0.15 eV. Reproduced with
permission.[89h] Copyright 2020, Cell Press.

to the adsorption energy by its element identity, CN and prox-
imity. In this simplified model, the slight cost of accuracy lost
(MAEs of the test set only increase by 0.04 eV) proves the effec-
tiveness of these descriptors. However, DFT modeling of com-
plex, random alloys requires defining a fixed-size cell, which in-
troduces non-random periodicity and conflicts with the inherent
disorder of HEAs.[97] Feugmo et al. have recently proposed a neu-
ral evolution structures generation method that combines ANNs
and evolutionary algorithms.[98] Based on the pair distribution
functions and atomic properties, this method can greatly reduce
computational cost, making it possible to generate larger cell of
HEA structures (over 40 000 atoms) in few hours. The gener-
ated HEA structures can be directly used to collect desired prop-
erties including structural stability, lattice vibrational property,
electronic structure, elasticity, and stacking fault energy. This ef-
ficient HEA structure generation scheme can help people under-
stand the complex structure-property relationship of HEAs more
efficiently, and accelerate the exploration and application of novel
HEAs. To obtain a better ML model with higher prediction accu-
racy, researchers often have to select and use multiple BEPDs.
Thus, feature sets composed of BEPDs are often redundant, due
to the diversity of descriptor types and the intrinsic correlation
among them. Though one can analyze the importance of fea-

tures in an individual ML scheme, a consensus is usually hard
to reach in various alloy systems. This may be due to the fact
that BEPDs cannot provide sufficient and concise information
for the ideal description of complex adsorption mechanism. The
essence of this inconsistency is that the real physical picture is
still not clear, while BEPDs can only reflect the partial underlying
picture. Last but not least, it is well known that the activity and se-
lectivity of heterogeneous catalysis are usually determined by the
local environment of active centers on catalysts.[19w,99] When the
local environment of active centers become more complicated, it
is unrealistic to accurately predict the catalyst performance from
the overall perspective only by the basic individual properties of
involved elements.

3.2. d-Band Theory Descriptors

To date, d-band theory proposed by Nørskov et al. has been proved
helpful for understanding the surface chemisorption and het-
erogeneous catalysis for metallic catalysts.[100] In the theoretical
framework of tight-binding approximation, the valence state of
a given adsorbate firstly interacts with the metal s-state to pro-
duce a broad renormalized state, and then the renormalized state
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Figure 7. a) Rational screening of CO adsorption energies on the second-generation core–shell alloy surfaces (Cu3B-A@CuML) using the developed
neural-network model. b) Parity plot shows a comparison of the CO adsorption energies on selected Cu monolayer alloys calculated using the neural-
network model and self-consistent DFT. Two alloys, (1) Cu3Y-Ni@CuML and (2) Cu3Sc-Ni@CuML are identified to have desired CO adsorption energy.
The inset in panel b shows the geometric structure of the model system. Reproduced with permission.[104] Copyright 2015, American Chemical Society.

couples with the narrow d-state, which often gives rise to the
state splitting, i.e., the bonding and antibonding states.[101] The
essence of d-band theory is that the variation of adsorption en-
ergies from one TM surface to the next depends largely on the
d-band properties of the surface, such as the well-known d-band
center. The d-band center refers to the weighted average energy of
electronic d-states projected onto a surface metal atom.[101a] Gen-
erally speaking, the higher the d-state energy is relative to Fermi
level, and the stronger the surface-adsorbate bond is. However,
only the 7 late-TMs, whose d-band center and width are indepen-
dent, strictly follow the d-band theory model.[102] In addition, sev-
eral early-TMs and a subset of alloys with relatively small pertur-
bations to the host metal, can be detected by the d-band model
with a reasonable accuracy.[20c] Actually, many measured activi-
ties cannot be explained by the usual trend of the d-band center,
mainly due to the unconsidered diffusion of energy state.[103] For
these cases, the correlation between the d-band center and the
activity can be improved by introducing the d-band width, owing
to the different contributions of the d-band center and width to
the adsorption energy of the late and early TMs. By introducing
the d-band upper-edge, the d-band model can better identify Ni,
Pd and Pt, but the prediction accuracy is still unfortunately in-
adequate for other TMs. In the application of ML scheme to the
catalytic performance prediction of TMs and alloys, other relevant
characteristics of the d-states have been also inputted as descrip-
tors, including the filling, skewness, and kurtosis, which are also
important factors to tune the reactivity of various metal surfaces.

As a pioneering work of ML for alloy catalyst design, a
chemisorption model based on the ANN algorithm was reported
by Ma et al.[104] For the CO/CO2 electrochemical reduction on
Cu(100), the proton-electron transfer to CO* is the critical step
in the C1 pathways, while the dimerization of CO* with the se-
quential proton-electron transfer governs the onset potentials in
the C2 pathways.[15f,105] Thus, they aimed to identify effective de-
scriptors for adsorption energies of the key intermediate CO*,
which linearly correlate with those of other intermediates. The
strong binding strength of CO* will increase the overpotentials
for both the C1 and C2 pathways, but slightly tends to result in the
formation of C1 species. The weak bonding strength of CO* leads
to a less negative limiting potential for the step of two adjacent
CO* to COCOH*, while the thermodynamic driving force from
CO* to CHO* varies slowly, thus enhancing the selectivity of C2
products. Motivated by the d-band theory, they adopted the char-

acteristics of d-states distribution, including filling, center, width,
skewness and kurtosis, together with the delocalized sp-states
determined local Pauling electronegativity as primary features.
Using a standard feedforward ANN model, they constructed a
nonlinear mapping between the descriptor vector and the target
CO* binding energy with the RMSE of 0.12 eV. Based on the NN
model trained with the bimetallic data set, they identified several
promising second-generation core–shell alloys with the desired
CO* binding energy, i.e., 0–0.2 eV weaker than the CO* adsorp-
tion on Cu(100) (see Figure 7).[106] This type of alloys have been
widely studied for many electrochemical reactions, such as ORR,
due to the flexibility of reactivity regulation through the strain
and ligand engineering.[3c,107] Statistical analysis of network re-
sponse to input perturbations further clarifies the underlying fac-
tors governing adsorbate-substrate interactions.[108] That is to say,
d-band center plays an important role for all the alloys while the
shape of d-band has a higher significance for coinage metal al-
loys. In addition, local Pauling electronegativity determines the
substrate-adsorbate bonding distance and plays an important role
in chemical bonding, especially for coinage metal alloys where
the d-band is fully occupied and the sp-band interactions domi-
nate. These findings strongly suggest that the inclusion of d-band
shape and sp-band properties is crucial for capturing surface reac-
tivity of TM alloys within a broad chemical space. This pioneering
study of ML scheme opens up a new way for the further design of
complex alloy catalysts. Using Ma’s dataset of {100}-terminated
alloys, Noh et al. adopted a non ab initio d-band theory descrip-
tor, i.e., the linear muffin-tin orbital theory (LMTO)-based d-band
width instead of the DFT calculated d-band width,[109] to predict
CO* binding energies with less computation cost.[110] Combin-
ing the active learning algorithm with the non ab initio descrip-
tors, they obtained an active KRR model with the RMSE of only
0.05 eV. Although the LMTO based d-band width has higher pre-
diction accuracy than the DFT calculated d-band width, the in-
clusion of the DFT calculated d-band center can still significantly
improve the overall accuracy by 0.03 eV (from 0.05 to 0.02 eV).
Furthermore, as an example of practical application of the ac-
tive KRR model, they identified several alloy catalysts for electro-
chemical reduction of CO2, which have an overpotential about 1
V lower than that of Au(100). For the {111}-terminated bimetal-
lic alloy catalysts, Li et al. presented a holistic NN framework
for the rapid screening.[111] Based on a thousand of ideal alloy
surfaces, they captured the complex adsorbate/substrate interac-
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tions in methanol electro-oxidation. The feature analysis reveals
the potential factors for adsorbate-metal interactions, and pro-
vides the physical origin to break the energy scale constraints of
CO* and OH*. What’s more, a variety of opinions can be drawn
from the ML analysis that i) the d-band features characterized by
the lower moments play a more important role than the higher
moments; ii) CO* is more dependent on the d-band features than
OH*, and iii) the sp-band properties indirectly determined by lo-
cal electronegativity have a significant effect on OH* than CO*.

In this regard, the d-band theory descriptors benefit from the
research basis of the d-band theory itself, and therefore have a
high correlation with the activity of catalysts. A large number
of studies have shown that the d-band model can well predict
the surface reactivity of TMs and some alloys.[20c,102,112] However,
generally speaking, the characteristic parameters of d-band the-
ory, especially the d-band center, demand the time-consuming
DFT calculations for each catalyst material. This disadvantage of
d-band theory descriptors limits the transferability and efficiency
of their usage in ML schemes.

3.3. Local Geometry-Based Descriptors of Adsorption

The catalytic activity is often determined by several specific
surface-active sites, and the design of active sites is the key to ob-
tain efficient heterogeneous catalysts. Due to the complex elec-
tronic properties of alloys, there exist more complex electron
transfer between a surface-active atom and its surrounding lo-
cal environment. Various coordination environments formed by
different facets will also significantly affect the activity of surface
sites. On the basis of electronic features, one should also con-
sider geometric features to describe the local environment of cat-
alytic surfaces, which will improve the rationality and compre-
hensiveness of catalyst fingerprints. Different from the electronic
descriptors, the geometric descriptors are mostly used to effec-
tively describe complex NPs with various high index surfaces,
whose catalytic behaviors and properties differ from that of bulk
metals.[113] Moreover, pure metal NPs shed light on the advan-
tages of local geometric descriptors, due to their complex surface
structures and high specific surface areas. Generally, ML requires
compact input data in the smooth feature space. Thus, a qualified
local geometric descriptor needs to fulfill several criteria summa-
rized here, i) it should be invariant to the rotation, translation and
homo-nuclear permutation; ii) it should be uniquely encoded to
describe any given structure; iii) it should be continuous in the
spanned feature space.

A series of effective local geometric descriptors have been de-
veloped and successfully applied to the study of alloy catalysts,
such as generalized coordination number (GCN),[114] orbital-wise
coordination number,[115] Smooth Overlap of Atomic Positions
(SOAP),[116] Coulomb Matrix (CM),[117] Atom-Centered Symme-
try Functions (ACSF),[96] Voronoi features,[81a,118] etc. GCN is a
simple extension to the second coordination shell of the well-
known concept of coordination number (CN).[113f] The orbital-
wise coordination number quantifies the degree of coordina-
tive saturation of metal atoms and their inclination to form new
bonds via the s or d orbital of an adsorption site. SOAP represents
the local environment around a center atom by the Gaussian-
smeared neighbor atom positions with rotationally invariance.

CM is a global descriptor based on the pairwise Coulomb re-
pulsion of the nuclei. ACSF uses symmetry function to express
the distance and angular interactions between each atom and
its neighboring atoms. Voronoi features of atoms in the surface
structures provide local environment information in the form of
solid angles. Solid angle is the projected area of the shared plane,
which is between the adjacent atom and the Voronoi polyhedron
of the center atom, on the unit sphere of the adjacent atom. As far
as local geometric descriptors are concerned, they are very useful
in describing complex geometric structures such as NPs. How-
ever, most local geometric descriptors only take into account the
structural properties of substrates, without considering their ele-
mental and electronic properties. Thus, even the combination of
several effective local geometric descriptors in ML schemes can-
not further improve the overall prediction accuracy, due to the
redundancy of these input information.

The element distribution and variation of alloy NPs present
new challenges for local geometric descriptors, although some
local geometric descriptors can reflect the interactions between
atoms of different elements by their distance. Especially in the
study of the interactions among multiple elements in alloys, most
of the local geometric descriptors are weak and inefficient in de-
scribing various alloy systems. Notably, crystal structures of alloy
NPs vary with the composition, resulting in the demand of more
DFT calculations to capture the surface inhomogeneity and com-
plexity than the ordinary pure metal NPs. Jinnouchi et al. pro-
posed a general ML scheme using SOAP to describe the RhAu
alloy NPs with atomic-scale defects.[113b] Catalysis of direct de-
composition of nitric oxide (NO) without reductant can meet the
increasingly stringent emission requirements of gasoline and
diesel engines for small passenger vehicles. Several noble metals
(e.g., Rh and Pt) are known to activate the NO decomposition, but
the surfaces of these catalysts are usually poisoned by the strongly
binding oxygen atoms. It has been shown that alloying the cata-
lysts with Au can improve the desorption rate of oxygen.[119] De-
signing the corresponding alloy NPs can further improve the uti-
lization of noble metal atoms and the catalytic activities of sur-
face sites, because of their high specific surface areas and vol-
ume ratios. Relying on the fact that catalytically active sites are
determined by their local atomic configurations, Jinnouchi em-
ployed a ML scheme and extrapolated the experience to alloy NPs
by learning geometrical information of the well-defined single
crystal (SC) surfaces (see Figure 8). The geometrical information
of surface sites of both SCs and alloy NPs is evaluated by the local
similarity kernel, i.e., SOAP. Local similarity kernel Kij consists
of the overlap integrals between 3D atomic distributions within
cutoff radius (Rcut) from the ith surface site and those from the
jth surface site. Correlating catalytic activity with the local atomic
configurations, SOAP is applied to predict the activity of direct de-
composition of NO on RhAu alloy NPs. The achievable accuracy
depends on Rcut, that is, the shorter Rcut leads to the fewer atoms
in the range and the smaller dimension of variables composing
SOAP. They found that the catalytic activity is volcanically related
to the Au atomic ratio (ARAu) for alloy NPs of any diameter, and
the maximal activity and its corresponding ARAu increase with
the decrease in the diameter of NPs. Through the stable atomic
distributions determined by Monte Carlo simulations, Au atoms
are found to preferentially segregate at the corners and edges of
alloy NPs at low ARAu, and gradually cover the whole surface with
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Figure 8. a) Schematic of the algorithm. b) Mean absolute error 𝜎 in the predicted energies of O* on the Rh(1-x)Aux single crystal surfaces as a function
of the number of used training data that equals the number of basis sets in the calculation. c–e) Predicted binding energies of (c) N*, (d) O*, and (e)
NO* on Rh(1-x)Aux single crystals and nanoparticles as a function of those obtained by DFT. R2 refers to the coefficient of determination. f) Predicted
formation energies of Rh(1-x)Aux single crystals and nanoparticles from the pure Rh and Au bulks as a function of those obtained by DFT. Reproduced
with permission.[113b] Copyright 2017, American Chemical Society.

the increase of ARAu. Results of local energetics show that inter-
mediates bind to the active corner sites with moderate binding
energy, indicating the mechanism of activity enhancement at the
alloyed corner sites. Under the assumption that binding energy
is dominated by the local structure, prediction accuracy can be
systematically improved by increasing the number of DFT data
to cover all the possible local structures of NPs. It should also be
noted that this scheme is applicable to any property dominated
by the local structure. For HEA surfaces with large numbers of
unique binding sites, Batchelor et al. have employed a simple ML
model to predict and span out the full set of adsorption energies
of OH* and O*. They firstly investigated the stability of IrPdP-
tRhRu quinary HEAs to form a stable solid solution, based on
the atomic radius difference factor, and the ratio taken from the
Gibbs free energy of mixing.[120] Subsequently, they constructed
a simple model to linearly correlate the local environment with
the adsorption energies. By counting nearest neighbors, dividing
active centers into several zones and considering different alloy
elements separately, this model is capable of predicting all pos-
sible surface sites. The differences among the selected parame-
terized zones of the nearest neighbor atoms are attributed to the
different interaction strength and coordination numbers for sur-
face and subsurface. Compared with the GCN and orbital-wise
coordination number methodologies, this local geometric repre-
sentation can better describe the inherent structural disorder on
the HEA surface.

3.4. Derived Intrinsic Descriptors of Substrates and Adsorbates

Intuitively, the adsorption energy should be a function of elec-
tronic and geometric properties of adsorbates and substrates. By

correlating intrinsic properties of substrates and adsorbates with
the adsorption strength, not only the basic determinants of ad-
sorption energy can be identified, but also the foundation for the
rapid estimation of adsorption energy can be established. It is
impractical to predict the overall activity of catalyst for a given
catalytic reaction only by the basic properties of alloy elements,
when the interplay among atoms at the active center of alloys be-
comes increasingly complex. Similarly, only electronic descrip-
tors or geometric descriptors cannot fully describe the active sites
of catalysts either. All the above types of descriptors are only de-
signed for substrates, however, activity and selectivity of the ac-
tual catalytic reaction are also strongly dependent on adsorbates.
It would be helpful to describe adsorption properties of reactants,
intermediates and products on an equal footing for the under-
standing of the complex mechanism. A comprehensive model
should incorporate electronic and geometric effects of substrates
and adsorbates together to determine the adsorption, so as to pro-
vide an overall physical picture for the adsorption mechanism.

In our previous work, our group has proposed a solution, that
is, an entire expression of the adsorption energy based on the
electronic descriptor 𝜓 and the geometric descriptor CN of sub-
strates and the characteristic parameter of adsorbates 𝛼.[121]

Ead = 0.1 × 𝛼 × 𝜓 + 0.2 × (1 − 𝛼) × CN + 𝜃 = 0.1 ×
Xm − X
Xm + 1

× 𝜓 + 0.2 × X + 1
Xm + 1

× CN + 𝜃 (1)

𝜓 =

(∏N
i=1 SVi

)2∕N

(∏N
i=1 𝜒i

)1∕N
(2)
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Figure 9. Results of the ML model. a) Fitting results of calculated binding energies and predicted binding energies of CO*. R2, MAE and RMSE are
computed to estimate prediction errors and total training time for one thousand trials. The inset shows the convergence of GBR model accuracy for
five cross-validation splits of the data. b) Feature-importance scores of descriptors for the GBR prediction of binding energies of CO* on various alloy
surfaces. c–e) Performance of the ML model for predicting CO* binding energies on fcc(111) of NSAs and binding energies of various intermediates
on SAAs surfaces. Insets in the lower right corner show the prediction error distribution of the GBR model. Reproduced with permission.[127] Copyright
2020, The Royal Society of Chemistry.

where 𝜓 is an electronic descriptor of substrates with the form
of geometric mean to represent an active center, in which 𝜒 i and
SVi respectively represent the electronegativity and the valence
electron number of ith atom at the active center. 𝛼 is a charac-
teristic parameter of adsorbates, in which Xm and X respectively
represent the maximum bondable number and the actual bond-
ing number of the central atom for a given adsorbate. In terms
of the d-band theory, the constant 𝜃 is likely attributed to the cou-
pling between the valence state of adsorbates and the sp-state of
metal substrates. Our theoretical framework of the electronic de-
scriptor 𝜓 is inspired by the d-band theory proposed by Nørskov
et al., which has particularly successfully clarified the adsorption
trend of late TMs.[7, 20b, 101a, 102] Combining the d-band theory with
the Muffin-Tin-Orbital theory, one can obtain that the contribu-
tion of d-states to the adsorption strength Ed is proportional to
the coupling Hamiltonian matrix element Vad, which is related to
the spatial extent of the metal d-orbital (rd) and the adsorption dis-
tance (L), Ed

∝ (Vad) ∝ (rd)3/L7.[122] rd is associated with the d-band
center or the number of outer electrons SV, while L can be empir-
ically estimated in terms of the Pauling electronegativity 𝜒 .[3c,123]

In addition, the electronic descriptor 𝜓 reflects the upper edge of
d-band and the p-band center of oxides, so as to capture inherent
electronic characteristics of adsorption on TMs, NPs, NSAs and
oxides.[20c,123–124] The pre factor of electronic term, 𝛼 = Xm−X

Xm+1
,

can be understood or deduced by the effective medium theory
(EMT).[125] The pre factor of coordination term, 1 − 𝛼 = X+1

Xm+1
,

can be understood from the spirit of bond-order conservation.[126]

This intrinsic model incorporates the electronic and geometric

effects of substrates and adsorbates together and gives an entire
expression of adsorption energy, recognizing the d-band model
and the generalized coordination number model. Using the in-
trinsic model, one can automatically deduce the linear scaling
relationship (LSR) and its generalized form, namely the intrinsic
correlation between two adsorbate species. This model can also
generalize the efficiency of engineering adsorption energy and
reaction energy, and naturally deduce the thermodynamic limi-
tations of ORR catalysis. Our descriptors not only provide novel
physical insights into the coupling between adsorbates and sub-
strates at the interface, but also offer a theoretical basis for rapid
catalyst screening with high accuracy.

In our subsequent work, we adopted the core descriptors in
the equation, including the electronic descriptor 𝜓 and geomet-
ric descriptor CN of substrates as well as the characteristic pa-
rameter of adsorbates 𝛼, as input features of our ML scheme.[127]

Circumventing the usage of expensive quantum-mechanism cal-
culations, the GBR model accurately predicts the binding ener-
gies of various carbon-terminated intermediates simultaneously
and realizes rapid screening in the vast phase space of alloys,
as shown in Figure 9. According to the analysis of the reaction
mechanism in our ML scheme, we can group the adsorbates by
their different coupling mechanisms with substrates. Further-
more, ML results also show that i) the catalytically active centers
of metallic materials, especially for various alloys, are highly lo-
calized and even down to the single bonding center atom; ii) the
adsorption properties of alloys are mainly engineered via modify-
ing the band occupation rather than the electronegativity; iii) the
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Figure 10. The transferable ML models and the linear relationship between adsorption energies and intrinsic electronic descriptors of substrates and
adsorbates. Transferability of ML models in predicting the adsorption energies of a) SAAs, b) ABs and c) HEAs with various adsorption sites, facets
and adsorbates by training the data of TMs. Insets show the importance of the corresponding descriptors. The linear relationship between adsorption
energies and 𝛼𝜓0 on TMs, SAAs, ABs and HEAs d) with all the considered surfaces and all the adsorbates, e) with all the considered surfaces and the
adsorbates C*, CH*, CO* and H*, and f) with the (211) surfaces and the adsorbates C*, CH*, CO* and H*. Reproduced with permission.[128] Copyright
2022, The Royal Society of Chemistry.

characteristic parameter of adsorbates 𝛼, which describes reac-
tants, intermediates and products on an equal footing, is helpful
to understand the differences of the adsorption mechanisms of
various adsorbates and their correlation with the reaction selec-
tivity. In particular, our electronic descriptors for substrates are
proved capable of serving as a good alternative to the d-band prop-
erties, which further supports the previous finding that the de-
scriptor 𝜓 essentially reflects the upper edge of d-states for metal-
lic materials.

Based on these descriptors, our group has further proposed a
transferable ML model, which not only enables one to estimate
adsorption energies of complex alloy systems (AB intermetallics,
SAAs and HEAs) only by training the data of pure TMs, but
also captures the size- and morphology-effect of adsorption en-
ergies on NPs effectively (see Figure 10).[128] Specifically, we not
only adopted the core descriptors in the equation to describe sub-
strates and adsorbates respectively, but also adopted their cou-
pling terms to directly describe the electronic and geometric ef-
fects of the substrate-adsorbate interactions. This model with
nine accessible intrinsic descriptors can capture the subtle vari-
ation of adsorption-energy perturbation caused by the exchange
of active-center atoms on HEAs. By clarifying the correlation be-
tween the adsorption energies and the intrinsic electronic and
geometric properties of substrates and adsorbates, this model
demonstrates that the electronic effects of active centers on ad-
sorption are highly localized even down to the adsorption sites
on SAAs, ABs and HEAs. The transferability of our ML model
for TMs, various alloys and NPs is attributed to our universal
descriptors with clear physical meanings. These descriptors are

relatively continuous for various alloys and can thus capture the
similarity of different systems. Specifically, 𝛼𝜓0 exhibits a rough
linear relation with the adsorption energies on both TMs and
alloys with various surfaces, and CN also exhibits a rough lin-
ear relation with adsorption energies of NPs with different sizes
and morphologies. Moreover, this model screens out some po-
tential alloy catalysts for CO2RR with reasonable onset poten-
tials. Note that our descriptors have been universally used in the-
oretical/experimental researches to efficiently describe heteroge-
neous catalysis on pure TMs, NPs, NSAs, oxides, single atom cat-
alysts (SACs), bimetallic atom catalysts (BACs) and HEAs.[121,129]

Our descriptor system provides a novel insight into the mecha-
nism of adsorption, and allows rapid screening of potentially in-
teresting systems, all of which provide a guidance for the future
material design. Even so, the obtained physical pictures in our
descriptor system still await the further generalization to more
complex catalyst systems.

3.5. Numerical Fitting-Based Descriptors

The important properties of catalysis are generally determined
by several key variables. Commonly, the specific relationship
between descriptors and catalytic properties remains unclear.
Thus, more accurate and generalizable descriptors may exist but
remain undiscovered, and the physical intuition may be lim-
ited and unavailable to achieve the systematic improvement.
Compared with the physical picture-based approaches, there is
another way to address the issue by constructing descriptors
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through the numerical fitting methods. By searching for struc-
tures and patterns in the data, numerical fitting methods can pro-
vide insights for the identification of the structure-property rela-
tionship. Another advantage of data-driven approaches is that the
learning can be systematically improved by enlarging the training
data set, while the linear scaling relationship with the rigid for-
mat cannot. The key intelligent step of numerical fitting methods
is the identification of effective descriptors, which can help ML
methods improve model performance more easily.

Compressed sensing (CS), a developed technology in the field
of signal processing, provides a simple, general and effective
method to find the key description variables of materials.[130] The
main idea of CS is to accurately recover the sparse high-quality
signal, requiring only a very small observation set. Another prac-
tical important feature of CS is that it can tolerate the noise in
the input data and to deal with the approximately sparse signals.
Rather than attempting to develop the physical intuition for the
most relevant variables, CS framework allows the inclusion of es-
sentially all possible basic functions to directly establish physical
models. Moreover, CS, which is a real paradigm shift from the
traditional techniques, can identify relevant parameters for any
sparse basis-expansion problem in physics, chemistry and mate-
rial science. In the framework of CS, Ghiringhelli and Scheffler
et al. have carried out a series of studies to explicitly identify de-
scriptors with the lowest possible dimensions for casual learning
of material properties. Specifically, they firstly attempted to use
the least absolute shrinkage and selection operator (LASSO) for
feature selection.[22f] LASSO constructs a regularization penalty
function and recasts the complex problem into a convex mini-
mization problem to provide a sparse solution for a large number
of candidate features. Later, they employed the subgroup discov-
ery (SGD) to find interpretable local patterns, correlations and
descriptors of target properties.[131] The process of SGD consists
of three main steps: i) the use of a description language for iden-
tifying subgroups within a given data pool, ii) the definition of
utility functions that formalize the quality of subgroups, and iii)
the design of a Monte Carlo search algorithm to find selectors that
describe the subgroups of interest. However, the first application
of these CS-based early numerical fitting methods is not for the
heterogeneous catalysis with complex interface mechanism, but
for the relatively simple bulk structures. Both mentioned works
of LASSO and SGD classifies the crystal structures of the octet bi-
nary semiconductors into rock-salt or zinc-blende, which is a clas-
sic physically meaningful model. As a further development, SGD
was applied to the neutral gas-phase gold clusters to identify the
general pattern between the geometrical and physicochemical
properties. Nonetheless, they pointed out that in addition to the
showcase applications demonstrated in the papers, LASSO is un-
able to handle the larger feature space of more than thousands of
candidates. Simultaneously, they further proposed an improved
systematic approach for discovering descriptors, i.e., sure inde-
pendence screening and sparsifying operator (SISSO).[88] This
methodology was benchmarked with the quantitative prediction
of the ground-state enthalpies of octet binary semiconductors and
applied to the showcase example of the metal/insulator classifi-
cation of binaries. SISSO applies algebraic/functional operators
such as addition, multiplication, exponentials, powers, roots, etc.
to construct candidate features based on the basic physical quan-
tities, and then recognizes the optimal effective descriptors from

Figure 11. Example of SISSO adsorption energy prediction for C* at an
hcp-s site of the IrRu alloy using the 4D descriptor ofΦ3 given in an explicit
nonlinear functional form owing to the compressed sensing methodology.
The tabulated primary features are calculated as averages over the three
metal atoms (two Ir atoms and one Ru atom) making up the IrRu hcp-s site
(marked with black lines). The shown fitting coefficients are specific for C*.
For ease of reading, their units are not shown; these depend on the units
of the primary features entering each feature to ensure that the adsorption
energy comes out in eV. Reproduced with permission.[22j] Copyright 2019,
American Chemical Society.

the feature space. Within the framework of CS-based dimension-
ality reduction, SISSO can tackle immense feature space of bil-
lions or more and converge to the optimal solution of correlated
feature combinations. The outcome of SISSO is a mathemati-
cal model in the form of an explicit analytical function of the in-
put physical quantities, which improves the interpretability and
generalizability of the model. Recently, they further made use of
SISSO to identify several optimal descriptors for the adsorption
energies of a series of adsorbates, including H*, C*, CH*, CO*,
O*, and OH*, at all the potential surface sites of TMs, SAAs and
bimetallic alloys.[22j] Four classes of primary features correspond-
ing to atom, bulk, surface and adsorption site were included for
the feature construction in this work. Then they constructed the
arbitrarily large feature spaces by iteratively applying these op-
erators to the readily generated features, and the adjusted fea-
ture space is about 1011 after the third iteration Φ3, as shown in
Figure 11. Through the utilization of the sparsifying constraint,
SISSO can identify the few best features out of the immense fea-
ture space. The size of the smaller feature subspace is equal to
a user-defined sure independence screening (SIS) value times
the dimension of the descriptors. They found that when the size
and complexity of feature space or the dimensionality of descrip-
tors increases, the SISSO training errors systematically decrease
and level out around the 5d to 8d descriptors. The suggested 8D,
Φ1 descriptor has a good compromise of accuracy and complex-
ity, with the observed validation RMSE of 0.18 eV compared to
0.15 eV of the 8D, Φ3 descriptor. This suggests that the appro-
priate descriptor can be transferred across both alloys and active
site motifs without so complex mathematical form. This high-
throughput screening scheme also provides the energetics for
the most stable and all metastable sites of substrates, and takes
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into account the kinetic barriers for a given catalytic reaction. In
addition, the multi-task learning used in this scheme can simul-
taneously identify common descriptors of adsorption energies of
several different adsorbates, with a better prediction performance
compared to the identification of separate descriptors for each
adsorbate.[132] It is worth noting that the characteristic parameter
of adsorbates 𝛼 in our intrinsic model has been successfully ap-
plied to describe various adsorbates on an equal footing in a sin-
gle learning task. By introducing 𝛼 as an input feature for SISSO,
one may not only save the computational cost of multi-task learn-
ing, but also analyze and explore the interplay between substrates
and adsorbates.

Compared with other established methods (e.g., LASSO),
SISSO shows superior advantages, especially when dealing with
the immense highly correlated feature spaces. Currently, the
problem of SISSO is the insufficient computer memory for the
function space processing, and thus the more efficient imple-
mentation is required. Although other numerical fitting methods
for constructing and identifying descriptors have not been widely
used in heterogeneous catalysis, their excellent performance and
potential are also worth the further exploration and application.
However, despite their higher efficiency, the inherent difficulty
for all the numerical fitting descriptors lies in the construction
of the underlying physical picture. Compared with the existing
physical picture-based descriptors, numerical fitting descriptors
have worse interpretability for the real adsorption mechanism of
various alloy systems because of their methodological character-
istics.

4. Discussion and Remarks

With the recent development of ML techniques, ML algorithms
are helpful for the design of alloy catalysts, providing more signif-
icant opportunities in accelerating alloy catalysts discovery. Most
importantly, the purpose of ML is to help one extract the phys-
ical picture from the immense data of heterogeneous catalysis
to achieve accurate prediction. Although the prediction accuracy
is gradually improved with the progress of research, the physical
picture constructed by ML schemes is often inconsistent with the
existing physical picture. This inconsistency is the critical issue
for further improvement of accuracy and efficiency of ML appli-
cations, which demands more efforts on rational selection and
further design of descriptors of alloy catalysts.

Heterogeneous catalysis is generally considered as a multi-
variable, multi-scale and multi-dimensional research issue, and
the understanding of complex adsorption mechanism is the most
effective approach to obtain catalytic performance. Adsorption is
generally accepted as a local phenomenon, whose properties are
mutually determined by adsorbates and substrates. At the atomic
scale, the adsorption of adsorbates occurs at the local sites (e.g.,
top, bridge, and hollow) on substrate surfaces, which is generally
considered to be affected mainly by the nearest and second near-
est neighbor atoms of the surrounding environment. This local
adsorption environment consisting of a central site and its neigh-
bor atoms is often referred to as an active center of substrates.[121]

At the electronic scale, however, the variation of coordination en-
vironment originated from the overall alloying effect certainly af-
fect the properties of the active center. What’s more, the mecha-
nisms of electron transfer in alloy catalysts and the electron ex-

change with adsorbates are probably non-local and still contro-
versial. In other words, although adsorption is known as a local
phenomenon, its influencing factors are non-local, especially for
complex alloy substrates. Alloying effect is not a simple linear
combination of intrinsic properties of different elements, and of-
ten leads to the unique catalytic performance of alloy surfaces,
which is the key aspect to be concerned. Therefore, when the re-
search systems extend from simple TMs to complex alloy sur-
faces, it is uncertain whether the originally effective descriptors
will remain useful. The existing adsorption descriptors can be
defined at different dimensions, depending on the specific prob-
lems in the research and the accuracy requirements of prediction.
In this review, we put emphasis on the introduction of five types
of alloy catalyst descriptors, which have been successfully used in
ML schemes. For example, intrinsic BEPDs defined at the over-
all level cannot perceive and recognize the variations in the local
environment of the adsorption sites of alloys. Due to the incapa-
bility of accurate capture of alloying effect, BEPDs are likely to
fail to reveal the physical picture and realize accurate description
of increasingly complex alloy systems. Therefore, descriptors are
required to contain the corresponding information related to the
local environment and be fine enough to encode the details of
atomic level information. d-band theory descriptors and local ge-
ometric descriptors go a step further in this regard, which make a
more detailed description of electronic and geometric structures
of alloy surfaces, respectively. The well-known d-band theory de-
scriptors are originally designed for TM surfaces and do not per-
form well on alloys as known, and also can be used to describe
the alloying effect with acceptable accuracy, owing to the theory
refinement and the combination with ML techniques. Although
the local geometric descriptors take into account the local envi-
ronment variations, they ignore the changes of electronic struc-
tures caused by the alloying effect of different elements. These
descriptors only describe a certain aspect of heterogeneous catal-
ysis on the basis of their one-sided perspectives, respectively. Our
derived intrinsic descriptors, incorporating the electronic and ge-
ometric characteristics of both substrates and adsorbates, realize
the more comprehensive description through the physical intu-
ition of the adsorption mechanism. In our description, the local
environment of active sites is averaged without considering the
gradient of electronic and geometric structures. Although this av-
eraging treatment can well describe the alloying effect of some
alloys, it may not be accurate for the non-local factors of adsorp-
tion for more complex alloy systems. CS based feature selection
methods give an easier approach to find the simple numerical fit-
ting descriptors. However, their relationship with catalyst proper-
ties and performance is still indirect and intricate, which is likely
to yield a biased and unreliable description without utmost care.
Although these descriptors have been successfully applied to var-
ious alloy systems in the corresponding papers, their validity still
needs further verification when extended to other different com-
plex alloy systems like HEAs and alloy NPs. This is probably
mainly due to the unclear real physical picture of the controver-
sial complex reaction mechanism on alloys. To reflect the physical
picture and accurately predict catalytic performance simultane-
ously, it is crucial to generate or construct relevant chemical and
physical features for a given problem. This situation demands
the addition of more domain knowledge of heterogeneous catal-
ysis. Further development of algorithms and techniques is also
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expected to accelerate the discovery of reactivity descriptors in the
years to come.

5. Prospects

Some potential development directions for further ML research
and rational design of descriptors for alloy catalysts are listed as
below.

Intelligent feature selection and improvement of various de-
scriptors: A descriptor is a low-cost alternative model in the study
of catalysts, which can be used to correlate some more complex
figure of merit, such as the adsorption energy of key interme-
diates in heterogeneous catalysis. Organic incorporation of dif-
ferent types of descriptors should be considered to complement
the description of more aspects of heterogeneous catalysis. More
attention should be paid to the interactions among elements in
alloys and their further connections and interactions with ad-
sorbates. Taking our descriptor system for instance, the intro-
duction of long-range electronic and geometric effects, including
their gradients, can be attempted to refine the original local aver-
aging descriptors.[129j] In addition, when our adsorbate parame-
ter 𝛼 is applied to the more complex molecules, its interactions
with substrates need to be determined accordingly. For the well-
known d-band theory descriptors, subsequent researches should
consider a more comprehensive description of the d-band shape
to enrich the description of alloy surface properties. For simple
local geometric descriptors such as CN and GCN, there have been
many successful cases combining them together with electronic
descriptors to capture catalytic properties of catalysts. Therefore,
for those stronger local geometric descriptors, the organic com-
bination with other electronic descriptors is particularly signifi-
cant for the complement of description of electronic interactions
among different elements. In short, an ideal description scheme
should take into account influencing factors of all aspects, and
reflect the real physical picture of heterogeneous catalysis. The
complete form of ideal description should be relatively complex,
while the corresponding simple form can be automatically de-
rived when the considered system is determined. Moreover, the
simple form should be able to be associated with the existing de-
scriptor systems without conflicts. This ideal situation seems un-
likely to happen, but with the increase of the richness of scenar-
ios encountered, the new description schemes become more and
more comprehensive. Refinement of the theory based on new ob-
servations can progressively improve the transferability, intrinsic
capability and decision-making ability of the cognitive system.
The future development of ML tools for descriptor identification
also can be expected to go beyond human intuition. In a word,
although the discovery of a universal reactivity descriptor for all
materials and reactions is not achievable in the short term, the
existing descriptors and their further improvement are essential
for the ultimate realization of the globally universal descriptor.

Material databases expansion and data share: ML indeed has
the powerful prediction ability, but its establishment depends on
the sufficient training data. Although the existing databases con-
tain a large number of useful material data, there are more data
in the published papers have not been entered into databases
and shared. Therefore, a more comprehensive and general ma-
terial information standard should be established to realize data
sharing among databases and to reduce obstacles in data acqui-

sition. Especially for a large amount of DFT calculation results,
if these data cannot be unified on an equal footing due to dif-
ferent employed functionals and related parameters, it would be
disadvantageous for researchers to analyze the underlying physi-
cal picture and to design universal descriptors for more systems.
Moreover, natural language processing (NLP) techniques, which
mainly deals with the effective communication between human
and computer with human language, can be used to explore more
useful information in a large number of published papers and to
expand the existing databases.[133]

Rational selection and optimization of machine learning al-
gorithms: According to the characteristics of the input data set,
there are often some differences in the prediction results of dif-
ferent categories of ML algorithms. Therefore, to obtain the most
appropriate algorithm and the real generalization error, one must
take model selection as a part of the training process. Recent
ML works have focused on the use of active learning in auto-
mated ML training.[19u,89e,110] Active learning refers to the learn-
ing algorithm that can actively put forward some annotation re-
quests and submit some filtered data to experts for annotation.
In the case of catalyst design, experts’ annotation refers to the
validation of DFT calculation results. Moreover, among diverse
algorithms of ML and deep learning, numerous algorithms have
been barely applied to heterogeneous catalysis, such as unsu-
pervised learning,[41] semi-supervised learning,[42] and reinforce-
ment learning.[43] When appropriate descriptors are constructed,
these algorithms may also play an amazing performance in ac-
curate prediction. On the other hand, the interpretability of ML
algorithms themselves are also important and needs to be fur-
ther improved. There are several methods to evaluate and ana-
lyze the role of features in ML schemes, for example, Pearson
correlation coefficients are often used to analyze the correlation
among features, and the decision tree-based algorithms can eval-
uate the feature importance. However, these evaluations some-
times do not match the existing physical picture and are thus not
convincing for the guide of heterogeneous catalyst design. Gen-
erally speaking, nowadays heterogeneous catalysis is still compli-
cated enough to promote the development of novel techniques,
and there is still plenty of space to design new ML models and
invent new ML methods to better deal with the existing issues.

6. Summary

Over the past decades, a variety of ML methods have been de-
veloped, demonstrating their great advantage in solving the out-
standing challenges of heterogeneous catalysis, which are dif-
ficult to solve by the conventional methods. In this review, we
briefly retrospect the applications of ML methods in various al-
loy catalyst systems, and summarize several representative cat-
egories of descriptors. We have discussed the advantages and
disadvantages of various ML algorithms and reactivity descrip-
tors, which is crucial for the application of data-driven methods
in heterogeneous catalysis. A variety of successful examples have
demonstrated their huge potential in achieving prediction accu-
racy, discovering new materials, and revealing structure-property
relationship based on the known material data. Through the var-
ious alloy systems and complex catalytic reactions, we not only
clarify the existing understanding of the physical picture in the
study of heterogeneous catalysis, but also emphasize the signif-
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icance of rational selection of descriptors. Finally, we highlight
the related challenges in the design of ideal universal descriptors
and put forward the future development possibilities of descrip-
tors, data and algorithms for the improvement of ML prediction
schemes of alloy catalytic properties. It is our hope that this re-
view helps readers to better understand the significance of ML
scheme and descriptor design for the further researches of alloy
catalysts.
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