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ABSTRACT
Recent rodent microbiome experiments suggest that besides Akkermansia, Parasutterella sp. are 
important in type 2 diabetes and obesity development. In the present translational human study, 
we aimed to characterize Parasutterella in our European cross-sectional FoCus cohort (n = 1,544) 
followed by validation of the major results in an independent Canadian cohort (n = 438). In 
addition, we examined Parasutterella abundance in response to a weight loss intervention 
(n = 55). Parasutterella was positively associated with BMI and type 2 diabetes independently of 
the reduced microbiome α/β diversity and low-grade inflammation commonly found in obesity. 
Nutritional analysis revealed a positive association with the dietary intake of carbohydrates but not 
with fat or protein consumption. Out of 126 serum metabolites differentially detectable by untar
geted HPLC-based MS-metabolomics, L-cysteine showed the strongest reduction in subjects with 
high Parasutterella abundance. This is of interest, since Parasutterella is a known high L-cysteine 
consumer and L-cysteine is known to improve blood glucose levels in rodents. Furthermore, 
metabolic network enrichment analysis identified an association of high Parasutterella abundance 
with the activation of the human fatty acid biosynthesis pathway suggesting a mechanism for body 
weight gain. This is supported by a significant reduction of the Parasutterella abundance during our 
weight loss intervention. Together, these data indicate a role for Parasutterella in human type 2 
diabetes and obesity, whereby the link to L-cysteine might be relevant in type 2 diabetes devel
opment and the link to the fatty acid biosynthesis pathway for body weight gain in response to 
a carbohydrate-rich diet in obesity development.
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Introduction

Scientific evidence indicates that obesity and obe
sity-related comorbidities such as type 2 diabetes 
and cardiovascular diseases are associated with 
a dysbiosis of the gut microbiome.1 Several studies 
of the last decade imply that environmental factors 
influence the composition of the gut microbiome2 

and that the gut microbiome plays a crucial role in 
the regulation of host metabolism via specific host- 
microbiome interactions.1

Mechanistically, it is thought that a significant 
elevation in host metabolism-related microbial 
communities might be associated with an increased 
capacity to harvest energy from the diet.3 In addi
tion, it is now known that an obesity-associated 
microbiome can alter multiple host factors includ
ing inflammation, intestinal permeability, hormo
nal regulation, bile acids, and lipid metabolism. In 
the past, nutritional components were thought to 
be predominant factors inducing alterations of the 
immune system in obesity (e.g. unsaturated fatty 
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acids4), while current evidence highlights the gut 
microbiome as a key mediator of metabolic 
inflammation.5

Several studies investigated the relation of gut 
microbial composition at the phylum level to meta
bolic parameters and dietary components.6,7 

Recently, however, several pilot projects have tar
geted specific microbial species, like Akkermansia 
muciniphila, which have been shown to be inde
pendently associated with beneficial health traits in 
obese subjects.8–10

In the present study, we followed this more specific 
approach by focusing on Parasutterella sp. at the genus 
level (and Parasutterella excrementihominis at the spe
cies level) which belong to the family of Sutterellaceae, 
the order of Burkholderiales, the class of 
Betaproteobacteria, and the phylum of 
Proteobacteria.11 This microbe is linked to metabolic 
abnormalities in rodents12 and responds to a high fat 
diet (HFD) intervention in obesity-prone mice.13 In 
addition, recent evidence suggests Parasutterella is 
involved in the mediation of ω3-fatty acid effects on 
host physiology.14 From a mechanistic point of view, 
Parasutterella is associated with both, inflammatory 
reactions in the intestinal mucosa15 and systemic 
metabolic abnormalities12 which might suggest a role 
in the development of systemic low-grade metabolic 
inflammation due to dysbiosis. In fact, in a recent MRI 
(magnetic resonance imaging) study by our group, we 
found Parasutterella associated with hypothalamic 
inflammation in obese humans6 which is thought to 
interfere with appetite- and satiety regulation contri
buting to the development of obesity.

Since most published data are on rodent models, 
the aim of this present, explorative study was to 
characterize Parasutterella more deeply with 
respect to normal human physiology as well as 
human metabolic and chronic inflammatory dis
eases and nutrient intake in order to understand 
the development of obesity and to identify novel 
therapeutic approaches for future treatments.16 For 
this purpose, we analyzed 16s amplicon micro
biome data in 1,544 subjects of our large FoCus 
cohort in Kiel, Germany.17 The subjects were 
extensively geno- and phenotyped. In addition, 
HPLC metabolomics and detailed dietary pheno
typing were performed (EPIC protocol18) and ana
lyzed with regard to Parasutterella in the form of 
metabolic pathway over-representation analysis 

and microbial metabolic networks. In a previous 
analysis using the FoCus cohort, we found the over
all gut microbiota composition to be associated 
with single nucleotide polymorphisms (SNPs) in 
the human vitamin D receptor (VDR) gene locus 
and the Proopiomelanocortin (POMC) gene locus. 
Therefore, we aimed to analyze as well if 
Parasutterella abundance is determined by these 
two human genetic factors.

To increase reliability and interpretability, we 
also performed a human intervention study in 
order to show that Parasutterella is not only asso
ciated with an obesity phenotype but also responds 
to a weight loss therapy indicating a potential func
tional relevance. In addition, in the analysis of the 
intervention study, we aimed to quantify 
Parasutterella abundance levels by qPCR not to 
rely solely on 16S rRNA data.

Research design and methods

Study cohorts and study design

Cross-sectional cohort (FoCus cohort)
The present investigation included n = 1,544 subjects 
(63% females) of the northern German Food Chain 
Plus (FoCus) cohort (established from 2011 to 2015), 
which has been previously reported.19 Subjects were 
stratified into five groups according to BMI and the 
presence of type 2 diabetes (Table 1). 422 subjects 
were enrolled from the obesity outpatient clinic of 
the Department of Internal Medicine I of Kiel 
University. The remaining 1,122 subjects were 
recruited from regional registration offices as cross- 
sectional controls. Fasted serum and -stool samples 
as well as anthropometric values were collected at the 
study center. In addition to these measurements, 
subjects completed a 12-month retrospective food 
frequency questionnaire used by the European 
Prospective Investigation into Cancer Nutrition 
(EPIC) study. In addition, for validation purpose in 
10% of the study probands, an additional 24-h nutri
tion profile was obtained by a phone interview. The 
median age of the whole cohort was 52 ± 14.2 years. 
The study population was generally overweight in 
Body Mass Index (BMI 27.8 kg/m2), with median 
height being 1.72 m and the median weight being 
85 kg. Metabolic parameters including HOMA-IR 
index indicated low level of insulin resistance (2.42). 
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The fasting glucose level was 95 mg/dL. Serum tri
glyceride levels appeared to be within a normal range 
of 108 mg/dL. Inflammatory parameters such as 
Interleukin-6 (IL-6) (3.7 pg/mL) and C-reactive pro
tein (CRP) (3.3 mg/L) were within the normal range 
in the study population. This FoCus subset had pre
valence for diabetes of 14.3%, whereas 11.9% of the 
whole subset was affected by type 2 diabetes.

The study was conducted according to the guide
lines laid down in the Declaration of Helsinki and 
was approved by the ethic committee of the 
Medical Faculty of the University of Kiel 
(Germany). All subjects gave their informed con
sent for study participation and data usage.

Validation cohort
To validate the FoCus results, a study population of 
n = 438 subjects from Alberta’s Tomorrow Project 
(ATP), a cross-sectional cohort from Alberta Canada 
was included for comparison20 (Table 1). These 
included 242 healthy controls (with a BMI between 
20 and 25 kg/m2), 120 subjects with cardiovascular 
disease, 36 with chronic metabolic disease, and 44 
with chronic inflammatory disease. Fecal samples 
from all n = 438 ATP subjects were available for 
the present analysis and 16S rRNA gene sequencing 
was performed in the same laboratory and using the 
same methodology as for the FoCus samples.

Intervention cohort
For validation of 16S rRNA gene sequencing data, 
we performed quantitative polymerase chain reac
tion (qPCR) for Parasutterella excrementihominis of 
n = 55 patients of an intervention cohort described 
elsewhere21 (Table 1). In brief, this group of severely 
overweight patients underwent a dietary intervention 
that consisted of a very low-calorie formula diet for 
the duration of 12 weeks, followed by a stabilization 
period of another 14 weeks. It is important to men
tion that the formula diet used was enriched in fish 
oil according to the EU regulations.

Patients received extensive medical, dietary, and 
psychological monitoring during the intervention 
and gave blood and stool samples at the beginning, 
mid-point, and end of the study. All patients of the 
intervention study gave their informed consent.

16S rRNA gene sequencing of the FoCus cohort

Stool samples of the study populations were imme
diately stored at −80°C and were passed forward to 
the Institute of Clinical Molecular Biology (IKMB) in 
Kiel (Germany) for microbiome sequencing. 16S 
rRNA gene sequencing was performed as explained 
previously.22 Bioinformatic analysis was based on 
amplicon sequence variants (ASVs) in R. For the 
FoCus cohort, the median sequencing depth was 
36,048 reads, with an IQR from 23,444 to 52,786 
reads. The sequencing depth of the Canadian ATP 
cohort was slightly lower with a median of 22,931 
and an IQR of 18,301–28,758. Samples of the FoCus 
and ATP cohorts were sequenced in the same lab, on 
the same platform. Samples with a sequencing depth 
below 10,000 were removed as part of the quality 
control offered by the sequencing lab. Complete sets 
of genetic, food questionnaire (EPIC), and micro
biome data were available for n = 1,443 individuals.

Metabolomics sample preparation in the FoCus 
cohort

Serum samples were thawed on ice and extracted by 
a modified SIMPLEX approach according to 
Matyash et al.23 From 100 µL blood samples, a lipo
philic methyl-tert-butyl ether (MTBE) phase, 
a hydrophilic methanol-water phase, and 
a protein pellet were obtained; dried under vacuum 
(speed-vac from Thermo Fisher, Germany); and 

Table 1. Descriptive statistics of the three cohorts included in the 
study showing variables such as age, sex, and BMI. Further 
division of the cohorts was based on five groups: under
weighted, normal weighted, overweight, obese with T2D, and 
obese without T2D.

FoCus cohort 
(n = 1,544)

ATP cohort 
(n = 438)

Intervention 
cohort 

(n = 55)

Parameter

Median 
(25th and 75th 

percentile) or 
Mean ±

Median 
(25th and 75th 

percentile) or 
Mean ±

Median 
(25th and 75th 

percentile) or 
Mean ±

Age (years) 51.62 ± 14.22 56.9 ± 6.27 45.79 ± 10.89
Sex (% female) 63 72 69
BMI (kg/m2) 27.8 (23.68; 

35.9)
30.62 (26.55; 

36.88)
45.25 (43.36; 

48.13)
Underweighted (<20 kg/ 

m2) (%)
4.5 - -

Normal weighted (20– 
25 kg/m2) (%)

28.6 2.9 -

Overweighted (25– 
30 kg/m2) (%)

27 46 -

Obese (>30 kg/m2) with 
type 2 diabetes (%)

10.6 5.2 17.3

Obese (>30 kg/m2) 
without type 2 
diabetes (%)

29.2 45.8 82.7
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resuspended with the following solvent: the lipo
philic phase with a mixture of isopropanol/chloro
form (3/1, v/v) with 0.1% acetic acid; the 
hydrophilic phase with water/methanol (50/50, v/ 
v) with 0.1% acetic acid.

To each sample, 4 µL of an internal standard 
mixture was added. The hydrophilic standard con
tains a mixture of 13C-labeled tyrosine and trypto
phan. The lipophilic standard contains synthetic 
lipids PC 5:0, PC 11:0, PC 19:0, and PG 17:0. All 
samples were stored at −80°C until the day of 
measurements.

Mass spectrometry was conducted using a FT- 
ICR-MS (7 Tesla, SolariXR, Bruker, Bremen, 
Germany) in the flow-injection mode. The injec
tion was facilitated by a HPLC autosampler (1260 
Infinity, Agilent, Waldbronn, Germany). The elu
ent for the hydrophilic samples was water/metha
nol (50/50, v/v) with 0.1% acetic acid and for the 
lipophilic samples, isopropanol/chloroform (3/1, v/ 
v) with 0.1% acetic acid, respectively. The samples 
were ionized with an electrospray ionization source 
(in both modes). Different methods were used, each 
optimized to the respective detection range (in 
total, the range was from 65 to 3000 m/z). The 
average resolution at 400 m/z was 600,000. 
Evaluation of mass features was conducted with 
DataAnalysis 5.0 and MetaboScape 4.0.1 both 
from Bruker (Bremen, Germany). Sum formulas 
were calculated based on the mass error and iso
topic fine structure of mass features. To reduce 
false-positive results, the seven golden rules of 
Kind and Fiehn were applied.24

Metabolomics pathway analysis

Based on the results of mass spectrometry metabo
lite analysis, we performed an enrichment analysis 
in MetaboAnalyst 5.0 in order to find common 
pathways of all the metabolites that were signifi
cantly associated with Parasutterella. Out of 256 
nominally significant metabolites, we made use of 
n = 126 metabolites that were significantly asso
ciated with Parasutterella abundance after FDR 
correction of p-values in the count part of the 
Hurdle model. Of the 126, a total of 76 metabolites 
could be matched in terms of The Small 
Metabolites Pathway Database (SMPDB), whereas 
the other 40 were unidentified compounds.

Microbial community metabolism

We used metabolic network modeling to eluci
date to which extent Parasutterella and asso
ciated gut microbes are involved in the 
consumption or production of certain metabo
lites, like L-cysteine. In order to predict 
L-cysteine consumption by bacteria of the gut 
microbiota, we employed gapseq (v1.2) to recon
struct metabolic models25 based on genomic 
data originating from the reference set of 820 
bacteria and archaea belonging to the human gut 
microbiota (AGORA collection).(25) Default set
tings of gapseq were used. For gap filling and 
modeling of in silico growth, we assumed 
a nutritional environment corresponding to the 
average dietary input recorded for a cohort of 
human participants as described previously 
(“Kiel cohort”).26 For each individual bacterial 
model, we used flux balance analysis27 imple
mented in the R-package Sybil version 2.2.028 

with biomass production as objective and 
unconstrained L-cysteine uptake as input to pre
dict maximal L-cysteine consumption during 
optimal growth. We used information about 
the relative abundances of bacterial species 
from the FoCus cohort as references to deter
mine the average abundance of each bacterial 
species across human participants. Relative 
cysteine uptake was then determined by multi
plying the maximal L-cysteine uptake of each 
bacterial species by the average relative abun
dance of the corresponding bacterial species in 
the FoCus cohort.

Quantitative polymerase chain reaction

Genomic DNA (gDNA) was extracted from stool 
samples using the QIA amp Fast DNA Stool Mini 
Kit according to the manufacturer’s protocol. We 
decided for measuring Parasutterella excrementiho
minis since the DNA for the genus of Parasutterella 
was not available at DSMZ, Germany. Furthermore, 
we found appropriate primers for Parasutterella 
excrementihominis in the literature. This species is 
known to be the primary species of intestinal 
Parasutterella at least in our 16S rRNA sequencing 
data of the FoCus cohort (shotgun analysis). For 
quantifying the amount of DNA in each fecal 
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sample, we used a Thermo NanoDrop 2000 spectro
photometer. A concentration of 2.5 ng/µL was used 
of each sample. For qPCR, a tenfold serial dilution of 
Parasutterella excrementihominis was generated to 
produce a standard curve (ordered from DSMZ, 
Germany). The qPCR system contained a PowerUp
TM SYBRTM Green Master Mix (5 µL), the forward 
primer and reverse primer (2.5 µM each), and 
DNAse free water (4.5 µL). The primers were 
selected according to a study of Chen and coworkers: 
GGAAGTACGGTCGCAAGA (forward) and 
TGTCAAGGGTTGGGTAAGACA (reverse).29 

Melt curves and relative quantification of 
Parasutterella excrementihominis were generated 
with Bio-Rad CFX ConnectTM Real-Time System 
PCR instrument with the help of the following tem
plate: 50°C for 2 min, preliminary denaturation at 
95°C for 2 min, 40 cycles at 95°C (15 s), 40 cycles 
annealing at 60°C (30 s), and 40 cycles extension at 
60°C (1 min). Melt curve analysis was performed 
between 65°C and 95°C (increment: 0.5).

Bio-Rad CFX Manager 3.0 was used to analyze 
melt curves and copy numbers of the target gene 
concentrations. Ct-values of the target gene and the 
standard curve indicated the final concentration 
through the following formula: y = −1.48lg(x) + 
13.854 (R2 = 0.9979).

Genotyping

FoCus probands were genotyped using the Iscan 
Immunochip Opticall and the Iscan Omniexpress 
Exome Chip. Quality control and preprocessing of 
genetic data are described in detail elsewhere.30 For 
the purpose of this study, the VDR and POMC 
genes were defined as genes of interest. Quality 
control of genetic data was done in PLINK v. 1.9.

57 SNPs in the VDR locus (chr 12, 48.22–48.32 
Mb) and 26 SNPs in the POMC locus (chr2, 25.36– 
25.46Mb) passed quality control and filtering.

Kruskal-Wallis Test was used in R to test for 
associations between SNP genotypes and 
Parasutterella sp. abundance groups.

Statistical analysis

Statistical significance was set at P < .05 P-values are 
shown as FDR (False Discovery Rate) adjusted to 
correct for multiple hypotheses testing.

Univariate analysis
The statistical and graphical data analysis was done 
in Rv3.6.0. Data were tested for normality by 
Shapiro-Wilk-Test and are presented as means ± 
SDs (standard deviation) for normally distributed 
variables and as median for non-normally distrib
uted variables. In the intervention study, paired 
Wilcoxon signed-rank tests (for non-normally dis
tributed variables) have been used for metric vari
ables to determine differences between two time 
points in one group.

Multivariate analysis
Since Parasutterella abundances in the explorative 
part of this study were derived from 16s rRNA 
amplicon sequence data, Hurdle models were cho
sen in order to handle the excess number of zeros 
and overdispersion in the data. Hurdle models are 
two-part (negative) binomial regression models in 
which probabilities for the non-zero and zero abun
dances of Parasutterella are handled separately. In 
the first part of the model (henceforth called “count 
part”), the model is truncated at zero and 
a negative-binomial linear regression is fitted to 
the remaining abundance data. In the second part 
of the model (henceforth called “zero part”), 
a logistic regression is fitted to determine the binary 
probability of Parasutterella abundance being zero 
vs. non-zero.

ASV abundances of Parasutterella sp. lower than 
10 counts were set to zero before using the Hurdle 
algorithm to adjust for the error in determining low 
counts of 16S rRNA data. A multivariate Hurdle 
algorithm was applied to model the association of 
Parasutterella and the independent variable of inter
est for dietary data, phenotypes linked to obesity, 
and metabolic health and clinical biomarkers. Since 
inflammatory comorbidities (inflammatory bowel 
disease (IBD) and psoriasis) other than metabolic 
diseases that are known to affect the microbial com
position, the presence of such diseases and the pro
band age were included as covariates.31,32 In some 
analysis when marked accordingly, we additionally 
used BMI as a covariate.

Metabolomics data was either K-nearest neighbor 
(KNN) (for samples with < 50% missingness) or 
limit of detection (LOD) (for samples with > 50% 
missingness) imputed and then log-transformed. For 
the metabolomics analysis, once again the Hurdle 
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models were used as previously described, since the 
resulting data matrix consists of zero-inflated inte
gers, which can statistically be treated similarly to 
gene-based count data. For the peak annotation, 
a customized and local database was established, 
which contained sum formula and names of all 
metabolites of interest. The database was used for 
annotation with MetaboScape and the resulting data 
frame contained information about each mass error 
and isotopic fine structure (as the mSigma value). By 
means of these both values, the resulting metabolites 
were validated (only Metabolites with an error below 
2 ppm and a “good” mSigma (< 200) were accepted 
for further statistical evaluation).

For microbiomics analysis, subjects were 
grouped into high (>10) or low (≤10) counts of 
Parasutterella and Mann-Whitney-U test were 
used to find differences between the two groups. 
Microbiome β- and α- diversity was characterized 
by the Bray-Curtis dissimilarity index and the 
Shannon, Chao1, and Species Richness indices, 
respectively, and compared between the groups. 
Differential abundance between BMI groups was 
tested with the DESEQ2 integration for phyloseq 
data in R. To evaluate classifier performance in 
human obesity of Parasutterella in relation to 
Akkermansia, prediction models were built using 
random forests and ROC curves and AUC values 
were determined. For some of these analyses, the 
FoCus cohort was stratified into five groups con
cerning BMI and diabetes status (see Table 1).

Results

To generate a comprehensive overview of 
Parasutterella on the development of obesity and 
type 2 diabetes, we decided to investigate the bacter
ium on metabolic, inflammatory, dietary, micro
biome, metabolome, and genetic level. Additionally, 
we examined qPCR-determined Parasutterella abun
dances in a weight loss intervention study to further 
validate bioinformatical calculations and to gain 
insight into the functional capabilities of this species.

As described in the method section, we used 
two-part Hurdle models to test for association 
between our independent variables of interest and 
Parasutterella abundance. Since we did not observe 
any significant correlation in the zero part of each 

model (logistic regression) except of microbiomics 
calculations, the results described in the following 
pages refer solely to the count part of the Hurdle 
models.

Parasutterella and measures of obesity

We first examined 1,544 subjects of the FoCus 
cohort regarding the obesity phenotype. 
Therefore, we used Parasutterella sp. > 10 counts 
(n = 1132 samples that met the threshold of 
Parasutterella sp. > 10 counts) for multivariate 
modeling in regard to different metric variables 
such as BMI and body weight. This threshold was 
recommended by QIIME pipeline (https://docs. 
qiime2.org/2021.4/) in order to only incorporate 
values of Parasutterella sp. that were truly measured 
through 16S rRNA gene sequencing. We found 
a significant positive correlation between positive 
counts of Parasutterella sp. abundance and BMI 
(3.71e−2, P = 3.11e−3) (Figure 1a), meaning that 
there was an increased Parasutterella sp. abundance 
in subjects with higher BMI. The results were in 
line with data regarding weight measurements: 
there was a nominally significantly positive associa
tion between Parasutterella sp. abundance and 
weight of the subjects (7.95e−3, P = 2.0e−2).

The significant positive association of 
Parasutterella and BMI found in the European 
FoCus cohort was validated in the independent 
Canadian ATP cohort (n = 305 samples that met 
the threshold of Parasutterella sp. > 10 counts). Of 
interest, we found that Parasutterella sp. abundance 
was increased in probands with higher BMI 
(P = 2.0e−3) in the Canadian cohort as well.

Parasutterella and diabetes phenotypes

In the next step, we analyzed glucose metabolism and 
found Parasutterella sp. abundance to be positively 
associated with elevated HOMA (9.88e−2, P = 1.5e−2) 
and fasting insulin (3.02e−2, P = 1.38e−2) (Figure 1b). 
In addition, we found a positive association between 
Parasutterella sp. abundance and fasting glucose 
(6.81e−3, P = 5.38e−2). Furthermore, there was a sig
nificantly positive association between Parasutterella 
sp. abundance and the presence of diabetes type 2 
(7.58e−1, nominal significant, P = 1.02e−2) 
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(Figure 1c). With regard to lipid metabolism, 
Parasutterella sp. was nominally positively associated 
with serum triglyceride levels (2.61e−3, P = 3.34e−2) 
(Figure 1b). However, when adapting for BMI, the 

significant association to the measures of insulin sen
sitivity diminished, suggesting the association of 
Parasutterella with insulin resistance to be indirectly, 
mediated via its effect on body weight gain.

Figure 1. Parasutterella and obesity, glucose and lipid abnormalities as well as metabolic inflammation. (a) Association of Parasutterella 
sp. with weight and BMI in n = 1,544 subjects reported through estimate and standard error (Hurdle count model). (b) Association of 
Parasutterella sp. with metabolic parameter in n = 1,544 subjects reported through estimate and standard error (Hurdle count model). 
(c) Association of Parasutterella sp. with diabetes in n = 1,544 subjects reported through estimate and standard error (Hurdle count 
model). (d) Association of Parasutterella sp. with inflammatory parameters in n = 1,544 subjects reported through estimate and 
standard error (Hurdle count model). (e) Parasutterella sp. abundance in relation to BMI and T2D groups in the FoCus cohort. (f) 
Parasutterella sp. abundance in relation to BMI and T2D groups in the ATP cohort. While the sequencing depth of the ATP cohort was 
slightly lower overall than in FoCus (median FoCus: 36,048; median ATP: 22,931), Figures 1e and f demonstrate that the distribution of 
Parasutterella abundance in relation to BMI is comparable in both cohorts and that Parasutterella is a highly abundant microbe in ATP 
as well, although the height of box plots differs slightly between cohorts.
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In a subsequent analysis, we stratified the FoCus 
cohort into five groups concerning BMI and dia
betes status (see Table 1) and found a significant 
difference between the lean and the obese group 
concerning Parasutterella abundance (Figure 1e)). 
Of interest, a significant difference in Parasutterella 
abundance was further identified between obese 
probands without type 2 diabetes compared to 
obese probands with type 2 diabetes, whereby dia
betics had around 70% higher Parasutterella abun
dance (Figure 1e). In the ATP cohort, a similar 
pattern was observed, whereby the difference 
between obese individuals with and without type 
2 diabetes did not reach statistical significance, 
which might be due to the smaller number of sub
jects in ATP (n = 438, 5.2% diabetics) compared to 
FoCus (n = 1,544, 10.6% diabetics) (Figure 1f).

Parasutterella and inflammatory phenotypes

In order to gain insights into the inflammatory 
properties of Parasutterella sp., we examined two 
biomarkers that mirror the inflammatory state of 
the subjects. Parasutterella sp. abundance was 
neither associated with CRP nor with IL-6 
(2.39e−2, P = 1.9e−1; 1.07e−2, P = 1.5e−1) 
(Figure 1d). This finding indicates no major asso
ciation of Parasutterella sp. to systemic metabolic 
inflammation.

Parasutterella and dietary phenotypes

Dietary data were derived from 12-month food 
frequency questionnaires (n = 1,443). Analysis of 
19 dietary components revealed that the intake of 
total carbohydrates showed a nominal significant 
positive correlation with Parasutterella sp. abun
dance (4.51e−2, P = 4.24e−3) (Table 2) falling in 
line with the data on diabetes phenotypes. The 
composition of total carbohydrate intake consisted 
of 22.09% monosaccharides, 31.56% disaccharides, 
44.22% polysaccharides, and minor parts of sugar 
alcohol and oligosaccharides. Appropriately, 
monosaccharides showed a nominal significant 
positive association with Parasutterella sp. abun
dance (1.115e−2P = 1.19e−3). In contrast, the total 
fat intake of the subjects was nominally signifi
cantly negatively associated with Parasutterella sp. 
abundance (−5.13e−2, P = 5.97e−3). In more detail, 

we found the polyunsaturated fatty acid (PUFA) 
linolenic acid (ω3-fatty acid) nominally signifi
cantly negatively associated with Parasutterella sp. 
abundance (−3.3e−1, P = 4.99e−2). Furthermore, 
eicosenoic acid was nominally significantly nega
tively associated with Parasutterella sp. (−3.25, 
P = 3.04e−3). The mean percentage of the intake 
of total fiber was 22.3%. Dietary data were addi
tionally adjusted for BMI.

Besides macronutrients, we examined several 
micronutrients, whereby iron was nominally sig
nificantly positively associated with Parasutterella 
sp. abundance (2.28e−1, P = 2.55e−3). Regarding 
vitamins, a nominal significant negative association 
was found for vitamin B6 and Parasutterella sp. 
(−7.51e−1, P = 4.36e−2).

Having found an association of Parasutterella sp. 
abundance with carbohydrate intake we also exam
ined carbohydrate intake independently of the 
Parasutterella abundance and found a significant 
higher intake in obese individuals compared to 
lean controls (P = 3.2e−2). Importantly, the associa
tion of Parasutterella sp. and the carbohydrate intake 
remained significant when adjusting for BMI.

Table 2. Dietary parameters regarding the abundance of 
Parasutterella sp. (two-part Hurdle model), truncated linear 
model considering only counts of Parasutterella sp. (count 
part). Dependencies of parameters and the abundance of 
Parasutterella sp. reported through estimate, confidence inter
vals, and p-values in the respective model. First part of the 
Hurdle model considers only counts of Parasutterella sp. using 
a negative binomial regression. After FDR-correction, p-values 
were not significant.

Parameter Estimate
Confidence interval [2.5%, 

97.5%] p-value

Carbohydrates (g/ 
day)

4.51e−2 [1.42e−2, 7.60e−2] 4.24e−3

Monosaccharides (g/ 
day)

1.15e−2 [4.53e−3, 1.88e−2] 1.19e−3

Protein (g/day) 3.76e−2 [8.03e−2, 1.56e−1] 5.31e−1

Fat (g/day) −5.13e−2 [−8.78e−2, 1.47e−2] 5.97e−3

Linolenic acid (g/day) −3.3e−1 [−6.61e−1, −2.63e−5] 4.99e−2

Eicosenoic acid (g/ 
day)

−3.25 [−6.21, −3.07e−1] 3.04e−2

Butanoic acid (g/day) 3.07e−1 [−7.99e−1, 1.84e−1] 2.2e−1

Hexanoic acid (g/day) −4.84e−1 [−1.25, 2.85e−1] 2.17e−1

Vitamin D (mg/day) −72.75 [−1.58e+2, 13.13] 9.68e−2

Vitamin B9 (mg/day) 2.61 [−6,24, 11.46] 5.62e−1

Vitamin B6 (mg/day) −7.51e−1 [−1.48, −2.14e−2] 4.36e−2

Vitamin C (mg/day) 2.04e−3 [−2.14e−3, 6.21e−3] 3.39e−1

Vitamin B12 (mg/day) −45.81 [−1.75e+2, 83.74] 4.88e−1

Vitamin E (mg/day) −3.65e−2 [−1.01e−1, 2.8e−2] 2.68e−1

Iodine (mg/day) 4.16 [−1.37, 9.7] 1.41e−1

Iron (mg/day) 2.28e−1 [7.99e−2, 3.77e−1] 2.55e−3

Calcium (g/day) 3.55e−1 [−7.35e−1, 1.44] 5.23e−1

Magnesium (g/day) −5.35e−1 [−4.35, 3.28] 7.83e−1

Zinc (mg/day) −3.98e−2 [−1.52e−1, 7.21e−2] 4.85e−1
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Parasutterella and microbiomics

A comparison of Parasutterella sp. levels with 
the general microbiome composition revealed 
significant differences in β-diversity measures 
(Bray-Curtis distance: P = 9.0e−3, Jaccard index: 
P = 8.0e−4) between groups with low versus high 
Parasutterella sp. abundance (Figure 2a). 
Likewise, α-diversity was significantly reduced 
in individuals with low Parasutterella sp. abun
dance (zero part of the Hurdle model: Shannon 
index: P = 2.4e−23, Chao Index: P = 2.8e−25, 
Species richness: P = 2.6e−26) (Figure 2b). In 
the count part of the Hurdle model, no signifi
cant correlation with Parasutterella sp. abun
dances was detected.

The association of obesity and the gut micro
biome was evaluated by differential Fold Change 
analysis. In this analysis, Parasutterella was among 
the top 3% differentially abundant species (placed 
18th out of 665 species tested) and consistently 
exhibited higher fold changes than Akkermansia 
sp., a species that is an already established marker 
for obesity (Figure 3a). We have also performed 
a differential abundance analysis on the genus 
level (Figure 3b), which revealed that subjects 
with high Parasutterella abundance are character
ized by nominally higher abundances of Alistepes 
(r2 = 0.43, P = .02), Faecalibacterium (r2 = 0.58, 
P = .01), and Roseburia (r2 = 0.47, P =  .02). 
Probands with low counts of Parasutterella are in 
turn characterized by higher abundances of 
Bacteroides and Subdoligranulum.

Finally, an ROC analysis revealed that in the 
FoCus cohort, increased abundance of 
Parasutterella is an even better classifier for obesity 
compared to a reduced abundance of Akkermansia. 
(Figure 3c). AUCs of Parasutterella ranged from 0.83 
to 0.87, while Akkermansia had AUCs ranging from 
0.22–0.28. Differences in AUC for Parasutterella and 
Akkermansia were significant for each comparison 
between normal weight, obese, and diabetes groups 
(PNW:OBS-T2D = 5.2e-191; PNW:OBS+T2D = 1.4e- 
171; PNW:Overweught = 2.8e-185, according to the 
BMI groups shown in Table 1).

Parasutterella and host metabolomics

Presently, MS-metabolomics analysis data are avail
able of n = 470 subjects of the FoCus cohort, consist
ing of n = 178 metabolically diseased subjects and 292 
healthy controls. This analysis took n = 955 detectable 
metabolites into account. 269 metabolites were nom
inally associated with Parasutterella abundance, of 
which 126 remained significant after BH adjustment 
for multiple comparisons. Of interest, we identified 
L-cysteine (LC) as a metabolite that showed 
a significant inverse correlation with Parasutterella 
sp. abundance in the count part of the Hurdle 
model (−13.00, P = 1.78e−3) (Table 3). Furthermore, 
6-Hydroxynicotinic acid was positively correlated 
with Parasutterella sp. abundance (1.57, P = 1.22e−2) 
(Table 4). Tables 3 and 4 show the five highest esti
mates either negative or positive out of in total 
n = 126 significant metabolites in association with 
Parasutterella sp. abundance in the count part. 
There were no significant associations in the zero 
part of the Hurdle model for all metabolites analyzed.

Second, the pathway enrichment analysis of 76 
metabolites that were successfully matched to terms 
of the SMPDB database resulted in two nominally 
significant pathways: fatty acid biosynthesis and α- 
linolenic acid metabolism (P = 1.16e−2, P = 4.62e−2) 
(Figure 4). All other pathways in the figure were not 
significantly enriched.

Microbial metabolic network analysis

We used metabolic network modeling to investi
gate maximal L-cysteine consumption by member 
species of the human gut microbiota. This analysis 
revealed that Parasutterella is among the top five 
consumers, together with Dialister invisus, 
Enterobacter cancerogenus, Prevotella copri, and 
Escherichia coli K12. Hence, the fact that 
Parasutterella is a high L-cysteine consumer fits 
with the findings of reduced L-cysteine levels in 
the serum of human subjects with high 
Parasutterella abundance. Table 5 gives an over
view of the top L-cysteine consumers in the gut 
microbiome.

Figure 2. Parasutterella and gut microbiome diversity measures. Beta diversity was assessed by Bray-Curtis distance and PERMANOVA. 
Alpha diversity was assessed by species richness, Chao1 Index and Shannon Index. Statistical significance between high and low 
Parasutterella groups was tested by Wilcoxon tests.
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Parasutterella and host genomics

In total, we examined 83 different SNPs. None of 
the SNPs at the VDR locus were significantly asso
ciated with Parasutterella abundance. At the POMC 
locus, wild-type homozygosity of the SNP 
rs7565877 was nominally significantly associated 
(P = 3.0e−2) with abundance of Parasutterella.

Parasutterella and weight loss intervention

The patients of the weight loss intervention lost 
a significant amount of weight (mean of 23 kg; 
Wilcoxon paired, P = 5.30e−10). BMI dropped 
from 45.2 kg/m2 to 38.5 kg/m2 (Figure 5a). Of 
interest, Parasutterella excrementihominis was 
significantly reduced during the intervention 

Figure 3. Parasutterella in relation to other gut microbiome species in human obesity. (a) LogFold Changes of differentially abundant 
microbes in human obesity in the FoCus cohort. Comparison was made between the normal weight group (BMI < 25) and the obese 
group (BMI > 30, without T2D). Parasutterella sp. is among the top 20 (=3%) differentially abundant species out of 665 species tested. 
Plot shows the top 50 differentially expressed species, eight species could not be assigned to a genus (marked NA in the plot). 
Parasutterella sp. is placed 18th among the top 50. (b) Composition plots of probands with high and low (threshold <10 counts) 
Parasutterella sp. (c) ROC curves for prediction models (random forests) of BMI and T2D groups by Akkermansia (green, AUC: 0.22–0.28) 
and Parasutterella (purple, AUC: 0.83–0.87) abundance. Comparisons were made between the normal weight group and the (1) obese 
group without diabetes, (2) obese group with diabetes, and (3) the overweight group according to Table 1. Classifier performance was 
tested using bootstrapping of AUC results and revealed significantly better performance of Parasutterella compared to Akkermansia in 
all comparison groups (P = 5.2e-191;-2.8e-185).
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Table 4. Metabolomic parameters regarding the abundance of Parasutterella sp. (two-part Hurdle model) showing positive associations 
by using a truncated linear model considering only counts of Parasutterella sp. (count part). Dependencies of parameters and the 
abundance of Parasutterella sp. reported through estimate, confidence intervals, and BH- adjusted p-values in the respective model. 
First part of the Hurdle model considers only counts of Parasutterella sp. using a negative binomial regression. Parameters are chosen 
considering the five highest estimates.

Parameter Estimate
Confidence interval 

[2.5%, 97.5%] p-adjusted

[(2 R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(1Z,11Z)-octadeca-1,11-dienoxy]propan-2-yl] 
(9Z,12Z,15Z)-octadeca-9,12,15-trienoate

3.53 [1.11, 5.95] 3.99e−2

Oxoglutaric acid 1.99 [0.55, 3.44] 5.36e−2

6-Hydroxynicotinic acid 1.57 [0.68, 2.46] 1.22e−2

Prostaglandin f1 alpha 1.33 [0.80, 1.87] 1.57e−4

Isocaproic acid 1.25 [0.61, 1.88] 5.52e−3

Table 3. Metabolomic parameters regarding the abundance of Parasutterella sp. (two-part Hurdle model) showing negative associa
tions by using a truncated linear model considering only counts of Parasutterella sp. (count part). Dependencies of parameters and the 
abundance of Parasutterella sp. reported through estimate, confidence intervals, and FDR- adjusted p-values in the respective model. 
First part of the Hurdle model considers only counts of Parasutterella sp. using a negative binomial regression. Parameters are chosen 
considering the five highest estimates.

Parameter Estimate Confidence interval [2.5%, 97.5%] p-adjusted

L-Cysteine −13.00 [−18.89, −7.11] 1.78e−3

19,20-DiHDPA −6.74 [−10.45, −3.02] 1.11e−2

Hydroxycholesterol −4.60 [−7.43, −1.78] 1.98e−2

Tetrahydrocortisone −3.93 [−6.62, −1.24] 3.94e−2

Tetracosatetraenoic acid −3.62 [−5.34, −1.89] 3.04e−3

Figure 4. Parasutterella and metabolic pathway enrichment analysis. Enrichment ratio and related p-value of the pathway enrichment 
analysis (SMPDB database) displaying fatty acid biosynthesis and α-linolenic acid metabolism as nominally significant (P < .05).
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(Figure 5b). The median value of relative 
Parasutterella excrementihominis abundance at 
baseline was 1.62% in comparison to 0.62% of 
Parasutterella excrementihominis after the inter
vention. These data indicate that Parasutterella 
is not only associated to the obesity phenotype 
in a steady state but also reacts significantly to 
variations in body weight. However, it has to be 
mentioned that the formula diet used within the 
human intervention study has a low carbohy
drate content which also might have affected 
the change in Parasuterella abundance.

Comparability of cohorts used in this study

We performed the following analysis to ensure 
that the ethnically and obesity-status diverse 
cohorts in this study allow for comparable 
results. Figure 1e and 1f provide an overview 
of the distribution of Parasutterella abundances 
in relation to BMI for both the FoCus cohort 
and the Canadian ATP cohort. Furthermore, we 
compared the dietary patterns in both cohorts by 
calculating the Mediterranean Diet Score, a score 
that is commonly used to evaluate healthy 

Table 5. Gut bacteria on species level with the highest relative L-cysteine consumption in human samples. The second column 
indicates the maximal predicted L-cysteine consumption of each strain during optimal growth, the third column the average 
abundance in the FoCus cohort and the fourth column the abundance-weighted cystein consumption. The fifth column shows the 
relative L-cysteine consumption as a sum of 1 regarding microbiome abundance in the FoCus cohort.

Species (strain designation in the AGORA 
collection)

Maximal L-cysteine 
consumption (mmol/ 

gDW/h)

Average 
relative 

abundance
Abundance-weighted cystein 

consumption
Relative L-cysteine 

consumption

Dialister invisus DSM 15470 40.8 0.078 3.20 13.72%
Enterobacter cancerogenus ATCC 35316 97.7 0.027 2.68 11.53%
Escherichia coli K12 MG1655 47.1 0.052 2.47 10.59%
Prevotella copri CB7 DSM 18205 38.9 0.058 2.27 9.77%
Parasutterella excrementihominis YIT 11859 81.9 0.026 2.12 9.10%
Sutterella wadsworthensis 3145B 96.3 0.008 0.81 3.48%
Roseburia hominis A2 183 89.4 0.008 0.70 3.02%
Hafnia alvei BIDMC 31 98.1 0.007 0.70 3.01%
Bilophila wadsworthia 316 96.3 0.005 0.51 2.17%
Acidaminococcus intestini RyC MR95 88.2 0.004 0.39 1.68%

Figure 5. Parasutterella and human weight loss intervention. (a) Difference of BMI in subjects of intervention at baseline compared with 
12 weeks (Wilcoxon signed-rank test, P < .05), (n = 55). (b) Abundance of Parasutterella excrementihominis in subjects of intervention at 
baseline compared with 12 weeks (Wilcoxon signed-rank test, P < .05), (n = 55).
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dietary patterns. There was no significant differ
ence in adherence to the Mediterranean diet 
between the German and Canadian cohort 
(Supp. Figure 1). Lastly, we compared the micro
bial composition of the population-based FoCus 
cohort with the intervention cohort at baseline 
(Supp. Figure 2) and found no significant differ
ence (P = .872, multivariate comparison of 
abundance at phylum level). Overall, we con
clude that the cohorts in this study can justifi
ably be compared to each other.

Discussion

In recent years, several studies have investigated the 
relation of gut microbial composition at the phy
lum level to obesity and its metabolic comorbid
ities. Due to previous findings in various rodent 
models, we further characterized a specific bacter
ium, Parasutterella, at the genus level using more 
than 1.500 subjects from the FoCus cohort in Kiel. 
We observed a positive association between 
Parasutterella abundance and obesity, as well as 
type 2 diabetes and carbohydrate-rich food intake. 
Additionally, Parasutterella was significantly 
reduced after a sustained weight loss intervention 
in subjects with obesity and associated with 
L-cysteine among other metabolites. Metabolite 
pathway analysis revealed an enrichment of the 
fatty acid biosynthesis pathway.

Our data indicate a positive association between 
Parasutterella and obesity, which we were able to 
validate in the independent Canadian ATP cohort. 

These results are in line with research of mechan
istic studies in animal models from independent 
groups. For example, Gu et al. found that 
Parasutterella sp. was significantly enriched in obe
sity-prone mice in comparison to obesity-resistant 
mice both fed a HFD.13 Furthermore, bacteria of 
Proteobacteria phylum, to which Parasutterella sp. 
belongs, are known to be highly abundant in obe
sity and other metabolic diseases.33,34 In addition, 
several authors classify Parasutterella sp. as pro- 
diabetic in animal studies. For instance, in a study 
by Cheng et al., the authors reported that mice fed 
with galacto-oligosaccharides (GOS) exhibit 
a change in their microbiota with a significant 
enrichment in Parasutterella sp. and at the same 
time a significantly increased blood glucose level 
compared to control animals.35 This is in line with 
our finding that Parasutterella sp. is elevated in 
patients with type 2 diabetes.

Dietary patterns are a key factor in determining 
gut microbiota composition in humans as well as 
the pathogenesis of obesity.36 As such, we exam
ined the role of diet in Parasutterella sp. abun
dance. Therefore, in the present analysis, we 
made use of the detailed EPIC dietary data avail
able for all FoCus subjects. Our data indicate that 
carbohydrate (especially monosaccharides) and 
ω3 linolenic acid intake are associated with the 
abundance of our target bacterium. A higher 
intake of carbohydrates was associated with 
a higher abundance of Parasutterella sp., whereas 
a higher intake of linolenic acid was associated 
with a lower abundance of Parasutterella sp. In 
a previous study using the FoCus cohort, we 

Figure 6. Summary figure on the proposed dietary Carbohydrate – Gut Parasutterella – Human Fatty Acid Biosynthesis metabolic axis.
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found that polyunsaturated fatty acids are posi
tively associated with the β-diversity of microbial 
composition.30 Hence, the negative association of 
Parasutterella with ω3 linolenic acid fits into the 
concept that this bacterium is related to negative 
cardiovascular effects.37 This theory is further sup
ported by the metabolic pathway enrichment 
results, which showed that many of the metabo
lites that are associated with Parasutterella are 
involved in the fatty acids synthesis pathways.

By using our untargeted HPLC-based mass spec
trometry metabolomics data set, L-cysteine 
revealed an inverse correlation with Parasutterella 
sp. displaying a convincing estimate that underlines 
the fact that L-cysteine is linked to blood glucose 
control which was described in the literature.38 

Intriguingly, metabolic network modeling revealed 
Parasutterella sp. as a potential top consumer of 
L-cysteine within the human gut microbiota. 
Furthermore, a study of Ju et al. investigated mice 
colonized with Parasutterella which had signifi
cantly reduced concentrations of taurine (degrada
tion product of cysteine) and N-Acetyl-DL- 
methionine that implies Parasutterella to be able 
to reduce also cysteine associated metabolites.39

So far, it is known that supplementation of 
L-cysteine improves glycemia and also lowers vas
cular inflammation in diabetic rodents38 meaning 
L-cysteine reveals anti-diabetic characteristics. In 
rats that were fed a high-sucrose diet and a whey 
concentrate rich in L-cysteine, the data showed that 
an increase in L-cysteine limited the impairment of 
glucose homeostasis through lowering oxidative 
stress.40 Of interest, especially pancreatic β cells 
are extremely susceptible to oxidative stress due to 
a high endogenous production of reactive oxygen 
species (ROS) and a low expression of antioxidative 
enzymes.41 Since we found that Parasutterella is 
associated with type 2 diabetes but not with (BMI- 
independent) measures of insulin resistance, this 
finding might point toward abnormalities in insulin 
secretion due to Parasutterella promoting type 2 
diabetes development.

In a second analysis, we examined the enrichment 
of metabolic sets and found an association of 
Parasutterella sp. abundance with the fatty acid bio
synthesis pathway. This finding falls in line with the 
fact that elevated BMI and body weight linked to an 
obese phenotype have elevated fatty acid biosynthesis 

systemically. Of interest, it is known that 
Parasutterella secunda does not produce significant 
amounts of propionate11 and Parasutterella excremen
tihominis is producing only traces of propionate.42 

Since SCFA are known to inhibit human fatty acid 
biosynthesis and induce human fatty acid oxidation,43 

this might suggest a mechanism on how Parasutterella 
induces human fatty acid biosynthesis as found in our 
analysis. However, we have to admit that (1) we did 
not measure SCFA fecal concentrations in the present 
analysis in relation to Parasutterella abundance and 
(2) that in our differential abundance analysis 
Parasutterella is correlated with bacteria that are 
SCFA producers, e. g. Faecalibacterium and 
Roseburia. Hence, while our human cohort study can 
only identify association, the data presented here 
might serve as a basis for future intervention studies 
in model systems of obesity and type 2 diabetes to 
identify the exact molecular and cellular mechanisms 
on how Parasutterella affects fatty acid biosynthesis.

Due to our previous findings on SNPs in the 
human VDR influencing gut microbiome composi
tion, we decided to include human genetic factors in 
our present analysis. However, none of the SNPs at 
the VDR locus were significantly associated with 
Parasutterella sp. abundance. Furthermore, we 
examined common SNPs in the POMC locus, since 
these were also found to influence the gut micro
biome in our previous study30 and SNPs in the 
POMC gene are associated with body weight 
dysregulation.44 In that analysis, we found one nom
inally significant SNP at the POMC locus, in which 
lower Parasutterella abundance was associated with 
the wild-type homozygous allele. Taken together, 
our data suggest that Parasutterella abundance is 
more related to environmental (nutrition) compared 
to host-genetic factors at least in the VDR and 
POMC regions.

Most research data regarding the role of the gut 
microbiome in the development of obesity and type 
2 diabetes are on phylum level, showing that both 
diseases are associated with a reduced α- and/or β- 
diversity. It has to be mentioned that this reduction 
in diversity measures is not specific for metabolic 
diseases but is also found in chronic IBD,45 chronic 
heart failure46 and diverse oncological diseases.47 

Thus, from our point of view, the present data and 
the published data on Akkermansia indicate that 
future research should also examine single bacteria 
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or networks of defined bacteria on genus level as 
indicators or even pathogenic factors of specific dis
eases rather than solely relying on phylum data. In 
addition, the finding of higher Parasutterella abun
dance in obese subjects known to have lower overall 
diversity might underline the specificity of the novel 
nutrition-Parasutterella-host metabolic axis.

In our previous project regarding hypothalamic 
inflammation, we found an association of 
Parasutterella with the MRI density in the hypothala
mus in severe obese subjects.6 This is of interest since 
in the present study Parasutterella was associated with 
obesity and type 2 diabetes, but not with systemic 
inflammatory markers like IL-6 and CRP in the per
iphery. As IL-6 and CRP reflect the degree of meta
bolic inflammation in obesity,48 our data might 
suggest that Parasutterella mediates its negative effects 
on host glucose metabolism – at least in the periph
ery – via direct metabolic effects rather by influencing 
the innate immune system. In this respect, L-cysteine, 
identified in our metabolomics analysis, might be an 
interesting candidate for future investigations.

Conclusion

Our data indicate that Parasutterella sp. is associated 
with human obesity and type 2 diabetes and might be 
implicated in a novel dietary carbohydrate – micro
biome – host metabolic axis. Thereby, the link to the 
fatty acid biosynthesis pathway might be important 
for body weight gain in obesity in response to 
a carbohydrate-rich diet, whereas the link to 
L-cysteine could be relevant for type 2 diabetes devel
opment (Figure 6). In addition, the inverse relation
ship of Parasutterella with the dietary ω3 fatty intake 
should be of interest for future studies, given the 
convincing data of the recent REDUCE-IT trial.49
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