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Abstract

Place-based structural inequalities can have critical implications for the health of vulnerable 

populations. Historical urban policies, such as redlining, have contributed to current inequalities 

in exposure to intra-urban heat. However, it is unknown whether these spatial inequalities 

are associated with disparities in heat-related health outcomes. The aim of this study is to 

determine the relationships between historical redlining, intra-urban heat conditions, and heat-

related emergency department visits using data from eleven Texas cities. At the zip code level, the 

proportion of historical redlining was determined, and heat exposure was measured using daytime 

and nighttime land surface temperature (LST). Heat-related inpatient and outpatient rates were 

calculated based on emergency department visit data that included ten categories of heat-related 

diseases between 2016 and 2019. Regression or spatial error/lag models revealed significant 

associations between higher proportions of redlined areas in the neighborhood and higher LST 

(Coef. = 0.0122, 95% CI = 0.0039 - 0.0205). After adjusting for indicators of social vulnerability, 

neighborhoods with higher proportions of redlining showed significantly elevated heat-related 

outpatient visit rate (Coef. = 0.0036, 95% CI = 0.0007-0.0066) and inpatient admission rate (Coef. 

= 0.0018, 95% CI = 0.0001-0.0035). These results highlight the role of historical discriminatory 

policies on the disparities of heat-related illness and suggest a need for equity-based urban heat 

planning and management strategies.
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1. Introduction

Place-based socio-ecological inequities can have critical impacts on health outcomes 

(Krieger, 2014). It is well-documented that disadvantaged neighborhoods experience higher 

burdens of health risks (Diez Roux and Mair, 2010; Ross and Mirowsky, 2001). Research 
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from the past two decades has further clarified the distinction between compositional effects 

(i.e., population composition) and contextual effects (i.e., the neighborhood environment) 

that impact health outcomes (Kawachi and Berkman, 2003). Housing characteristics 

and infrastructure-related factors rooted in the spatial patterns of public and private 

investment/disinvestment influence health outcomes, independent of the sociodemographic 

characteristics of the population. Recently, an emerging body of research has called for 

in-depth investigation into place-based health disparities stemming from historical and/or 

structural segregation and racism (Schell et al., 2020; Butler et al., 2020). Redlining was one 

such policy that formalized racial and ethnic discrimination in mortgage lending and further 

entrenched residential segregation (Rothstein, 2017). In this study, historical redlining refers 

to the New Deal-era discriminatory policy of disinvestment in communities with higher 

minority populations (Zenou and Boccard, 2000).

Extreme heat already exerts a serious toll on communities, with a mortality rate twice that of 

storms and floods (Thacker et al., 2008). Global climate change makes the need to identify 

heat risks and mitigate their public health effects more urgent As the frequency, intensity, 

and duration of hot days and extreme heat events continues to increase, rising heat-related 

mortality and morbidity rates are likely to become severe societal challenges (Petkova 

et al., 2013; Guo et al., 2018). Previous studies have revealed racial and socioeconomic 

disparities with respect to heat-related mortality and morbidity (Chan et al., 2012; Anderson 

and Bell, 2009; Rosenthal et al., 2014; Gronlund, 2014). These socioeconomic and 

demographic factors that affect susceptibility of different groups to environmental hazards, 

often described as social vulnerability (Cutter et al., 2003), may help to explain observed 

disparities in heat-related mortality and morbidity.

Most recently, significant advances have been made in understanding whether 

neighborhoods historically targeted for discriminatory mortgage policies are associated with 

disproportionate sorting of infrastructure and environmental stressors such as intra-urban 

heat exposure. For example, a study using satellite imagery from between 2014 and 2017 

for 108 urban areas in the U.S. demonstrated that historically redlined areas experience 

higher land surface temperature compared to non-redlined areas (Hoffman et al., 2020). 

This pattern was confirmed in another study that focused on Baltimore, Dallas, and Kansas 

City and used land surface temperatures derived from imagery obtained between 2018 and 

2020 (Wilson, 2020). However, as heat-related illness is attributable not only to ambient 

heat conditions, but also to environmental and social protective/coping resources, along 

with individual pre-existing health conditions, it is unknown whether these differences in 

surface temperature result in differences in the rate of heat-related illnesses. Therefore, 

the extent to which historically redlined neighborhoods show elevated heat exposure and 

report higher rates of heat-related illnesses must be assessed and such an investigation 

will provide evidence for heat-related health interventions and inform policies designed to 

remedy disparities in heat exposure attributable to structural segregation.

This article addresses the following research questions: (1) do urban areas where a higher 

proportion of the land area was formerly redlined experience higher diurnal land surface 

temperatures and heat-related emergency department admissions relative to other areas; 

and (2) do the associations between the proportion of redlined land area and heat-related 
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emergency department visits persist after controlling for social vulnerability? We use data 

from eleven Texas cities to extend the emerging evidence related to inequalities in heat 

exposure to heat-related health risks. The high heat-related risks of these Texas cities stems 

from both their geographic location spanning three relatively hot climate subtypes, and their 

tremendous urban growth, which averaged 20.8% between 2000 and 2019. Land use and the 

built environment contribute directly to heat exposure in cities through the urban heat island 

(UHI) effect, which is intensified by factors like impervious surfaces and albedo materials 

(Stone Jr and Rodgers, 2001). These factors are compounded by historical planning 

practices of prioritizing urban growth, industry, highways, and impervious surfaces. Further, 

the Gulf Coast region is home to a disproportionately large number of communities and 

people who are socially vulnerable to environmental hazards and the region is often 

considered a critical area for advancing environmental equity. The primary objective of this 

study is to examine the relationships between diurnal land surface temperatures, heat-related 

health facility visit rates, and historical redlining, while adjusting for neighborhood-level 

social vulnerability.

1.1 Historical Redlining and Environmental Inequalities

Policies contributing to residential segregation were widespread in the decade following 

the Great Depression. Redlining was a particularly widespread and consequential policy 

enabled by the Home Owners’ Loan Corporation (HOLC) that mapped “mortgage security” 

grades in more than 200 cities in the United States. The HOLC was formed to control 

mortgage risks, address underwater mortgages, and foreclosed properties (An et al., 2019; 

Hillier, 2003). In assessing foreclosure risk, the HOLC assigned four grades to residential 

areas in cities: A-best, B-still desirable, C-definitely declining, and D-hazardous. These 

grades were based on entire neighborhoods, rather than individual properties, according to 

a “City Survey Program” that rated the ethnicity, income, and occupation of residents along 

with housing conditions, explicitly discriminating against African Americans, Hispanics, 

and other minorities (Jackson, 1980; Jackson, 1987; An et al., 2019; Hillier, 2003). As a 

government body, the HOLC institutionalized residential segregation and directed certain 

investments and disinvestments in targeted communities. Although the HOLC was abolished 

in less than 15 years, its results continued to influence patterns of economic and social 

inequality (Mitchell and Franco, 2016). Over time, these structured segregations and 

systematic disadvantages were further exacerbated, leading to severe socio-environmental 

disparities.

Redlining, as a racist government policy that continues to impact communities of color, 

has far-reaching implications beyond the observed socio-economic conditions alone. These 

implications include how public investments were distributed and how public institutions 

regulated and incentivized private sector investments. As a result, housing segregation, 

infrastructure degradation, concentrations of environmental hazards, segregated schools, and 

denial of equal access to opportunities for the next generation all contribute to the complex 

landscape of place-based inequalities. Studies have revealed that legacies of redlining 

are associated with poverty, income inequality, education deprivation, infrastructure and 

built environment deterioration, and diminished home value (Sadler and Lafreniere, 2017; 

Curtis and O’Connell, 2017; Rothstein, 2017; Mitchell and Franco, 2016). Related to 
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infrastructure, prior studies have found significantly lower densities of vegetation cover in 

redlined areas (Wilson, 2020; Nardone et al., 2021). In addition, highways and toxic-hazard 

sites were often constructed in marginalized areas (Nardone et al., 2020a), as these residents 

often have fewer resources to resist the siting of a potentially hazardous facility.

Recent studies have situated the discussion of residential segregation within the larger 

environmental justice and environmental health conversation. The structural inequalities 

created and perpetuated by redlining contribute to persistent patterns of urban infrastructural 

and landscape heterogeneity, governing the distributions of land cover, contaminants, green 

space and its ecosystem services, as well as disease dynamics (Schell et al., 2020; Sailor 

et al., 2019). For example, urban tree canopy, which plays a vital role in mitigating heat 

exposure, has been shown to be consistently lower in African-American, Hispanic, and 

lower-income neighborhoods (Kolosna and Spurlock, 2019). However, recent research has 

also linked redlining to air quality and disparities in exposure to airborne hazards (e.g., 

particulate matter) that are mediated by factors like tree canopy and the filtering benefits 

thereof (Namin et al., 2020). As such, the examination of historical unequal housing policies 

along with current incidences and distributions of health risks will offer insights into the 

shaping of place-based inequalities.

1.2 Historical Redlining, Health Disparities, and Heat Exposure

Current and historical residential segregation and lending biases have been linked to 

numerous health risks and outcomes. For example, present-day lending biases (e.g., 

likelihood of racial minorities being denied mortgages) have been associated with breast 

cancer mortality (Collin et al., 2020; Beyer et al., 2016). Most recently, an emerging body 

of literature has revealed associations between historical redlining and present-day morbidity 

and mortality in urban areas. For example, residing in historically redlined neighborhoods 

is associated with higher odds of preterm birth and worse birth outcomes (Krieger et 

al., 2020a; Nardone et al., 2020b). Populations in historically redlined areas also show 

elevated risks of lung cancer and breast cancer, even in neighborhoods with high present-day 

socioeconomic privileges (Krieger et al., 2020b). Likewise, emergency department visits due 

to asthma were found to be elevated in historically redlined areas in California (Nardone et 

al., 2020a).

One particular health outcome that is increasingly tied to the spatial characteristics of 

cities is urban heat stress and heat-related health. Studies have demonstrated correlations 

of sociodemographic and housing conditions with heat vulnerability (Gronlund, 2014; 

Johnson et al., 2012). The health burden caused by heat stress falls disproportionately on 

groups that are physiologically sensitive to heat events or have less adaptive resources, 

such as the elderly, the poor, and the socially isolated (Klinenberg, 2015). Worse still, 

historically redlined neighborhoods not only have higher percentages of socioeconomically 

disadvantaged residents, but also more degraded housing and infrastructure which perform 

poorly during heat events, have less heat mitigation amenities, and experience higher levels 

of ambient heat exposure (Harlan et al., 2006).

Recent studies revealed critical linkages between historical residential segregation and intra-

urban land surface temperature (LST). A study investigating LST patterns in 108 US urban 
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areas found that in 94% of those areas, redlined and non-redlined neighborhoods displayed 

significantly different LSTs (Hoffman et al., 2020). The gap in average LST was 2.6 

°C across all 108 cities, and up to 7 °C within a city (Hoffman et al., 2020). Another 

study focusing on Baltimore, Dallas, and Kansas City confirmed historically redlined 

neighborhoods to experience higher LST, and suggested a need for environmental justice 

discussions related to urban planning based on this finding (Wilson, 2020).

As heat exposure is a strong risk factor for heat-related illness, a critical question to 

ask is whether neighborhoods with a larger proportion of historically redlined areas 

experience worse heat-related health outcomes relative to less-redlined neighborhoods. If 

the differences in neighborhood-level land surface temperature are of a magnitude that 

causes disparities in heat-related health conditions, then these thermal inequalities in the 

built environment require immediate attention of planners, policymakers, and public health 

providers. In that case, collaborative environmental and public health efforts to mitigate 

the impacts of historical residential segregation on place-based heat vulnerabilities may be 

warranted.

2. Methods

2.1 Study Area

Eleven cities from Texas were included in this study, selected on the diversity of climate 

conditions and availability of historical redlining data. These cities are Amarillo, Austin, 

Beaumont, Dallas, El Paso, Fort Worth, Galveston, Houston, Port Author, San Antonio, 

and Waco. This list includes the top six populated cities in Texas, and three different 

Köppen-Geiger climate subtypes (Köppen, 1900; Köppen and Geiger, 1930). The Köppen-

Geiger climate classification identifies climatically similar zones based on factors such 

as temperature and rainfall. Selecting study sites in multiple geographic and climatic 

zones typically increases the generalizability of the findings. In addition, many of these 

Texas cities have demonstrated unprecedented urbanization and rapid urban heat island 

intensification over the past few decades (Streutker, 2003; Hu and Xue, 2016).

2.2 Constructs and Measures

2.2.1 Historical Redlining—Historical redlining was defined based on the historical 

HOLC grades assigned to residential areas: A-best, B-still desirable, C-definitely declining, 

and D-hazardous (Figure 1). Redlining maps were obtained from the geo-rectified data from 

the Mapping Inequality project of the University of Richmond (Hernandez, 2009). The 

unit of analysis for this study was zip code tabulation area (ZCTA), created by the U.S. 

Census Bureau to represent the areal boundaries of the United States Postal Services zip 

codes. As the spatial boundaries of redlined zones do not match the ZCTAs, we calculated 

the areal proportions of each ZCTA that fall within each of the four HOLC classes. In 

particular, we examined the proportion assigned grade C (definitely declining) or grade D 

(hazardous) as redlined. To perform direct comparisons between ZCTAs that encompass 

higher proportions of redlined (C- and D-graded) zones and those that intersect with few 

redlined zones, we categorized the proportion of redlined zones variable based on 50% 
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percentile; the yielded two-categories are referred to in the present study as more-redlined 
and less-redlined ZCTAs.

2.2.2 Land Surface Temperature—Land surface temperature (LST) is a widely used 

measure for capturing heat hazards and comparing urban heat exposure across different 

areas. Although LST does not fully capture the set of micrometeorological conditions 

that factor into human thermal comfort or heat stress, recent studies have shown strong 

correlations between LST and air temperature (Good et al., 2017), and validated the use 

of LST to infer thermal comfort, such as the Physiological Equivalent Temperature (PET) 

(Goldblatt et al., 2021). Compared to other measures such as air and surface temperature 

values taken at meteorological stations with coarse spatial resolution, satellite imagery 

derived LST presents data at higher spatial resolutions, thereby enabling comparisons among 

different neighborhoods. Recent studies assessing heat-related vulnerability and population 

health risks have relied on LST as the most widely used meteorological indicator (Inostroza 

et al., 2016; Buscail et al., 2012; Weber et al., 2015; Loughnan et al., 2012). In this 

study, we used surface temperature data retrieved from the ECOSTRESS Land Surface 

Temperature and Emissivity products recently released by the National Aeronautics and 

Space Administration (NASA) (Hook and Hulley, 2019). This dataset offers fine-scaled 

atmospherically-corrected imagery throughout diurnal cycles at a 70m spatial resolution 

base on MODIS data, which allows the estimation of daytime and nighttime LSTs. Recent 

studies have utilized ECOSTRESS data to evaluate heat vulnerability and reveal fine-scale 

heat exposure information (Hulley et al., 2019).

Specifically, LST data from the ECO2LSTE product within the June 1st and August 31st, 

2018-2020 window that covered the selected urban areas were downloaded. Also obtained 

were the quality control data and cloud cover ECO2CLD products. The imagery was 

screened to ensure minimum cloud coverage, and best/normal quality pixels were flagged 

based on retrieval and atmospheric conditions. One daytime and one nighttime imagery set 

with best quality flags were selected for each city (Figure 2), and summary measures such 

as mean daytime/nighttime LST, minimum daytime/nighttime LST, and maximum daytime/

nighttime LST were determined with reference to ZCTA boundaries.

2.2.3 Social Vulnerability Factors—Social vulnerability is defined as the 

demographic and socioeconomic factors that affect the susceptibility of the population to 

heat-related health risks. Heat-related health literature has demonstrated that, in addition 

to heat hazard (as measured by ambient/surface temperature), social vulnerability factors 

explain the sensitivity of a population to heat stress as well as its adaptability and resources 

for mitigating the negative health impacts. Based on a review of heat vulnerability models/

indices, we identified the most common social vulnerability indicators (Nayak et al., 2018; 

Reid et al., 2009) included in determining population heat vulnerability: population aged 65 

and older, non-White population, Hispanic population, lower-income population, individuals 

living alone, and populations who do not speak English well. These variables were derived 

from the American Community Survey 2015-2019 five-year estimates at the ZCTA scale and 

normalized by the total population.
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2.2.4 Heat-Related Emergency Department Visits—Heat-related emergency 

department (ED) visits were extracted from data provided by the Texas Center for Health 

Statistics, Department of State Health Services. This dataset included all inpatient and 

outpatient ED records between 2016 and 2019 for approximately 495 hospitals/facilities 

(with ~5 yearly variations) across the entire state. For example, in 2016, there was a total 

of 10,486,677 ED visits, of which 1,471,871 (13.8%) were admitted and recorded in the 

inpatient category while the rest were in the outpatient category. Each record included 

one primary diagnosis and up to 24 additional diagnoses, coded based on the International 

Classification of Diseases, 10th revision (ICD-10). Other available information for each 

record included the patient’s sex, age, race, and ethnicity, as well as data related to billing 

and charges. Due to confidentiality and privacy constraints, geographic information was only 

released at the zip code level and the specific date of an ED visit was also not available.

We considered an ED visit to be heat-related if the patient was assigned at least one 

of the following diagnoses: heatstroke and sunstroke (T67.0); heat syncope (T67.1); heat 

cramp (T67.2); heat exhaustion, anhidrotic (T67.3); heat exhaustion due to salt depletion 

(T67.4); heat exhaustion, unspecified (T67.5); heat fatigue, transient (T67.6); heat edema 

(T67.7); other effects of heat and light (T67.8); effect of heat and light, unspecified (T67.9); 

and exposure to excessive natural heat (X30). These ICD-10 classes have been used in 

studies examining heat vulnerability and heat-related diseases as caused by heat waves and 

environmental conditions (Schaffer et al., 2012; Gronlund et al., 2015). ZCTA-level rates of 

heat-related ED visits were then calculated as inpatient and outpatient counts weighted by 

the total population.

2.3 Statistical Analysis

All data preparation and statistical analyses were performed using R packages. Independent-

sample t-tests and boxplots were generated to demonstrate the extent to which the LST and 

heat-related ED visit rates differed by more-redlined and less-redlined ZCTAs.

To determine whether these relationships hold after adjusting for social vulnerability 

controls and spatial dependency, we tested ordinary least squares (OLS) models and 

spatial models on LST and heat-related ED visits. The distributions of outcome variable 

distributions were examined and the values transformed as needed; specifically, square 

root transformation was used for both inpatient and outpatient rates. We examined spatial 

autocorrelation in the residuals. When Moran’s I was non-significant, we decided spatial 

autocorrelation was absent and proceeded with the OLS. When Moran’s I was significant, 

we decided that the OLS would yield biased estimates, and therefore used a spatial 

autoregressive model (SAR) instead. In SAR, spatial dependence is addressed either as a 

spatially lagged dependent variable (spatial lag model) or in the error structure (spatial 

error model) (Anselin and Bera, 1998; Cressie, 2015). The formulas of the two models 

are given below. The Lagrange Multiplier (LM) test was used to determine the appropriate 

model. Breusch-Pagan tests for heteroscedasticity were used, and upon revealing significant 

heteroscedasticity, corrections (1980) were applied.
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y = ρWy + Xβ + ε (Equation 1)

where Wy is the lagged dependent variable, ρ is the spatial autoregressive coefficient, and ε 
is the error term.

y = Xβ + μ; μ = λWμ + ε (Equation 2)

where μ is the vector that represents the spatially autocorrelated error term, λ is the spatial 

autoregressive coefficient, Wμ is the spatial lag for the errors, and ε is the error term.

3. Results

3.1 Characteristics of Study Areas and Population

Table 1 presents ZCTA-level descriptive statistics and comparisons between areas with 

high and low proportions of redlined areas. The average population per ZCTA was about 

24,000, with 18% of the population being aged 65 or older. Overall, the study areas showed 

high racial and ethnic diversity: the mean proportion of the non-White population was 

30% and the mean proportion of the Hispanic population was 45%. Demographically, 

more-redlined ZCTAs did not differ significantly regarding total population, housing 

units, or age composition relative to less-redlined ZCTAs. However, they had about 50% 

higher percentage of Hispanic population compared to less-redlined ZCTAs. Further, 

socioeconomic gaps were statistically significant between high- and less-redlined areas: 

more-redlined ZCTAs showed a 40% higher low-income population, 20% more people 

living alone, and 85% more individuals who did not speak English well.

Across all ZCTAs, the mean daytime LST was 36.17 °C and the nighttime LST was 

28.55 °C. Figure 3 shows boxplots that better represent the comparative distributions 

of heat exposure and heat-related ED visits. Overall daytime LST data varied with 

greater magnitude than nighttime LST, as daytime surfaces are heated directly by solar 

radiation, areas with less tree canopy will likely have higher temperatures; meanwhile, at 

night, areas with less canopy cover will emit more terrestrial radiation to the sky, thus 

achieving nighttime temperatures similar to areas with more canopy. More-redlined ZCTAs 

demonstrated a 3.90 °C hotter daytime surface temperature and a 0.87 °C nighttime surface 

temperature than less-redlined ones, including higher mean daytime LST, daytime min LST, 

mean nighttime LST, and nighttime max LST (Table 1). Figure 3 confirms these results and 

reveals that the values for the lower quartile, median, and upper quartile for daytime LST, 

nighttime LST are all higher for more-redlined areas.

For emergency department visits, there were a total of 5,229 inpatient and 39,241 outpatient 

records that had at least one heat-related diagnosis. Both inpatient and outpatient rates 

were significantly different between high- and less-redlined areas. The population-weighted 

inpatient admission rate of more-redlined areas was about 87% percent above that of less-

redlined areas, and the outpatient rate was likewise about 50% greater. Detailed information 

at the patient-level is presented in Supplementary Material Table S1.
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3.2 Heat Exposure and Historical Redlining

To examine whether heat exposure varied by historical redlining, we fitted OLS models 

predicting daytime and nighttime LST based on proportion of redlining and examined the 

residual spatial autocorrelation. For both daytime and nighttime models, the Moran’s I 

statistic was significant (p < 0.0001) and LMerr and LMag robust tests favored the spatial 

lag model (RLMlag < 0.001). Therefore, the spatial lag model (Equation 1) was selected for 

further modeling.

The results from the spatial lag models (Table 2) showed that the proportion of redlining 

was a significant predictor of daytime LST (Coef. = 0.0122, 95% CI = 0.0039 - 0.0205). 

Similarly, a greater proportion of redlining was associated with higher nighttime LST (Coef. 

= 0.0098, 95% CI = 0.005 - 0.0146).

3.3 Heat-Related Emergency Department Visits and Historical Redlining

We likewise determined appropriate models for heat-related emergency department visit 

rates by examining the spatial autocorrelation of OLS model residuals. For Models 3 and 

4, we predicted inpatient admission rates first using only social vulnerability data; and 

then added in the redlining factor. For both models, Moran’s I failed to detect residual 

spatial autocorrelation (p > 0.05), thus the OLS models were presented. For Models 5 

and 6, we predicted outpatient visit rates using social vulnerability factors alone; and then 

social vulnerability factors plus redlining. With these models, the Moran’s I statistic showed 

significant spatial autocorrelation (p < 0.001) and the LMerr tests favored spatial error 

models (p < 0.001), thus the spatial error models (Equation 2) were selected for fitting 

outpatient data.

Model 3 showed that of all social vulnerability variables, percent older population (Coef. 

= 0.0076, 95% CI = 0.0034-0.0118), lower-income population (Coef. = 0.0089, 95% CI 

= 0.0038-0.0139), and individuals living alone (Coef. = 0.0055, 95% CI = 0.0016-0.0095) 

were significantly related to higher inpatient admission rates (Table 3). Race, ethnicity, 

and language spoken were not significantly correlated. After adding in redlining, Model 4 

revealed a significant association of redlining with inpatient admission rates (Coef. = 0.0018, 

95% CI = 0.0001-0.0035); the higher the proportion of areas historically categorized as 

“definitely declining” or “hazardous,” the higher the present-day heat-related inpatient rates. 

Older age, low income, and social isolation remained significant social vulnerability factors.

When spatial error models were tested for outpatient visit rates, the results were mostly 

consistent with inpatient rates (Table 4). In both Models 5 and 6, older, low-income, 

and socially isolated populations had significant associations with heat-related outpatient 

visit rates. A higher proportion of redlined areas was also significantly associated with 

heat-related outpatient visits (Coef. = 0.0036, 95% CI = 0.0007-0.0066). Similarly, race, 

ethnicity, and language factors were not statistically significantly associated with ED visit 

rates.
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4. Discussion

4.1 Interpretation of Results

Our results showed that daytime and nighttime mean LST were significantly higher in 

ZCTAs with higher proportions of redlined areas, which is consistent with previous studies 

using different units of analysis (Hoffman et al., 2020; Wilson, 2020). Taken together, 

these results suggest that inequalities in urban heat island conditions exist not only between 

the historically defined redlined and non-redlined zones, but also between contemporary 

geographic units that contain more versus fewer historically redlined areas.

Possible mechanisms explaining the hotter surface temperature in areas with more-redlined 

neighborhoods include a variety of built environmental factors such as less vegetation, more 

impervious surfaces, more transportation infrastructure, and distinct housing typology. The 

literature has confirmed that vegetation cover is often denser in more affluent, predominantly 

White neighborhoods, while impervious surfaces are more prevalent in racial and ethnic 

minority neighborhoods (Hoffman et al., 2020; Nowak and Greenfield, 2018). Specifically, 

one study showed that A-graded areas now have almost twice as much tree canopy cover 

relative to D-graded redlined areas (Locke et al., 2020). More highway and parking lot 

constructions and high-density multifamily housing typology are also characteristics of areas 

historically discriminated against (An et al., 2019; Bös, 2015; Hirsch, 2009); these urban 

typology factors have been shown to influence the urban thermal environment (Yin et al., 

2018).

Beyond ambient surface temperature, our results also uncovered associations between the 

legacy of redlining and present-day thermal health outcomes. Areas with higher proportions 

of historically redlined zones experience higher population-adjusted emergency department 

visits with heat-related diagnoses, even after adjusting for social vulnerabilities. To our 

knowledge, these are the first results linking heat-related emergency department data to 

historical discriminatory housing policies. These results suggest that contextual factors are 

related to higher heat risks (Kawachi and Berkman, 2003), and these effects persist after 

accounting for compositional factors (i.e., the demographic and socioeconomic conditions of 

the population).

Although our study is observational, higher daytime and nighttime land surface temperatures 

could be the reason for elevated incidences of heat-related illness, a finding supported by 

studies evaluating heat-related health risks using LST as the main heat exposure indicator 

(Buscail et al., 2012; Ho et al., 2015). Other possible mechanisms may include built 

environment and infrastructure factors such as poor housing conditions (Samuelson et al., 

2020), low A/C availability (Santamouris et al., 2020), lack of cooling centers (Fraser et al., 

2018), and shaded recreational areas (Johnson et al., 2012; Nayak et al., 2018); all of which 

have been identified as environmental factors contributing to high levels of heat-related 

morbidity and mortality. These results, in accordance with recent studies on population risks 

related to cancer (Krieger et al., 2020b), asthma (Nardone et al., 2020a), and birth outcomes 

(Krieger et al., 2020a; Nardone et al., 2020b), as well as on self-reported health (McClure et 

al., 2019), outline critical health disparities rooted in historical residential segregation, and 

call for policy intervention to aid populations experiencing such place-based inequalities.
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Climate change poses severe challenges to community health. Our findings suggest that 

these challenges are distributed unevenly, and that historically redlined neighborhoods bear 

a disproportionately heavy burden. Existing heat-hazard prevention and mitigation plans are 

mostly based on entire region or city-level conditions while few policies and initiatives pay 

attention to the inequalities rooted in long-standing spatial patterns of disinvestment and 

segregation in cities. Understanding how disparities in heat-related health conditions may 

have emerged through historical housing segregation can focus attention and resources on 

redressing these inequalities. Furthermore, the recognition that land surface temperature and 

social vulnerabilities each explain part of the variance in heat-related emergency department 

visit rates suggests the importance of addressing infrastructure degradation in redlined areas 

from a public health perspective. It also calls attention to social programs to promote the 

adaptive capacity and coping resources for socioeconomically disadvantaged neighborhoods 

and individuals underscoring the need for mitigation efforts that bring socio-ecological 

solutions to bear on the multiple challenges arising from structural inequalities.

4.2 Limitations and Future Directions

Several limitations of this study need to be noted. Firstly, heat-related emergency department 

visit counts cannot fully represent rates of heat-related illness. For example, the most 

financially disadvantaged populations may not visit a hospital or clinic’s emergency 

department. Although the racial compositions of the ED visit data generally were similar 

to Census data, the percentage of Hispanic residents in ED visits was lower than in the 

overall population. Therefore, it is possible that, even with significant relationships detected 

in the present results, the extent of heat-related health disparities between redlined and 

non-redlined areas may still be underestimated. Secondly, the LST data used as proxy for 

heat exposure may not fully capture the complete energy input and output that determine 

human thermal experience. Although previous studies have established strong links between 

LST and thermal comfort and heat health risks (Goldblatt et al., 2021), during heat 

events, incident solar radiation can be the most critical element influencing the energy 

budget exchange between human body and the environment (Brown and Gillespie, 1995). 

Therefore, advances in measuring and modeling micrometeorological conditions may offer 

new insights into the fine-grained spatial disparities in heat exposure. Thirdly, due to privacy 

restrictions regarding the data provided by the Texas Center for Health Statistics, ED data 

were spatially aggregated to the Zip Code Tabulation Area (ZCTA) level, and neither 

individual sociodemographic characteristics nor the date of emergency department visits 

was available. As such, we were unable to conduct individual-level analysis or filter the 

dataset to include only records following heat waves. In addition, our results pertain more to 

the overall patterns of heat-related illness, which could be different than the patterns during 

specific heat waves or extremely hot days. Future studies should seek to use individual-level 

medical records or emergency department data and test case-crossover models or survival 

models to investigate the historical legacy of redlining and disinvestment on heat-related 

illness during heat waves and extreme weather conditions. Moreover, although this study 

considered social vulnerability indicators such as demographics, socioeconomics, and social 

isolation, environmental and housing related factors such as ventilation, and A/C availability, 

and neighborhood topography, tree canopy cover, impervious surface, and water bodies were 

not considered. These factors are likely to be mediators between historical redlining and 
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health outcomes; therefore, more comprehensive heat risk assessments need be made that 

take into consideration all factors related to heat exposure, sensitivity, and adaptability.

In addition, our study revealed heat-related health disparities based on the patterns of 

historical redlining. It is worth noting that, since there were pre-existing sociodemographic 

and environmental differences between redlined and non-redlined neighborhoods at the 

time of the policy, the argument that redlining itself is the direct cause of heat-related 

health disparities needs to be made with caution. Historical redlining, as an official 

policy institutionalizing residential segregation and discrimination, may very well influence 

social and environmental dynamics through complex pathways and interrelationships. 

Longitudinal studies that can account for historical changes in the social, environmental, 

and heat conditions of redlined neighborhoods may uncover the complex processes that link 

contextual and compositional disadvantages.

4.3 Conclusion

This article contributes to a growing literature that explores the connection between 

discriminatory urban development policies and heat-related health disparities. This research 

corroborates prior research about elevated land surface temperatures in historically redlined 

areas and extends the discussion to heat-related illness. To our knowledge, this study is 

the first of its kind to uncover the relationships between historical redlining, elevated 

land surface temperatures, and heat-related healthcare facility admissions. Our findings 

suggest that the uneven distribution of health risks to heat are linked to both neighborhood 

environmental and sociodemographic factors and must be explicitly recognized as such in 

order for truly equitable heat resilience planning to occur.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
HOLC redlining maps of selected cities.
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Figure 2. 
Example daytime and nighttime LST (Houston and Beaumont)
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Figure 3. 
Comparisons of LST and ED visits between more- and less- redlined neighborhoods
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Table 1.

Descriptive statistics of variables and comparisons between more- and less-redlined ZCTAs

Variables Entire sample Areas with lower percentage of 
redlined zones

Areas with higher percentage 
of redlined zones Diff

1

Mean SD Mean SD Mean SD

Social vulnerability

Total population (k) 24.3866 14.7761 25.5494 14.5866 23.2079 14.9722 ns.

Housing unit (k) 10.1965 6.0726 10.6301 5.8798 9.7571 6.2713 ns.

Population 65 or older (%) 18.2823 10.3947 17.8785 9.0607 18.6916 11.6406 ns.

Non-White population (%) 29.9844 17.3154 28.5387 17.6139 31.4497 17.0011 ns.

Hispanic population (%) 44.7117 27.6254 35.0949 24.7502 54.4584 27.1100 p<0.001

Low income (%) 21.2043 11.2586 17.5768 12.0116 24.8808 9.1383 p<0.001

Living alone (%) 54.1347 13.3397 49.1364 15.3207 59.2005 8.4349 p<0.001

Speak English not well or not at all 
(%)

9.4919 8.4780 6.6575 7.3061 12.3647 8.6598 p<0.001

Heat Exposure

Daytime LST (°C) 36.1718 9.5707 34.2368 9.4586 38.1330 9.3419 p<0.01

Daytime min LST (°C) 29.2809 7.6504 27.1543 7.4309 31.4362 7.3029 p<0.01

Daytime max LST (°C) 42.0879 12.3153 40.5444 12.7614 43.6522 11.7251 ns.

Nighttime LST (°C) 28.5523 2.5390 28.1205 2.4368 28.9899 2.5816 p<0.05

Nighttime min LST (°C) 25.3793 3.2214 24.7777 3.4524 25.9889 2.8651 ns.

Nighttime max LST (°C) 32.1426 2.7758 31.9356 2.8813 32.3524 2.6678 p<0.05

Heat-Related Emergence 
Department Visit

Inpatient admission rates (per 1000 
population)

0.2179 0.4421 0.1543 0.300 0.2824 0.5446 p<0.01

Outpatient admissions rates (per 
1000 population)

1.4775 1.8743 1.1825 1.4176 1.7764 2.2147 p<0.01

1
Results from independent t-test or Wilcoxon test based on distributions.

ns. Nonsignificant.
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Table 2.

Spatial lag models of daytime and nighttime LST with redlining.

Model 1 - Daytime LST Model 2 - Nighttime LST

Variables 95% CI 95% CI

Estimate SE Low High Estimate SE Low High

rho 0.9552 0.0098 0.9360 0.9744 0.8937 0.0218 0.8510 0.9364

(Intercept) 1.3660*** 0.3770 0.6271 2.1048 2.8047*** 0.6182 1.5930 4.0163

Redlining

Area redlined as definitely declining or hazardous (%) 0.0122** 0.0042 0.0039 0.0205 0.0098*** 0.0025 0.0050 0.0146

**
p < 0.01,

***
p < 0.001
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Table 3.

Regression models of inpatient rates with social vulnerability and redlining.

Inpatient Admission Rates with Heat-Related Diagnosis
1

Model 3 - Social Model 4 − Social + Redlining

Variables 95% CI 95% CI

Estimate SE Low High Estimate SE Low High

(Intercept)
−0.1739

+ 0.0883 −0.3484 0.0006 −0.1426 0.0886 −0.3177 0.0325

Social Vulnerability

Population 65 or older (%) 0.0076*** 0.0021 0.0034 0.0118 0.0084*** 0.0021 0.0042 0.0126

Non-White population (%) −0.0016 0.0015 −0.0045 0.0013 −0.0011 0.0015 −0.0040 0.0019

Hispanic population (%) −0.0007 0.0012 −0.0030 0.0016 −0.0009 0.0012 −0.0032 0.0014

Low income (%) 0.0089*** 0.0026 0.0038 0.0139 0.0082** 0.0025 0.0031 0.0132

Living alone (%) 0.0055** 0.0020 0.0016 0.0095 0.0042* 0.0021 0.0002 0.0083

Speak English not well or not at all (%) −0.0006 0.0037 −0.0078 0.0067 −0.0011 0.0036 −0.0082 0.0061

Redlining

Area redlined as definitely declining or hazardous 
(%)

0.0018* 0.0009 0.0001 0.0035

+
p < 0.1,

*
p < 0.05,

**
p < 0.01,

***
p < 0.001

1
. Inpatient admission rates were square root transformed.
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Table 4.

Spatial error models of outpatient rates with social vulnerability and redlining.

Outpatient Visit Rates with Heat-Related Diagnosis
1

Model 5 - Social Model 6 − Social + Redlining

Variables 95% CI 95% CI

Estimate SE Low High Estimate SE Low High

(Intercept) 0.0984 0.1747 −0.2441 0.4408 0.1483 0.1733 −0.1915 0.4880

Social Vulnerability

Population 65 or older (%) 0.0077* 0.0036 0.0005 0.0148 0.0082* 0.0036 0.0012 0.0152

Non-White population (%) −0.0009 0.0029 −0.0065 0.0047 −0.0005 0.0028 −0.0060 0.0050

Hispanic population (%) −0.0023 0.0026 −0.0075 0.0028 −0.0025 0.0026 −0.0076 0.0025

Low income (%) 0.0197*** 0.0042 0.0114 0.0279 0.0185*** 0.0042 0.0103 0.0266

Living alone (%) 0.0110** 0.0035 0.0041 0.0179 0.0096** 0.0035 0.0028 0.0165

Speak English not well or not at all (%) −0.0030 0.0075 −0.0176 0.0116 −0.0055 0.0074 −0.0200 0.0090

Redlining

Redlined as definitely declining or hazardous (%) 0.0036* 0.0015 0.0007 0.0066

lambda 0.4769 0.0815 0.3172 0.6365 0.4892 0.0802 0.3320 0.6464

*
p < 0.05,

**
p < 0.01,

***
p < 0.001

1
. Outpatient admission rates were square root transformed.
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