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Abstract

Since the discovery of insulin 100 years ago, our knowledge and understanding of diabetes 

have grown exponentially. Specifically, with regards to the genetics underlying diabetes risk, our 

discoveries have paralleled developments in our understanding of the human genome and our 

ability to study genomics at scale; these advancements in genetics have both accompanied and led 

to those in diabetes treatment. This review will explore the timeline and history of gene discovery 

and how this has coincided with progress in the fields of genomics. Examples of genetic causes of 

monogenic diabetes are presented and the continuing expansion of allelic series in these genes and 

the challenges these now cause for diagnostic interpretation along with opportunities for patient 

stratification are discussed.
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Introduction

It was in the 1930s, after the discovery and first use of insulin, that Harold Percival 

Himsworth first made the distinction between type 1 and type 2 diabetes (Bryder & Harper 

2013). However, it was not until the 1970s, following decades of observation, that both 

Stefan Fajans and Robert Tattersall extended this classification to recognize the existence of 

diabetes subtypes inherited in an autosomal dominant manner (Tattersall 1974, Tattersall & 

Fajans 1975) (Fig. 1). This dominantly inherited form of diabetes was originally reported 

as ‘mild familial diabetes with dominant inheritance’, and subsequently ‘maturity-onset 

diabetes of the young (MODY)’, to distinguish it from juvenile onset type 1 diabetes 

and indicate its similarities in clinical presentation to maturity-onset diabetes (now known 

as type 2) (Tattersall & Fajans 1975). In recent years, we have seen a gradual move 

toward using the broader term ‘monogenic diabetes’ to encompass other genetic types of 
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diabetes, such as neonatal or syndromic diabetes. Fueled by steady improvements in our 

understanding of the human genome, and coupled with technological advancement, we have 

seen the careful dissection of the genetic causes of these monogenic forms of diabetes. This 

has provided numerous insights into the machinery responsible for making and maintaining 

functional insulin-secreting pancreatic β-cells (Fig. 2). In this review, we focused on how 

these discoveries have shaped our understanding of insulin secretion across the phenotypic 

spectrum of diabetes and provided a model for precision medicine in diabetes.

Recognition of autosomal dominantly inherited diabetes

Maturity-onset diabetes of the young (MODY) is defined as autosomal, dominantly inherited 

diabetes which is characterized by non-insulin dependence, with an early age of onset (at 

least one affected family member with an onset before 25 years of age) and pancreatic β-cell 

dysfunction. In the 1950s, Fajans and Conn were attempting to develop a method for earlier 

detection of diabetes; whilst on this quest, they discovered ‘unsuspected diabetes’ in about 

20% of subjects who had a close relative with diabetes. They noted that not only was the 

unsuspected ‘chemical diabetes’ distinct from juvenile-onset diabetes (now known as type 1 

diabetes) but also that the inheritance was different (Fajans & Conn 1959).

Given what we now know, it is particularly fascinating that the early descriptions of MODY 

in the literature indicate that subjects were often treated with sulfonylureas to maintain 

their glucose levels (Fajans & Brown 1993). Even before the various subtypes of MODY 

were genetically dissected, it was apparent that there were families with distinct clinical 

phenotypes. Some cases were characterized by years of mild fasting hyperglycemia, whereas 

others progressed to persistent fasting hyperglycemia, often preceded by varying degrees 

of glucose intolerance (Fajans 1987, 1990). Of course, this now fits perfectly with our 

understanding of the differences in the underlying pathophysiology of glucokinase (GCK) vs 

transcription factor (HNF1A/HNF4A/HNF1B) MODY.

At the time of writing this article, the number of genetic subtypes causing MODY differs 

depending on the source of information. Online Mendelian inheritance in man (OMIM) 

lists 14 genetic subtypes; however, not all of these meet the American College of Medical 

Genetics criteria and a shorter list of 10 subtypes is more broadly acknowledged (Zhang et 
al. 2021). While there are multiple genetic causes, most cases in the clinical setting are due 

to mutations in three of these genes (HNF1A, HNF4A, GCK) which can collectively account 

for up to 95% of all MODY cases (Shields et al. 2010).

Subtypes of monogenic diabetes

Although we still use the name maturity-onset diabetes of the young (MODY), the field 

has moved in recent years to rebrand these conditions to the broader monogenic diabetes 

and to use the names of the genes responsible, for example, ‘glucokinase diabetes’ or 

‘transcription factor diabetes’ (Ellard et al. 2008, McDonald & Ellard 2013). This shift in 

naming convention reflects our broadening understanding of the wide phenotypic spectrum 

which can result from a given gene mutation, leading to blurred boundaries between historic 

non-genetic nomenclature which relied on the age of diagnosis (e.g. MODY vs neonatal 
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diabetes). As we unravel the genetic causes for monogenic diabetes (Fig. 1), the rational for 

this shift in thinking will become apparent along with the emerging themes of monogenic 

forms of pancreatic β-cell dysfunction – largely arising from either an intrinsic defect 

in β-cell function (e.g. GCK, KCNJ11), pancreas development (e.g. PDX1, HNF1A) or 

β-cell proliferation and mass (e.g. INS). This review will focus on the most common genes 

connected with monogenic diabetes while also highlighting a selection of less commonly 

seen genes to illustrate additional pathologic mechanisms.

Hepatocyte nuclear factor 4 alpha (HNF4A-MODY, MODY1)

In 1992, a locus on chromosome 20p containing HNF4A was identified by linkage analysis 

in a large pedigree, known as the RW pedigree (Bowden et al. 1992). However, it was 

not until 1996 that back-to-back publications reported the positional cloning of the genes 

responsible for both MODY1 (HNF4A) and MODY3 (HNF1A). Prior to this discovery, 

both transcription factors had recognized roles in the liver but these studies unearthed a 

previously unknown role in the regulation of pancreatic β-cell development and function 

(Yamagata et al. 1996a,b).

HNF4A belongs to a group of hepatocyte nuclear transcription factors, some of which are 

important in regulating insulin secretion (including HNF1A and HNF1B discussed below) 

(Yamagata et al. 1996a). As the name suggests, these transcription factors were originally 

described in the liver but they also function within the pancreatic β-cell to directly regulate 

the gene expression important for both pancreatic islet-cell development as well as glucose 

metabolism, including the insulin gene itself (Yamagata et al. 1996a).

Patients with heterozygous loss-of-function mutations in HNF4A have a progressive decline 

in β-cell function, with most carriers developing diabetes in adolescence or early adulthood. 

Because HNF4A also has a role in cholesterol and fatty acid metabolism, individuals with 

HNF4A-MODY may have unique changes in cholesterol and triglyceride levels (Pearson 

et al. 2005). Importantly, a diagnosis of HNF4A-MODY has implications for treatment as 

patients can often be successfully treated with oral sulfonylureas rather than insulin (Pearson 

et al. 2003, Hattersley et al. 2018).

Glucokinase (GCK-MODY, MODY2)

Shortly after the reports of linkage on chromosome 20p, linkage to chromosome 7p, where 

the gene for the key glycolytic enzyme glucokinase (GCK) resides, was described in both 

French and UK pedigrees in 1992 (Froguel et al. 1992, Hattersley et al. 1992) (Fig. 

1). The demonstration of linkage was quickly followed by characterization of the GCK 
human gene and the detection of diabetes-causing mutations (Stoffel et al. 1992). GCK is 

a member of the hexokinase family of enzymes and is largely expressed in hepatocytes 

and pancreatic β-cells where it is responsible for catalyzing the transfer of phosphate from 

ATP to glucose, generating glucose-6-phosphate (Magnuson et al. 1989). This catalytic 

transfer is the first, rate-limiting step in glucose metabolism, and as such GCK is often 

considered the glucose sensor of the β-cell (Bedoya et al. 1986). A single inactivating 

mutation in GCK impairs that glucose sensor, as well as the β-cell ability to respond to 

increasing glucose concentrations, ultimately leading to MODY. Thus, hyperglycemia in 
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individuals with GCK-MODY is essentially caused by increasing the glucose set point that 

is necessary to induce insulin secretion (Velho et al. 1992). To date, in vitro studies have 

indicated mutation-specific variation in the severity of the functional defect; however, in the 

clinical setting, heterozygous inactivating mutations result in strikingly similar phenotypes, 

irrespective of the specific mutation (Stride et al. 2002). This observation is explained 

by compensation by the WT allele, which is post-translationally upregulated in response 

to the elevated circulating glucose levels (Gloyn et al. 2004c). In contrast, activating 

GCK mutations lead to over-secretion of insulin and hypoglycemia, and given the lack 

of compensation by the WT allele, the phenotype is more varied (Glaser et al. 1998, Gloyn 

2003, Cuesta-Muñoz et al. 2004).

Patients with GCK-MODY have stable mild fasting hyperglycemia throughout their lifespan; 

however, due to the mild degree of hyperglycemia, and the low incidence of micro- 

or macrovascular complications, individuals with GCK-MODY typically do not require 

pharmacological treatment (Steele et al. 2014). The exception to this is during pregnancy, 

where glucose-lowering medications may be considered in the case of increased fetal growth 

observed on ultrasound (Chakera et al. 2015).

Hepatocyte nuclear factor 1 alpha (HNF1A-MODY, MODY3)

Positional cloning of the linkage signal on chromosome 12p, which had been identified 

in multiple families with monogenic diabetes, identified another liver transcription factor 

gene, hepatocyte nuclear factor 1 alpha (HNF1A), as a major cause of monogenic diabetes 

(Yamagata et al. 1996b). Like HNF4A, HNF1A functions as an important transcriptional 

regulator of insulin and other genes involved in islet-cell development and glucose 

metabolism. HNF1A is also a key transcriptional regulator of the sodium-glucose transporter 

in the kidney (SGLT2), therefore, patients with HNF1A-MODY have a low renal threshold 

for glucose (Pontoglio et al. 2000).

Functional studies have demonstrated that protein-truncating mutations result in 

haploinsufficiency (Harries et al. 2004), whilst missense variants lead to loss of function 

through a variety of mechanisms (Althari et al. 2020). More recently, our appreciation for 

the role of HNF1A in MODY has been expanded, as homozygous hypomorphic variants 

have also been identified as a cause of MODY (Misra et al. 2020). These observations fit 

with a growing body of evidence demonstrating that genetic variation across the functional 

severity spectrum corresponds to phenotype (Althari et al. 2020).

HNF1A-MODY is characterized by normal glucose tolerance early in childhood, with 

progressive hyperglycemia developing in adolescence or adulthood. Because of the 

progressive nature of HNF1A-MODY, these individuals are at risk for microvascular 

complications and do require glucose-lowering therapy (Lee et al. 1999, Hattersley et al. 
2018). Importantly, as with a diagnosis of HNF4A-MODY, patients with HNF1A-MODY 

can usually be treated with oral sulfonylureas rather than insulin (Pearson et al. 2003, 

Hattersley et al. 2018).
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Pancreatic duodenal homeobox factor 1 (PDX1-MODY, MODY4)

Pancreatic duodenal homeobox factor 1 (PDX1), previously referred to as insulin promoter 
factor 1 (IPF1), is yet another transcription factor involved in monogenic diabetes. Located 

on chromosome 13, PDX1 plays a central role in determining cell fate in embryonic 

pancreatic development, and also in the differentiation, maturation, and function of 

pancreatic β-cells (Stoffel et al. 1995, Inoue et al. 1996). In 1997, Stoffers and colleagues 

shed light on this critical transcription factor first by demonstrating that homozygous loss 

resulted in pancreatic agenesis and neonatal diabetes (NDM) (Stoffers et al. 1997b) and 

secondly, that heterozygous carriers of these mutations had defective insulin secretion, 

consistent with previously described MODY phenotypes (Stoffers et al. 1997a).

PDX1-MODY is characterized by often having a slightly later age of onset than other 

forms of MODY (Stoffers et al. 1997a). Some patients have only mildly impaired glucose 

tolerance while others have fulminant diabetes requiring daily insulin injections. Although 

early reports suggested that variants in PDX1 were associated with increased risk of diabetes 

due to impaired PDX1-mediated INS expression (Ahlgren et al. 1998), larger genome-wide 

studies have not substantiated these early findings (Edghill et al. 2011). Since there is 

variation in phenotype within PDX1-MODY, the treatment must be tailored to the individual 

patient; options range from dietary changes alone to sulfonylureas or insulin (Hattersley et 
al. 2018, Delvecchio et al. 2020).

Hepatocyte nuclear factor 1 beta (HNF1B-MODY, MODY5)

HNF1B is closely related to HNF1A and in fact actually dimerizes with it (Mendel et 
al. 1991). Unsurprisingly, it plays a similarly important function in pancreatic embryonic 

development but unlike HNF1A, it also has a vital role in nephron embryonic development 

(Horikawa et al. 1997). This leads to a wide spectrum of phenotypes which may include 

diabetes or kidney disease alone or a combination of the two. Kidney disease, typically 

renal cysts, is somewhat unique to HNF1B-MODY, and so should be expected in young 

patients presenting with both diabetes and kidney disease. HNF1B-MODY can also be 

complicated by urogenital tract malformations, hyperuricemia, and gout (Firdous et al. 
2018). Interestingly, patients with HNF1B-MODY display both defects in insulin secretion 

and insulin sensitivity (Pearson et al. 2004).

Neurogenic differentiation-1 (NEUROD1-MODY, MODY6)

Neurogenic differentiation-1 (NEUROD1, also known as BETA2) is a helix-loop-helix 

(HLH) transcription factor that functions as a regulatory switch for pancreatic and neuronal 

development. One important role of NEUROD1 is in directly regulating insulin gene (INS) 

expression by binding to a critical E-box motif on the INS promoter (Malecki et al. 1999). 

NEUROD1 also has important roles in activating other genes encoding components of the 

insulin secretion pathway within the β-cell, including ABCC8, GCK, and PAX6 (Kim et al. 
2002, Marsich et al. 2003, Moates et al. 2003).

In 2001, Kristinsson and colleagues confirmed that heterozygous NEUROD1 mutations 

are a rare cause of MODY (Kristinsson et al. 2001), while homozygous loss-of-function 

mutations lead to NDM and neurological impairment (Rubio-Cabezas et al. 2010). 
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NEUROD1-MODY can be diagnosed throughout the lifespan, as early as childhood and 

into the seventh decade most likely reflecting the incomplete penetrance of some variants 

and requirement for additional environmental or genetic risk factors. As with many of the 

other MODY subtypes, clinical presentation and course can be quite variable even within 

a single family (Delvecchio et al. 2020); approximately 20% of patients require insulin 

therapy, whilst others may respond well to dietary modifications alone or in combination 

with oral glucose-lowering agents.

Genetic causes of monogenic diabetes outside the β-cell

Mutations in CEL, encoding carboxy-ester lipase, cause young-onset diabetes coupled with 

exocrine pancreas dysfunction (CEL-MODY), which is characterized by low fecal elastase 

levels (Raeder et al. 2006). It is notable that the disease-causing mutations are caused 

by alterations in the variable number of tandem repeats (VNTR) region rather than in 

the protein-coding sequence (Raeder et al. 2006). This variety of monogenic diabetes is 

unusual as it does not appear to directly involve defects in the β-cell rather it involves the 

acinar cells of the pancreas and may involve defects in mitogen-activating protein kinase 

(MAPK) signaling (Ræder et al. 2014). This atypical monogenetic diabetes may prove to be 

a paradigm for other types of diabetes as multiple recent studies have suggested a role for 

the exocrine pancreas in mediating genetic association signals for both type 1 and type 2 

diabetes (Ng et al. 2019, Chiou et al. 2021).

Monogenic diabetes diagnosed in the first 6 months of life

Many of the early strides in identifying genetic diabetes, particularly in describing key 

MODY genes, relied on chromosomal linkage analysis. In 2001, the Human Genome Project 

published the first complete sequence for the human genome, and with that, sparked a new 

era in genetic discoveries (Lander et al. 2001). As our genetic capabilities continued to 

progress, so did our understanding of genetic regulation of insulin secretion and related 

disorders, specifically in regards to neonatal diabetes mellitus (NDM). NDM was first 

described in 1852 by J F Kitselle and is often complicated by poor in utero growth and 

neonatal failure to thrive (Shield 2000). NDM is a heterogeneous disease defined as diabetes 

with onset during the first 6 months of life with a monogenic cause identifiable in up to 

85% of cases (Letourneau & Greeley 2018). NDM exists on a spectrum, with mild forms 

being transient (TNDM) and resolving spontaneously by 18 months of life, permanent forms 

(PNDM) which do not resolve, and syndromic forms that may be accompanied by a number 

of other complications. It is worth noting that many of the genes described above in causing 

MODY can also be related to NDM, with a strong genotype-phenotype correlation. Of the 

>80% of NDM cases with a known genetic cause, more than 18 causative genes have been 

described in the literature but many of these are very rare and only seen in a small number 

of families (Delépine et al. 2000, Gloyn et al. 2004c, Babenko et al. 2006, Støy et al. 2007, 

Flanagan et al. 2014, De Franco et al. 2015, 2017, 2019, 2020a, Johnson et al. 2017, De 

Franco 2020). In this review, we highlight the most common varieties and those which have 

informed our current thinking on β-cell biology and the continuums of risk in diabetes.
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ATP-sensitive potassium channel (KATP) defects (KATP-NDM)

Mutations in pancreatic KATP channel genes are the most common known causes of 

NDM. These channels, composed of four SUR1 subunits (encoded by ABCC8) and four 

Kir6.2 subunits (encoded by KCNJ11), are critical for regulating membrane excitability 

and insulin secretion by the β-cell (Shimomura & Maejima 2017). At low plasma glucose 

concentration, KATP channels are normally open, the cell membrane is hyperpolarized, and 

voltage-dependent calcium channels (VDCCs) are closed, thus inhibiting insulin secretion. 

Glucose metabolism increases the intracellular (ATP)/(ADP) ratio, closing KATP channels, 

leading to membrane depolarization, calcium influx through VDCCs, and triggering insulin 

release.

The role of these two KATP channel subunits in NDM was first appreciated in 2004 when 

heterozygous activating mutations in the KCNJ11 gene were reported as a major cause 

of permanent neonatal diabetes (Gloyn et al. 2004b). A number of additional causative 

mutations were subsequently identified in KCNJ11 (Gloyn et al. 2004a, Sagen et al. 2004, 

Yorifuji et al. 2005). The physiologic role of these specific mutations was further confirmed 

by co-expressing mutated Kir6.2 and demonstrating a significant decrease in response to 

ATP by the KATP channel (Gloyn et al. 2004a,b, Tammaro et al. 2005). In 2005, it was 

further demonstrated that distinct mutations in KCNJ11 can also lead to transient, or 

remitting, diabetes, suggesting that certain abnormalities within this channel can lead to 

a fluctuating phenotype (Gloyn et al. 2005). Shortly after, it was also demonstrated that 

some patients with particular KCNJ11 mutations have diabetes complicated by additional 

neurological features, a syndrome which has been termed developmental delay, epilepsy 

and neonatal diabetes (DEND) (Gloyn et al. 2006). Around this same time, Babenko 

et al. identified seven novel activating mutations in ABCC8, which also lead to NDM 

(Babenko et al. 2006). In direct contrast to the activating mutations leading to NDM, 

inactivating mutations in these same genes result in reduced KATP channel activity, β-cell 

hyperexcitability, and excessive insulin secretion (Kane et al. 1996, Nichols et al. 1996, 

Thomas et al. 1996, Dunne et al. 1997, Huopio et al. 2000).

The discovery linking the KATP channel mutations to neonatal diabetes was critical for 

patient care – prior to this knowledge, individuals with neonatal diabetes required lifelong 

treatment with insulin for survival. However, since this pathology is directly due to a failure 

of the KATP channels to close in response to ATP generated by glucose metabolism, the 

majority of patients with this variety of diabetes are responsive to oral sulfonylureas, which 

act on SUR1 to close the channel in an ATP-independent manner restoring insulin secretion 

(Gloyn et al. 2004a, Sagen et al. 2004). This discovery has enabled many affected patients 

to discontinue insulin use with great success, and often achieving better glycemic control 

with sulfonylureas than with their prior insulin therapy. More recent studies have shown 

that the majority of these patients still had excellent glycemic control at 10 year follow-up, 

confirming sulfonylureas as a safe and effective approach over the long-term (Bowman et 
al. 2018). This responsiveness to oral medication, along with a strong genotype-phenotype 

correlation (Flanagan et al. 2006) which can guide medical decision-making and family 

counseling, makes an early molecular diagnosis for NDM imperative.
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INS-PNDM

It was really only a matter of time before mutations in the insulin gene (INS) were 

discovered as a cause of diabetes. The search had been on for many years but the first 

descriptions were in patients with hyperproinsulinemia and not diabetes (Gruppuso et al. 
1984). The reason for this, as often is the case, is the site and consequence of the mutation. 

In 2007 a team led by Graeme Bell, who had cloned the gene back in the early 1980s 

(Bell et al. 1980), combined linkage analysis with a candidate gene approach to identify 

first diabetes-causing INS mutation, and subsequently identified nine additional mutations 

in a total of 16 probands with NDM (Støy et al. 2007, Hodish et al. 2010). In this cohort, 

subjects had a median age of diabetes presentation at 9 weeks and were often complicated 

by ketoacidosis. Due to the mutation being within the insulin gene itself, predicted to 

prevent normal folding and secretion, these individuals are not eligible for treatment with 

sulfonylureas, which acts on the secretory pathway rather than the insulin protein itself. 

It has been observed that mice with similarly misfolded insulin proteins may actually 

have increased β-cell death due to extreme endoplasmic reticulum (ER) stress (Støy et al. 
2007). Large-scale screening of patients with PNDM identified INS mutations as one of 

the most common causes of this disease, secondly only to KATP channel mutations (Edghill 

et al. 2008). A recent study by Balboa et al. demonstrated β-like cells generated from in 
vitro differentiated induced pluripotent stem cells (iPSCs) from individuals carrying INS 
mutations have diminished β-cell proliferation, leading to a decreased β-cell mass, likely 

playing a role in diabetes pathogenesis (Balboa et al. 2018). Recessively inherited INS 
mutations have also been shown to cause PNDM due to a contrasting pathogenic mechanism 

of decreased insulin biosynthesis through a variety of regulatory mechanisms (Garin et al. 
2010).

GCK-PNDM

Glucokinase, discussed in detail above as a MODY-causing gene when it presents as a 

heterozygous mutation, can also cause permanent NDM when presenting with homozygous 

or compound heterozygous mutations (Njølstad et al. 2001, 2003). These individuals have 

similar traits to those with KATP-related NDM, including intrauterine growth restriction, 

low birth weights, and insulin requirements shortly after birth (Njølstad et al. 2003). 

Not all homozygous or compound heterozygous inactivating GCK mutations cause NDM 

though. A relatively recent study demonstrated the importance of protein stability as a major 

contributor to the severity of inactivating GCK mutations. This became apparent through the 

study of a homozygous GCK mutation which presented as diabetes in young-adolescence 

rather than at birth (Raimondo et al. 2014).

PDX1-PNDM

PDX1 is another MODY-causing gene that is also a rare, but important, cause of permanent 

neonatal diabetes. PDX1 is critical for pancreatic development (Jonsson et al. 1994), 

and some individuals with PDX1 mutations have little or no development of functional 

pancreatic islets (Stoffers et al. 1997b). Although most cases are confirmed to have 

pancreatic hypoplasia or agenesis, there are some reports in patients with a normally formed 

pancreas that may still be affected by permanent NDM due to a PDX1 mutation (De Franco 
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et al. 2013). By regulating the expression of a number of important islet transcripts (insulin, 

glucokinase, somatostatin), PDX1 serves as a master regulator of gene expression within 

the islet (Hui & Perfetti 2002). Additional genes important for pancreatic development, 

including NKX2–2, GATA4, GATA6, GLIS3, RFX6, and PTF1A, have also been identified 

as rare causes of NDM (Wang et al. 2004, Senée et al. 2006, Doyle & Sussel 2007, Chen 

et al. 2008, Fukuda et al. 2008, Smith et al. 2010, Allen et al. 2011, Carrasco et al. 2012, 

Stanescu et al. 2015, Xuan & Sussel 2016).

GLIS3-PNDM

Gli-similar 3 (GLIS3) is a Krüppel-like zinc finger transcription factor that is important 

during cell specification and patterning during pancreatic development. GLIS3 interacts 

with other important β-cell transcription factors including PDX1 and NEUROD1 and binds 

directly to the insulin promoter to positively regulate gene expression. In mice, deletion 

of both copies of Glis3 leads to neonatal diabetes (Kang et al. 2009, Yang et al. 2009). 

GLIS3 is also important in humans, as homozygous mutations in GLIS3 are responsible 

for a syndrome characterized by neonatal diabetes, congenital hypothyroidism, polycystic 

kidneys, and facial anomalies (Senée et al. 2006). At least one patient with compound 

heterozygous GLIS3 mutations has been described; this patient has isolated NDM but none 

of the other features (Dimitri et al. 2011). Genome-wide association studies (GWAS) have 

also demonstrated variants at the GLIS3 locus which are associated with both type 1 and 

type 2 diabetes (Aylward et al. 2018).

Syndromic monogenic diabetes

Neonatal diabetes has also been identified as a component of a number of multi-system 

syndromes, many of which have identified genetic causes. The majority of these syndromes 

are rare, and because of variable presentation, are at risk for late or missed diagnosis. 

Despite the heterogeneous nature of these conditions, the genetic dissection of these 

conditions and molecular understanding of the underlying pathophysiology make it apparent 

that there are some shared clinical features and biological mechanisms. For example, 

a large number of patients with NDM also have neurological symptoms (e.g. epilepsy, 

developmental delay) (De Franco et al. 2015, 2020b). Neurons and β-cells have similar 

electrophysiology and signaling mechanisms, making this frequent association between 

defects in glucose homeostasis and neurology unsurprising (De Franco et al. 2020a,b). A 

majority of the genes implicated in these syndromes are transcription factors with key roles 

in the development of both cell types (ex. PTF1A, NEUROD1, MNX1, and NKX2–2).

Other causative gene mutations are related to ER stress, either due to mutations in important 

checkpoints in controlling the ER stress response, or due to mutations that directly result in 

protein-misfolding, and subsequently, lead to ER stress (ex. EIF2AK3, SLC19A2, IER3IP1, 

WFS1, TRMT10A, PPP1R15B, EIF2S3) (De Franco et al. 2020b). Clinical presentation 

with diabetes can be diagnosed beyond the neonatal period well into adolescence for 

some of these etiologies. One example of NDM caused by ER stress is Wolcott–Rallinson 

syndrome (WRS); the most common cause of syndromic NDM in areas with high 

consanguinity (Rubio-Cabezas et al. 2009). It is an autosomal recessive condition and is 

Ikle and Gloyn Page 9

J Endocrinol. Author manuscript; available in PMC 2022 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



often accompanied by skeletal dysplasia, poor growth, and liver dysfunction, in addition 

to NDM. Homozygous or compound heterozygous mutations in eukaryotic translation 

initiation factor 2-α kinase 3 (EIF2AK3), a critical component of the ER stress response, are 

responsible for WRS (Delépine et al. 2000).

Blurring the boundaries of NDM genes in MODY

As with PDX1, where mutations were first described in neonatal diabetes (NDM), additional 

genes which are major causes of NDM have been reported as the cause of diabetes 

outside of infancy, consistent with MODY. These include those encoding the ATP-sensitive 

potassium channel subunits (ABCC8 and KCNJ11). In 2012, Bonnefond and colleagues 

used whole-exome sequencing (WES) to study some of the 30% of French-MODY patients 

without a genetic diagnosis. This analysis identified a KCNJ11 mutation, specifically, 

p.E227K, as the cause of MODY in a single-family (Bonnefond et al. 2012). In that 

same year, Bowman and colleagues found four novel ABCC8 mutations within a cohort 

of sulfonylurea responsive MODY patients (Bowman et al. 2012). The term MIDY (mutant 

INS-gene induced diabetes of youth) has also been used to describe patients with INS 
mutations presenting outside the neonatal period (Liu et al. 2010, 2012).

Expanding the spectrum of the role of monogenic diabetes genes in type 2 

diabetes (T2D) risk

The early type 2 diabetes (T2D) genetics literature is plagued by both poorly designed and 

executed genetic association studies (Siontis et al. 2010). With a few exceptions, most earlier 

findings failed to replicate when expanded to large, well-powered studies. Of the early 

studies which have stood the test of time, it is notable that two of three such studies include 

genes (PPARG, KCNJ11, and TCF7L2) involved in monogenic forms of diabetes (Altshuler 

et al. 2000, Gloyn et al. 2003, Grant et al. 2006). In the late 2000s, people began to explore 

the utility of genome-wide association studies (GWAS) for understanding complex diseases 

and traits. GWAS compare multiple individual genomes to identify associations between 

specific genetic changes and a given disease or trait. International efforts for both type 1 

and type 2 diabetes have been terrifically successful in uncovering hundreds of association 

signals. As has been the case for most complex traits, the vast majority of GWAS signals 

for both T1D and T2D exert their impact through non-coding variants with a presumed 

regulatory impact (Mahajan et al. 2018). A consistent finding has also been the identification 

of signals in or close to genes with known roles in monogenic diabetes, such as HNF1A and 

KCNJ11. A number of these also have coding variants across the frequency spectrum, which 

are associated with altered risk for T2D: sometimes they are specific to a population (e.g. 

p.E508K in HNF1A) (SIGMA Type 2 Diabetes Consortium et al. 2014) whilst others are 

common in the population (e.g. p.E23K in KCNJ11) (Gloyn et al. 2003). The field has also 

uncovered common regulatory variants near monogenic diabetes genes which likely have an 

impact in a tissue and developmental time-specific manner (e.g. HNF4A) (Kathiresan et al. 
2009). These findings bring into focus a continuum between normal function and complete 

loss of function in these genes – an allelic spectrum – where the relationship between 

the specific variant and subsequent disease presentation is not necessarily straightforward 
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(Althari et al. 2020). The genetic characterization of large Biobanks (e.g. UKBioBank, 

BioMe) will facilitate the studies required to fully understand both the relationship between 

genetic variation in monogenic diabetes genes and clinical phenotype as well as the impact 

of common genetic variation (e.g. T2D genetic risk scores) on altering the presentation of 

variants in these genes. Genetics has certainly delivered precision medicine for monogenic 

forms of diabetes; the challenge for the next decade is extending this to all types of diabetes.

Outlook

Moving forward, our expanding knowledge surrounding the genetic changes underlying 

both monogenic and polygenic forms of diabetes will continue to advance our potential 

for personalized medicine through both precision diagnostics and therapeutics. These 

genetic breakthroughs, in combination with clinical biomarkers, will allow us to refine 

our classification and diagnosis of diabetes subtypes and provide evidence-based care to 

determine optimal management and decrease morbidity and mortality associated with these 

conditions. The importance of molecular diagnosis of MODY and NDM is quite apparent 

on its own; however, the groundwork laid in understanding them will continue to provide 

insight and guidance for more complex forms of diabetes as well.

Closing remarks

The careful dissection of the genetic etiology of monogenic forms of diabetes has created a 

framework of potential mechanisms to understand how common genetic variants could exert 

their effect and lead to increased risk for complex forms of diabetes such as type 1 and type 

2 diabetes. There are now documented examples of single-gene defects causing alterations 

in glucose sensing, insulin secretion, pancreas development and β-cell mass, and for each 

of these examples of how these same mechanisms influence type 1 and type 2 diabetes. 

As we mark the centenary of the discovery of insulin, it is remarkable to see the speed at 

which its discovery was translated into changes in clinical practice. With the exception of 

the remarkable efforts with the COVID19 vaccinations, this is not often witnessed. Progress 

in understanding the genetic basis of pancreatic islet-cell dysfunction in diabetes has also 

had an incredible century but we have some way to go before we have the same impact as 

Banting, Best, Collip, and Mcleod.
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Figure 1. 
Timeline indicating key genetic discoveries in the context of our understanding of the 

hormone insulin and its use therapeutically.
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Figure 2. 
Schematic representation of the pancreatic β-cell illustrating the three main mechanisms 

by which monogenic diabetes arises. Gene defects of selected representative genes at each 

stage indicated in red italics. Defect in pancreas/β-cell development leading to pancreatic 

agenesis or hypoplasia (PDX1, HNF1B, GATA4, GATA6, PTF1A), decreased β-cell mass 

or proliferations (INS, PTF1A) or β-cell dysfunction, including glucose sensing (GCK), 

ATP responsiveness (ABCC8, KCNJ11), ER stress (INS, EIF2AK3), and transcriptional 

regulation (HNF1A, HNF1B, HNF4A, NEUROD1, PDX1). Created with BioRender.com.
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