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Summary

Background—The US Environmental Protection Agency (EPA) currently sets maximum
contaminant levels (MCLs) for ten metals or metalloids in public drinking water systems. Our
objective was to estimate metal concentrations in community water systems (CWSs) across the
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USA, to establish if sociodemographic or regional inequalities in the metal concentrations exist,
and to identify patterns of concentrations for these metals as a mixture.

Methods—We evaluated routine compliance monitoring records for antimony, arsenic, barium,
beryllium, cadmium, chromium, mercury, selenium, thallium, and uranium, collected from 2006-
11 (2000-11 for uranium; timeframe based on compliance monitoring requirements) by the

US EPA in support of their second and third Six-Year Reviews for CWSs. Arsenic, barium,
chromium, selenium, and uranium (detectable in >10% records) were included in the main
analyses (subgroup and metal mixture analyses; arsenic data reported previously). We compared
the mean, 75th percentile, and 95th percentile contaminant concentrations and the percentage

of CWSs with concentrations exceeding the MCL across subgroups (region, sociodemographic
county-cluster, size of population served, source water type, and CWSs exclusively serving
correctional facilities). We evaluated patterns in CWS metal concentration estimate profiles via
hierarchical cluster analysis. We created an online interactive map and dashboard of estimated
CWS metal concentrations for use in future analyses.

Findings—Average metal concentrations were available for a total of 37 915 CWSs across the
USA. The total number of monitoring records available was approximately 297 000 for arsenic,
165 000 for barium, 167 000 for chromium, 165 000 for selenium, and 128 000 for uranium.
The percentage of analysed CWSs with average concentrations exceeding the MCL was 2-6%
for arsenic (MCL=10 ug/L; nationwide mean 1-77 ug/L; n=36 798 CWSs), 2:1% for uranium
(MCL=30 pg/L; nationwide mean 4-37 pg/L; n=14 503 CWSs), and less than 0-1% for the other
metals. The number of records with detections was highest for uranium (63-1%). 75th and 95th
percentile concentrations for uranium, chromium, barium, and selenium were highest for CWSs
serving Semi-Urban, Hispanic communities, CWSs reliant on groundwater, and CWSs in the
Central Midwest. Hierarchical cluster analysis revealed two distinct clusters: an arsenic—uranium—
selenium cluster and a barium-chromium cluster.

Interpretations—Uranium is an under-recognised contaminant in CWSs. Metal concentrations
(including uranium) are elevated in CWSs serving Semi-Urban, Hispanic communities
independent of location or region, highlighting environmental justice concerns.

Funding—US National Institutes of Health Office of the Director, US National Institutes for
Environmental Health Sciences, and US National Institute of Dental and Craniofacial Research.

Introduction

Chronic exposure to metals, including uranium, is associated with several adverse health
outcomes including liver damage, nephrotoxicity, and cardiovascular disease.1=> In the USA,
the Environmental Protection Agency (EPA) sets maximum contaminant levels (MCLS)

for six classes of contaminants, including ten metals or metalloids, in public drinking

water systems in accordance with the EPA Safe Drinking Water Act (SDWA). However,
nationwide estimates of metal concentrations in public drinking water systems are only
available for arsenic.5:7 Most US residents rely on public drinking water systems, with most
residents (approximately 90%) relying specifically on community water systems (CWSs)
that serve the same population year round.8 Violations of EPA SDWA regulations (eg, MCL
exceedances or inadequate public notification of violations) are relatively common. One
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study reported that more than half of all CWSs reported an SDWA violation during a 1-year
period (fiscal year 2011).9:10

Racial and socioeconomic disparities in drinking water access and quality are related

to structural inequalities in the built environment, land use and planning policies, and
differences in the geological environment (eg, racial or ethnic subgroups are not uniformly
distributed across the USA, therefore some geological conditions disproportionately affect
particular populations).11:12 Inequalities in concentrations of regulated contaminants in
public water systems across racial or ethnic and socioeconomic subgroups of the US
population have been described in detail for arsenic and nitrates.8-13 Hispanic communities,
tribal communities, and communities in the southwestern USA are more likely to be served
by CWSs that exceed arsenic and nitrate MCLs.5:13 CWSs reliant on groundwater that serve
small communities are also more likely to exceed the arsenic MCL.5 Systematic nationwide
studies of potential inequalities in public drinking water contaminant concentrations across
population subgroups have not been conducted for other regulated metal contaminants.
Examining potential spatial and demo graphic disparities in public drinking water
contaminant concentrations can inform public health interventions and regulatory actions to
reduce exposure inequalities, and can possibly identify relevant exposure sources that might
contribute to inequalities in overall metal exposures and related adverse health outcomes.

The objectives of this study were to estimate CWS metal concentrations across the USA;
identify sociodemographic subgroups served by CWSs that either reported high metal
concentration estimates or were more likely to report averages exceeding an MCL; and
characterise metal mixture profiles in CWSs nationwide. We examined antimony, arsenic,
barium, beryllium, cadmium, chromium, mercury, selenium, thallium, and uranium. Because
the concentrations of antimony, beryllium, cadmium, mercury, and thallium were low and
rarely exceeded MCLs (less than 10% of records were detectable for these metals), we
focused our analysis on arsenic, barium, chromium, selenium, and uranium. We estimated
metal concentrations at the CWS level using the compliance monitoring data supporting
EPA’s second (2000-05) and third (2006-11) Six-Year Reviews (SYR2 and SYR3) of
drinking water regulations, which contain routine compliance monitoring records for public
water systems. We focused on CWSs that serve most of the US population year round.
Because previously published analyses of CWS arsenic concentrations identified inequalities
across US region, sociodemographic county clusters, population-served size, source water
type, and CWSs which exclusively serve correctional facilities,®’ we examined these same
subgroups in our analysis.

Methods

Data source

We used CWS routine compliance monitoring records published in the US EPA’s database
supporting the SYR2 and SYR3 to estimate CWS metal concentrations, following a
previously published protocol.® Details regarding the SYR databases and the development
of CWS-level metal concentrations are available in appendix 2 (pp 2—4). Monitoring data
from the SYR3 period (2006-11) includes approximately 13 million analytical records
from 139 000 public water systems serving 290 million people annually. Records represent
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95% of all public water systems and 92% of the total population served by public water
systems nationally.14-16 We used the SYR3 records to develop CWS estimates for all
metals, and additionally included records from SYR2 (2000-05) to develop estimates for
uranium (compliance monitoring requirements for uranium are different than those for other
metals because the MCL for uranium [30 pg/L] was established in 2000 under the EPA
Radionuclides Final Rule; appendix 2 p 2).14.17.18

CWS-level metal concentration estimates

Metal concentrations lower than the record-specific limit of detection (LOD) were replaced
by the LOD divided by the square root of two (this method is used by the US Centers

for Disease Control and Prevention and other federal agencies when reporting geometric or
arithmetic means of environmental biomarkers and concentrations; appendix 2 p 3).19 The
percentage of records with values higher than the LOD was 2:2% for antimony, 45-5% for
arsenic, 60-8% for barium, 1-3% for beryllium, 1-6% for cadmium, 18-9% for chromium,
1.5% for mercury, 12-9% for selenium, 1-6% for thallium, and 63-1% for uranium. We
restricted our main analyses (subgroup analyses and metal mixture analyses) to five metals
(arsenic, barium, chromium, selenium, and uranium) with more than 10% of records above
the LOD.

For each metal, many CWSs reported multiple monitoring records per year. We first
calculated mean CWS metal concentrations within each calendar year. When the mean
concentration of metals in treated water samples was lower than in untreated samples,

we calculated the annual mean with treated samples only (few CWSs reported records

for both treated and untreated samples within the same year). Because uranium records
from SYR2 did not distinguish between treated and untreated samples, uranium estimates
only accounted for treatment in records from 2006-11. We then averaged CWS metal
concentrations to 2006-11 (SYR3 period). For uranium, we averaged concentrations to
2000-11, which covers grandfathered or initial compliance samples (2000-07) and samples
collected during the first compliance monitoring cycle (2008-16). We compared findings
from several sensitivity analyses that aggregated metal concentrations to different periods,
all with similar results (appendix 2 pp 4, 8).

We then merged CWS metal concentrations with system inventory information extracted
from the EPA Safe Drinking Water Information System (SDWIS), including counties served,
number of people served, and source water type, as previously described in detail.6

Nationwide analysis

All data management and analysis was conducted in R (version 3.5.3). We calculated

the distribution, including percentiles and arithmetic means, of 6-year (2006-11) average
water concentrations for each metal (2000-11 for uranium) at the CWS level for the entire
USA. Our analysis focuses on evaluating 75th and 95th percentile values because, firstly,
median concentration values were below the LOD for these metals; secondly, arithmetic
mean concentrations are influenced by the high number of records at or below the LOD,
whereas higher percentile values are not; and thirdly, measures of central tendency do

not reflect percentiles at the highest end of the distribution that affect the most exposed
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populations and are particularly relevant for population-level environmental exposures.%:20
We also calculated the number and percentage of CWSs with concentrations exceeding the
WHO Guidelines for Drinking-water Quality limit or the EPA MCL for each metal 2

Stratification and analysis by subgroups

To identify subgroups of the US population whose estimated CWS metal concentrations
were relatively high, we also calculated the 75th percentile, 95th percentile, and mean
concentration and 95% CI for each metal in analyses stratified by select population
subgroups: source water type (groundwater vssurface water as reported in SDWIS; only
1% of systems reported to use both, which were categorised as groundwater); size of

the population served (standard EPA categories <500 people, 501-3300 people, 3301-10
000 people, 10 001-100 000 people, and >100 000 people); CWSs exclusively serving
correctional facilities (identified via a keyword search used previously’); region (Pacific
Northwest, Southwest, Central Midwest, Eastern Midwest, Southeast, Mid-Atlantic, New
England, and Alaska and Hawaii; groupings were based on a previous analysis for
arsenic22); and sociodemographic county-cluster. Sociodemographic county-clusters (n=8
clusters) were derived by Wallace and colleagues?? to enable the direct comparison of
county-level health outcomes while accounting for the sociodemographic makeup of a
county’s population (eg, racial and ethnic compaosition, urbanicity, insurance coverage,
age), and have been used in a previous analysis of CWS arsenic inequalities.5 We
stratified CWS metal concentration estimates by these sociodemographic county-clusters
to identify characteristics of broad population subgroups exposed to elevated CWS

metal concentrations. The sociodemographic county-clusters are: Semi-Urban, High
Socioeconomic Status (SES); Semi-Urban, Middle-to-Low SES; Semi-Urban, Hispanic;
Mostly Rural, Middle SES; Rural, Middle-to-Low SES; Young, Urban, Middle-to-High
SES; Rural, American Indian; and Rural, High SES. We also plotted the distribution of mean
CWS uranium concentrations across regions to evaluate if distribution shapes were similar.

We assessed whether CWS metal distributions were significantly different across subgroups
via non-parametric Kruskal-Wallis tests (all CWS metal distributions were log-normal).
Because our initial analysis identified the highest uranium concentrations in CWSs serving
Semi-Urban, Hispanic counties and CWSs located in the Southwest, we conducted several
post-hoc analyses to identify if increased uranium concentrations for CWSs serving Semi-
Urban, Hispanic counties could be explained by geography and geology. We compared the
75th, 90th, and 95th percentiles and arithmetic mean uranium concentrations for CWSs
serving Semi-Urban, Hispanic counties versus CWSs serving all other types of counties
separately within the states of California, Texas, and Oklahoma, as these were the states
with the highest CWS uranium concentrations of all states located in the Southwest. We also
evaluated the change in 90th percentile and arithmetic mean CWS uranium concentration
(dependent variable) per 1% higher proportion of the county population classified as
Hispanic/Latino (independent variable) using 2010 US Census Bureau statistics,24:25
adjusting for state (categorical), the size of the population served (continuous), and the
source water type (surface vsgroundwater) via quantile regression using the quantreg
package (version 5.85) in R. Quantile regression quantifies associations that occur in the
tails of the distribution, and is commonly used in analyses of environmental exposures,
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which often have skewed distributions.29 This analysis was conducted for all US counties,
for counties classified as Semi-Urban, Hispanic, and for counties located in the Southwest.

County-level maps

To visually identify spatial patterns in metal concentration estimates across the USA, we
also estimated county-level, population-weighted CWS metal concentrations, as previously
described in detail, with county-level concentrations weighted by the number of people
served by each CWS within a county (appendix 2 pp 5-6).6 Because only the county

served was reliably reported in SDWIS for each CWS, we could not aggregate to smaller
geographic scales (eg, census tract). We mapped county-level estimates of 6-year (2006-11)
average water concentrations for each metal (2000-11 for uranium) across the conterminous
USA using the maps package (version 3.3.0) in R.

We created an interactive map and dashboard of estimated metal concentrations at the CWS
and county levels for use in future analyses.

Hierarchical clustering

We conducted analyses to evaluate the composition of metals in CWSs as a complex
mixture. We first calculated Spearman’s correlation coefficients between all metal pairs
after log transformation. Subsequent analysis was restricted to CWSs with concentration
estimates available for all five main metals of interest. To identify distinct homogenous
subgroups of metals, we conducted hierarchical cluster analysis to combine the metals into
agglomerative clusters.28 We used Ward’s method for Euclidean distances and normalised
each metal to unit variance and zero mean before constructing dendrograms to assess the
cohesiveness of the cluster using the R package ggdendro (version 0.1.22). Because CWSs
were most likely to be missing uranium concentrations (SYR3 only covers years 2006-11
and the First Radionuclides Rule Compliance Cycle covers 2008-16), we conducted a
sensitivity analysis repeating our hierarchical cluster analysis for CWSs with concentration
estimates for the other four metals (n=34 284 CWSs).

Role of the funding source

Results

The funders of the study had no role in study design, data collection, data analysis, data
interpretation, or writing of the report.

Average metal concentrations were available for 37 915 CWSs across the USA. For each of
the ten metals, the total number of records ranged from approximately 128 000 (uranium)
to 297 000 (arsenic; table 1). Of all the metals examined, the number of records with
detections was highest for uranium (63-1%). Arsenic had the largest proportion of average
CWS concentrations above the US EPA MCL (2-6%), followed by uranium (2-:1%).5.7 Al
other metals examined had less than 0-1% of average CWS concentrations above the MCL.
We describe the five metals included in our main analyses (detectable in >10% records)
herein. Nation wide, the 75th (and 95th) percentile of metal concentrations from 2006-11
was 1.66 pg/L (7-40 pg/L) for arsenic, 79 pg/L (253 pg/L) for barium, 0-62 pg/L (5-30 ug/L)
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for chromium, less than 0-60 pg/L (3-81 ug/L) for selenium, and 3-1 pg/L (18:5 pg/L) for
uranium (2000-11). Subgroup-specific results and county-level maps for arsenic have been
described in previous publications, but are included in tables and figures for comparison.5:’

Metal concentration estimates were stratified by source water type, CWS size, and
correctional facilities. CWSs reliant on groundwater had higher 75th and 95th percentile
concentrations than CWSs reliant on surface water for barium (75th percentile, 87 ug/L
vs 40 ug/L; 95th percentile, 265 pg/L vs 107 pg/L), chromium (0-70 pg/L vs0-27 ug/L;
5-59 pg/L vs2-36 pg/L), selenium (<0-60 pg/L vs<0-60 pg/L; 4-10 pg/L vs2-10 pg/L),
and uranium (3-4 pg/L vs 1.5 pg/L; 19-5 pg/L vs7-1 pg/L), although differences were
not statistically significant for selenium (table 2). Compared with CWSs serving larger
populations, those serving smaller populations generally had higher concentrations of
arsenic, barium, and uranium; whereas, these patterns were more mixed for chromium
and selenium. CWSs serving up to 500 people had the highest 75th and 95th percentile
concentrations of arsenic (75th percentile 1-90 pg/L, 95th percentile 8-:08 pg/L) and uranium
(3-5 pg/L, 20-7 pg/L), and CWSs serving 501-3300 people had the highest 75th and
95th percentile concentrations of barium (94 ug/L, 275 ug/L). Results were similar when
comparing the arithmetic mean (appendix 2 p 10).

Nationwide, distributions of metal concentrations for CWSs exclusively serving correctional
facilities were similar to those for all CWSs for arsenic, barium, selenium, and uranium
(p>0-05), but were significantly different for chromium (table 2). CWSs serving correctional
facilities had higher 75th and 95th percentile concentrations of chromium (1-33 pg/L,

7-04 pg/L) than those for all CWSs (0-62 ug/L, 5-30 pg/L; p=0-042). When comparing

the arithmetic mean, CWS concentration estimates for correctional facility CWSs were
significantly different for barium and uranium, but not chromium (appendix 2 p 10).

Metal concentration estimates were stratified by region and sociodemographic county
cluster. CWS concentration estimates (75th and 95th percentiles) were highest in the Central
Midwest region for all metals except arsenic and barium (table 2). 75th and 95th percentile
concentrations for barium in the Central Midwest were 149 pg/L and 304 pg/L, with the
next highest (75th percentile) concentrations in the Southwest (115 ug/L, 270 ug/L) and

the Eastern Midwest (111 pg/L, 309 pg/L). 75th and 95th percentile concentrations for
chromium in the Central Midwest were 3-10 pg/L and 8:69 pug/L, with the next highest
concentrations in the Southwest (1-49 ug/L, 7-68 ug/L) and Alaska and Hawaii (1-10 ug/L,
3-63 pg/L). 75th and 95th percentile concentrations for selenium in the Central Midwest
were 2:71 ug/L and 12-50 ug/L, with the next highest concentrations in the Southwest (1-03
ug/L, 6:50 pg/L) and the Eastern Midwest (1-01 pg/L, 3-54 ug/L). 75th and 95th percentile
concentrations for uranium in the Central Midwest were 11-4 pg/L and 32-2 pg/L, with the
next highest concentrations in the Southwest (9-6 ug/L, 28-3 pg/L) and New England (4-0
ug/L, 25-1 pg/L). When comparing the arithmetic mean across regions, some differences

in regional ordering were observed for each metal (eg, mean uranium concentrations

were highest in the Southwest followed by the Central Midwest; appendix 2 p 10). The
distribution of average uranium concentrations was right skewed for all regions except the
Central Midwest (bimodal) and the Southwest (relatively uniform; appendix 2 pp 13-14). At
the county-level, all four metals showed a general pattern of higher concentrations in central
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and western counties versus eastern counties (figure 1). Because the SYR3 only covers years
2006-11 and the First Radionuclides Rule Compliance Cycle covers 2008-16, uranium

has the highest proportion of missing data, which is reflected in the relatively poor spatial
coverage for the Eastern Midwest, Southeast, Mid-Atlantic, and New England regions.

CWSs serving Semi-Urban, Hispanic counties had the highest 75th and 95th percentile
concentrations for all metals (table 2). 75th and 95th percentile barium concentrations

for CWSs serving Semi-Urban, Hispanic counties were 110 ug/L and 279 pg/L, with the
next highest concentrations in CWSs serving Young, Urban, Middle-to-High SES counties
(110 pg/L, 227 ug/L) and Rural, High SES counties (100 pg/L, 266 pg/L). 75th and 95th
percentile chromium concentrations for CWSs serving Semi-Urban, Hispanic counties were
1-49 ug/L and 8-00 ug/L, with the next highest concentrations in CWSs serving Rural, High
SES counties (1-38 pg/L, 6-35 pg/L) and Rural, American Indian counties (0-98 pg/L, 5-35
pg/L). 75th and 95th percentile selenium concentrations for CWSs serving Semi-Urban,
Hispanic counties were 1.27 pg/L and 8-49 ug/L, with the next highest concentrations

in CWSs serving Rural, High SES counties (0-82 pg/L, 7-21 ug/L) and Rural, American
Indian counties (0-74 pg/L, 4-85 pg/L). 75th and 95th percentile uranium concentrations
for CWSs serving Semi-Urban, Hispanic counties were 10-9 pg/L and 317 pg/L, with the
next highest concentrations in CWSs serving Young, Urban, Middle-to-High SES counties
(6-3 pg/L, 17-7 pg/L) and Rural, High SES counties (3-7 pg/L, 228 pg/L). Comparing the
arithmetic mean across these sociodemographic clusters produced different rankings across
the clusters; however, CWSs serving Semi-Urban, Hispanic counties also had the highest
arithmetic mean concentration for all metals (appendix 2 pp 10-11).

We did a post-hoc analysis of uranium concentrations in CWSs serving Semi-Urban,
Hispanic counties versus CWSs serving all other counties in three Southwest states
(California, Oklahoma, and Texas). The 75th and 95th percentile uranium concentrations
were higher among the CWSs serving Semi-Urban, Hispanic counties in California (11-7
ug/L, 35-1 pg/L vsall other CWSs, 6-4 pg/L, 18-3 ug/L), Oklahoma (11-4 pg/L, 49-0 ug/L
vsall other CWSs, 1-9 ug/L, 11-3 pg/L), and Texas (20-6 pg/L 44-6 pg/L vsall other
CWSs, 10-5 pg/L, 24.5 pg/L; table 3). We also conducted a post-hoc quantile regression
analysis. Per 1% higher proportion of the county population classified as Hispanic/Latino,
90th percentile uranium concentration increased by 15-1 pg/L among all CWSs (p<0-0001),
by 25.9 pg/L among CWSs in the Southwest (p<0-0001), and by 11-2 pug/L among

CWSs serving Semi-Urban, Hispanic counties (p=0-22; table 4). Results were similar when
assessing arithmetic means (appendix 2 p 12).

Regarding metal mixtures in CWSs nationwide, we observed moderately positive
Spearman’s correlations between arsenic and selenium (r=0-33), arsenic and uranium
(r=0-25), and chromium and selenium (r=0-33; appendix 2 p 15). Hierarchical cluster
analysis of CWSs with concentration estimates available for the five metals of interest (n=12
756 CWSs) revealed two distinct clusters: arsenic—selenium—uranium and barium—chromium
(figure 2). Sensitivity analyses repeating the hierarchical cluster analysis without uranium
(n=34 284 CWSs) yielded a similar arsenic—selenium cluster and a barium—chromium
cluster (not shown).

Lancet Planet Health. Author manuscript; available in PMC 2022 April 25.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ravalli et al.

Page 9

Discussion

The current study indicates that although most regulated metals are rarely measured in

US CWSs above detection limits and MCLs (especially antimony, beryllium, cadmium,
mercury, and thallium), substantial geographic and sociodemographic variability exists for
CWS uranium concentrations. We estimated that 63-1% of CWS compliance monitoring
records reported detectable concentrations of uranium, and that 2:1% of CWSs with
available uranium data had 2000-11 average concentrations above the MCL (smaller than
the percentage of wells—approximately 4%—exceeding the uranium MCL in the US
National Water Information System).2” Despite relatively frequent detections and relatively
high concentrations compared with other metals in our study (highest arithmetic mean,
4-37 ug/L), uranium has been underappreciated in the literature as a public drinking water
contaminant of concern.

Consistent with previous findings for arsenic,8” CWSs reliant on groundwater had higher
mean and 95th percentile concentrations for barium, chromium, selenium, and uranium
compared with CWSs reliant on surface water. Mean and 95th percentile concentrations
were also higher for CWSs serving smaller populations compared with those serving the
largest populations for arsenic, barium, and uranium. CWSs serving smaller populations
are likely to have few financial and technical resources available to implement aggressive
treatment techniques, or source water switching or mixing for many types of regulated
contaminants.%:10:28 Additionally, some treatment techniques and source water changes
implemented in accordance with MCL changes (eg, arsenic in 2006 and uranium in 2008)
might have reduced or influenced the concentration of other metals in CWSs. Future
analyses could evaluate whether CWSs that greatly reduced arsenic concentrations in
accordance with the 2006 MCL change subsequently report reduced concentrations of other
metals.

The current analysis also revealed significant spatial variability and inequalities in

CWS uranium concentrations, which probably reflects local geological context. Although
most regulated metals are relatively geologically rare and are associated with specific
environments not widely disseminated throughout the USA, uranium, selenium, and arsenic
are all relatively common at measurable concentrations in widely disseminated conditions.
The release of uranium, selenium, and arsenic in groundwater is dependent on the redox
environment, which controls both spatial distribution and temporal evolution of groundwater
metal concentrations. Both uranium and selenium are highly soluble as oxidised species

in groundwater (U[VI] and Se[VI]/Se[IV]), while the reduced species (U[IV] and Se[0]/Se[-
I1]] are insoluble at near-neutral pH. Thus, uranium and co-occurring selenium with similar
redox potential are mobilised by oxidative dissolution encountered in oxic groundwater. In
contrast, reducing conditions immobilise uranium and selenium and often lead to release

of arsenic by reductive dissolution of iron (Fe[l11]) oxyhydroxides.2%30 This contrast in
mobilisation conditions suggests that arsenic contamination is most common under reducing
conditions, while uranium and selenium are most soluble under oxidising conditions.

Our hierarchical cluster analysis revealed the presence of a strong uranium-selenium—
arsenic cluster and a barium—chromium cluster, possibly related to redox conditions. Barium
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is not redox active and most barium salts are insoluble, whereas chromium is typically found
primarily as insoluble Cr(111) under almost all anoxic groundwater conditions.3! Arsenic
and uranium can both be elevated in groundwater samples,32-34 and previous studies

have found that arsenic and uranium co-occur in unregulated drinking water on Navajo
Nation29:35 and in untreated public supply wells across the USA,3¢ potentially pointing to
the importance of carbonato complexes in particular in increasing solubility. This solubility
effect is much better understood for uranium than arsenic due to extensive modelling of
uranium transport, 3739 and has been observed? but insufficiently described for arsenic
transport. In many cases, aqueous uranium and arsenic are also found in forms such as
carbonate complexes#041 that do not strongly adsorb to iron or aluminium oxides, which is
the most commonly used water treatment method to remove chemical contaminants. Thus,
the presence of bicarbonate ions in the oxic ground and surface water sources could also
explain the persistence of arsenic and uranium in CWSs that we observed despite treatment.

Our findings for CWSs serving Semi-Urban, Hispanic communities further highlight

the substantial environmental justice concerns for Hispanic/Latino communities raised in
previous studies of CWS arsenic and nitrate concentrations.®7:13 Although geological
variability might explain much of the regional differences in nationwide uranium spatial
patterns, it does not account for disparities across sociodemographic county-clusters.
Compared with CWSs serving other sociodemographic groups, CWSs serving Semi-Urban,
Hispanic communities had the highest uranium, selenium, barium, chromium, and arsenic
concentrations. Furthermore, quantile regression analyses indicated a significant increase in
90th percentile and mean CWS uranium concentrations per 1% higher proportion of the
population classified as Hispanic/Latino for all CWSs, and for CWSs in the Southwest, after
adjusting for state, size of the population served, and source water type. These findings
indicate that inequalities in CWS uranium concentrations for Hispanic/Latino communities
are not merely due to geographic location, groundwater use, or CWS size. Although

the chemistry of these metals vary widely and they originate from a variety of sources,

the consistent association between elevated CWS metal concentrations and Semi-Urban,
Hispanic communities implies that concentration disparities are a failure of regulatory policy
or treatment rather than underlying geology. Hispanic/Latino populations show numerous
health disparities including increased mortality due to diabetes, liver disease, and kidney
disease.#2 Hispanic/Latino populations have lower all-cause, cardiovascular, and cancer
mortality rates than US non-Hispanic White populations despite overall poorer health-care
access and lower socioeconomic status, which is sometimes referred to as the Hispanic
paradox. Hispanic/Latino communities are incredibly diverse by national origin, dietary
patterns, language, and other relevant social and environmental determinants of health.43
Future analyses should explore CWS differences within Hispanic/Latino communities,
whether disproportionate chronic, low-level CWS metal exposure contributes to inequalities
in associated adverse health outcomes, and whether these CWSs also report increased
concentrations of regulated organic contaminants and disinfection by-products.#4

Our analyses stratified by sociodemographic subgroups relied on previously developed
sociodemographic clusters and do not solely reflect racial or ethnic composition or
socioeconomic status. Future analyses should comprehensively and specifically evaluate the
associations of social vulnerability, socioeconomic status, and racial or ethnic composition
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with CWS metal concentrations, which was beyond the scope of this analysis. Although we
consistently found that 1% increases in the proportion of Hispanic/Latino residents were
associated with higher contaminant metal exposure in overall and regional analyses, region-
specific associations might exist for other racial or ethnic groups and CWS metals. We
found significantly higher chromium concentrations for CWSs serving correctional facilities
versus all CWSs, and one previous analysis found elevated CWS arsenic concentrations

for incarcerated populations in the Southwestern USA.” Future analyses could specifically
evaluate CWS metal exposures for incarcerated populations by region and by racial or ethnic
composition.

Even at low concentrations, uranium, a naturally occurring radioactive metal, represents

an important risk factor for the development of chronic diseases.#> Despite the potential
health effects of uranium exposure, little epidemiological research has been done on chronic,
low-level water uranium exposures, especially in CWSs. Previous studies found associations
between chronic uranium exposure and increased risk of hypertension, cardiovascular
disease, kidney damage, and lung cancer.#>~47 Additional resources such as further
compliance enforcement and increased technical and financial assistance to improve water
treatment are needed to lower uranium concentrations in CWSs, especially in highly
exposed communities.

Limitations regarding SYR3 data quality have previously been described in detail and should
be considered.® Briefly, SYR record submission is voluntary and we are therefore missing
records for a small number of CWSs (appendix 2 p 5). LOD reporting was not uniform,
resulting in differing LODs across CWSs and missing LODs from several records. We were
unable to aggregate CWS concentrations to more refined geographic resolutions (eg, census
block, postal code) because CWS distribution boundaries are not available nationwide.
Finally, reported CWS source water type in SDWIS (surface vs groundwater) might have
changed over time and influenced our findings stratified by source water type.

Additional, specific limitations for uranium should also be considered. Although the

present study shows that uranium concentrations and detections in CWSs are higher

than those for other metals,57 these findings might be biased by the EPA Standardized
Monitoring Framework for uranium.*® CWS concentration estimates for uranium were
derived by combining compliance monitoring records from both SYR2 (2000-05) and
SYR3 (2006-11). CWSs were required by the EPA Framework to conduct initial monitoring
between 2000 and 2007 (covering the collection of grandfathered data and the initial
compliance monitoring period for radionuclides), and the EPA First Radionuclides Rule
Compliance Cycle covers the period 2008-16. CWSs with uranium concentrations below
the LOD during the initial compliance monitoring period were only required by the
Framework to have one sample collected during the First Radionuclides Rule Compliance
Cycle (2008-16). Consequently, not all CWSs collected a compliance monitoring sample
during the period that we examined (2000-11), resulting in a smaller number of CWSs
included in our uranium analysis, and potentially biased concentration estimates (potentially
overestimating nationwide uranium CWS concentrations and MCL exceedances) due to
differential missingness for CWS uranium concentrations. Furthermore, national spatial
coverage for uranium was poor compared with coverage for the other metals we examined.
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Particular regions, such as the Eastern Midwest, Southeast, Mid-Atlantic, and New England,
have noticeably poor spatial coverage for CWS uranium concentrations. Although CWS
uranium estimates were largely similar when averaging to different periods (appendix 2

p 9), incorporating data from the fourth SYR once available (covering 2012-17) will
potentially improve concentration estimates and is needed to confirm disproportionately
exposed communities. Given the similar estimates across multiple periods, we assumed

in this study that uranium concentrations did not decrease over time (2000-11), although
further analyses with data from the fourth SYR are needed. Although we could not account
for reported treatment in SYR2 records, the uranium MCL was not yet in effect and
treatment to reduce uranium concentrations was unlikely.

The present study indicates that 2-:1% of CWSs with data available report average

uranium concentrations (2000-11) in exceedance of the EPA MCL, and that uranium is
frequently detected during compliance monitoring. Arsenic, barium, chromium, selenium,
and uranium concentrations are disproportionately elevated in CWSs serving Semi-Urban,
Hispanic populations, raising environmental justice concerns for these communities and
the possibility that inequalities in public drinking water metal exposures are influencing
inequalities in several metal-associated disease outcomes, including diabetes, liver disease,
and cardiovascular disease. Additional regulatory policies, compliance enforcement, and
improved infrastructure are therefore necessary to reduce disparities in CWS metal
concentrations and protect communities served by public water systems with elevated metal
concentrations. Such interventions and policies should specifically protect the most highly
exposed communities to advance environmental justice and protect public health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context
Evidence before this study

We searched PubMed on Feb 1, 2022 for peer-reviewed articles containing “uranium”
AND “public water” OR “public drinking water”, with no language or publication year
restrictions. No nationwide estimates have been published on uranium concentrations in
US regulated public drinking water systems (serving >90% of US residents) that can be
used for epidemiological purposes. An estimated 4% of private domestic water wells in
the USA have uranium concentrations exceeding US Environmental Protection Agency
(EPA) maximum contaminant levels (MCL) of 30 pg/L, suggesting uranium might also
be widespread in public water systems. Furthermore, previous studies characterised
significant sociodemographic inequalities in concentrations of arsenic and nitrates in US
public water, through use of routine compliance monitoring records compiled by EPA,
suggesting substantial environmental injustices might also exist in exposure to uranium
and other metals in public drinking water.

Added value of this study

We developed nationwide estimates of uranium and nine other regulated metals
(antimony, arsenic, barium, beryllium, cadmium, chromium, mercury, selenium, and
thallium), in community water systems (CWSs) across the USA using compliance
monitoring records, which can be utilised in future epidemiological studies. We

also identified significant sociodemographic inequalities in public water uranium
concentrations. We found the highest estimated CWS uranium concentrations for Semi-
Urban, Hispanic communities and communities located in the Southwest and Central
Midwest regions. In a hierarchical cluster analysis, uranium, selenium, and arsenic
clustered together, possibly reflecting groundwater redox conditions.

Implications of all the available evidence

Uranium is an underappreciated contaminant in US public drinking water systems, with
63:1% of available records reporting uranium detections and 2:1% of CWS averages
(2000-11) exceeding the uranium MCL. Inequalities in CWS concentration estimates for
Hispanic communities persisted after adjustment for potential confounders, suggesting
inequalities possibly result from regulatory failure to protect marginalised communities
and not from local geological context. Future epidemiological studies should explore the
association between sociodemographic inequalities in public water metal concentrations
and related adverse health outcomes, considering the environmental justice concerns
highlighted in this study. Additional regulatory oversight and technical and financial
assistance are needed for water systems serving highly exposed communities.
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Figure 1: County-level weighted average of water contaminant concentrations in CWSs (n=37
915) from 2006-11 for barium (A), chromium (B), selenium (C), and uranium (D; 2000-11)

Average concentrations were weighted by the population served by each CWS to

estimate the county-level weighted average CWS concentrations. Counties which were not
represented by any CWSs in the SYR3 database are labelled as having no data available.
Counties with inadequate data did not have CWS data representing at least 50% of the
public water reliant population (appendix 2 pp 5-6). Estimates for uranium are derived from
both the second (2000-05) and third (2006-11) SYR. For barium, chromium, and selenium,
the lowest concentration category corresponds to less than or equal to the SYR3 minimum
reporting level (100 pg/L for barium, 1 pg/L for chromium, 5 pg/L for selenium), and the
other three categories reflect tertiles of the remaining distribution of county-level estimates.
For uranium, the lowest concentration category corresponds to less than or equal to 1 pg/L,
and the other three categories reflect cut-points that might be considered in future regulatory
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decisions. CWS=community water system. SYR=Six-Year Review.
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Figure 2: Dendrogram of hierarchical cluster analysis for 6-year averages (2006-11) of regulated
metal concentrations in CWSs across the USA (n=12 756).

Analysis was restricted to CWSs with no missing concentration estimates for arsenic,
selenium, uranium, barium, and chromium. Values for uranium are averaged from 2000-11.
We used Ward’s method for Euclidean distances and normalised each metal to unit variance
and zero mean before analysis. CWS=community water system.
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Table 3:

75th, 90th, and 95th percentiles of uranium concentrations in CWSs located in California, Oklahoma, and
Texas stratified by Semi-Urban, Hispanic counties versus all other counties

CWSs serving Semi-Urban, Hispanic counties All other CWSs
Number of CWSs  Uranium, 75th, 90th, and 95th Number of CWSs  Uranium, 75th, 90th, and 95th
percentiles, ug/L percentiles, pg/L
California 822 11.7, 235,351 722 64,130,183
Oklahoma 16 11-4, 356, 49.0 571 1.9,64,11-3
Texas 167 206, 33-3, 44:6 105 10-5,20-2, 245

CWS=community water system.
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Table 4:

90th percentile difference in CWS uranium concentration per 1% higher proportion of county populations
classified as Hispanic/Latino

Number of CWSs Beta

All CWSs 14 644 15-1 (p<0-0001)
CWSs in the Southwest region 3268 25.9 (p<0-0001)
CWSs serving Semi-Urban, Hispanic counties 2058 11.2 (p=0-22)

Model results for the difference in CWS 90th percentile uranium concentrations per 1% higher proportion of population classified as Hispanic/
Latino were derived from quantile regression models with the quantreg package (version 5.85) in R. Models were adjusted for state (categorical),
the size of the population served by the CWS (continuous), and the source water type (surface water vsgroundwater), and SEs were bootstrapped.
The proportion of the county population classified as Hispanic/Latino was estimated for the 2010-19 period with use of US Census Bureau

statistics. 2425 CWS=community water system.
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