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ABSTRACT
Time lag effect exists widely in the course of economic operation.
Some economic variables are affected not only by various factors in
the current period but also by various factors in the past and even
their own past values. As a class of dynamical models, autoregres-
sive distributed lag (ARDL) models are frequently used to conduct
dynamic regression analysis. In this paper, we are interested in the
quantile regression (QR) modeling of the ARDL model in a dynamic
framework. By combining the working likelihood of asymmetric
Laplace distribution (ALD) with the expectation–maximization (EM)
algorithm into the considered ARDL model, the iterative weighted
least square estimators (IWLSE) are derived. Some Monte Carlo sim-
ulations are implemented to evaluate the performance of the pro-
posed estimation method. A dataset of the consumption of electric-
ity by residential customers is analyzed to illustrate the application.
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1. Introduction

Time lag effect exists extensively in the running process of the economic system. Some
economic indicators are affected not only by various factors in the current period but also
by various factors in the past and even their own past values. Generally, the models with
lagging variables are termed lagging variable model. Taking time factor into account in
the lagging variable model can make statistical analysis possible to become dynamic anal-
ysis. Dynamic regression model is a kind of main model to establish a dynamic economic
system. Ordinary time series models, distribution lag models and error autocorrelation
models belong to dynamic regressionmodels. One eminent feature of this kind of model is
that the left side of the regression model depicts the current value of the interpreted vari-
able, while the right side contains the historical value of the interpreted variable, the current
value and historical value of the interpreting variables, and even the autocorrelation errors.
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As a main class of dynamic regression models, linear regression model with correlated
errors has widely emerged in statistical literatures. For example, Lin et al. [19] studied the
regression model with time series errors, Lee and Lund [16] proposed a linear regression
with stationary autocorrelated errors, Yang [32] studied linear regression model with seri-
ally correlated errors,Wu andWang [31] studied shrinkage estimation for linear regression
with ARMA errors, Yoon et al. [34] studied penalized regression model with autoregres-
sive errors, Rosadi and Peiris [26] discussed second-order least-squares regression model
with autocorrelated errors, Yoon et al. [33] studied penalized linear regression model with
ARMA-GARCH errors.

Another kind of important dynamic regression model is the ARDL model. The ARDL
model haswidely been used in the fields of income consumption, investment output,macro
and micro econometric model analysis. The introduction of lag variables can describe
economic phenomena more comprehensively and accurately to improve the accuracy of
modeling. The related theory of the ARDL model has been studied and applied to the
dynamic economic systemmodeling. For example, Dufour and Kiviet [5] studied the exact
inference method of the first-order ARDL model, Hassler and Wolters [10] discussed the
ARDLmodel and cointegration, Lauridsen [15] discussed the estimation and application of
spatial ARDLmodel, Buss [2] studied Bayesian ARDLmodel and application of economic
downturn forecast.

The traditional statistical modeling method of these two kinds of dynamic regression
models is to transform them into independent and identically distributed error models by
difference or mathematical transformation, and then conduct conditional mean modeling
using the least squares estimation (LSE) of mean regression or the maximum likelihood
estimation (MLE) under the assumption of normal errors. However, the regression analy-
sismethod based onmean feature is not robust for non-normal errors and anomalous data.
The analysis results are often biased and can only react the conditional mean information
of the interpreted variable. In fact, the effects of explanatory variables on the response vari-
able at different quantiles are not identical. As a natural alternative of mean regression, QR
approach proposed by Koenker and Bassett [13] can build different regression relation-
ships between the response variable and explanatory variables over the given quantiles. As
a popular statistical analysis tool, the QRmethod has many advantages over the traditional
mean regression, which makes its analysis results more robust and not affected by abnor-
mal data and extreme data. This makes QR method widely used in financial insurance,
income consumption, environmental science and clinical medicine, etc.

Some related studies on the QR analysis based on ARDLmodels and linear models with
autocorrelation errors have emerged in recent literatures. For instance, Lim and Oh [18]
studied variable selection in linear QR with autoregressive errors, Jiang and Li [11] dis-
cussed penalized weighted composite QR of the linear regression model with heavy-tailed
autocorrelated errors. Li et al. [17] studied quantile ARDLmodel and applied it analyze the
international tourism demand of Korea, Antonio et al. [1] discussed quantile ARDLmodel
and applied it to the analysis of housing price regulation, Jin et al. [12] studied quantile
cointegration theory of the ARDL model, Pal and Mitra [23] used the ARDL models to
analyze the relationship between diesel and soybean prices.

From a Bayesian viewpoint, Yu and Moyeed [35] proposed the Bayesian QR approach
based on the working likelihood of the asymmetric Laplace distribution (ALD) error,
Geraci and Bottai [7] studied QR longitudinal data, Zhao and Lian [36] considered
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Bayesian Tobit QR single indexmodel, Tian et al. [28] investigated Bayesian quantilemixed
effects model with censoring and errors in covariates. Based on the working likelihood of
the ALD, Liu and Bottai [20] studied conditional quantile mixed effects model for longitu-
dinal data using MCEM algorithm, Tian et al. [30] developed the EM algorithm for linear
QR model, Tian et al. [29] studied the EM algorithm estimation for linear QR model with
autoregressive errors.

In this paper, we focus on the QR analysis of ARDL models using the EM algorithm.
Other sections of this article are organized as follows. In Section 2, we give the hierarchical
working likelihood of QR ARDL models. In Section 3, we employ the EM algorithm to
obtain theMLE of the considered model. In Section 4, simulation studies are conducted to
illustrate the finite sample performance of the proposed method. In Section 5, a dataset of
the electricity consumption is analyzed to illustrate the application. Section 6 summarizes
the full text.

2. Preliminary description

2.1. Themodel

Consider the following ARDL model:

yt = μ+
d∑

i=0
xTt−iθi +

q∑
j=1

φjyt−j + εt , t = 1, . . . , n, (1)

where d and q are lag lengths of lagged response variable yt and p × 1 dimensional lagged
covariate xt , yt−j is the j-th order lag of lagged response variable yt , xt−i is the i-th order
lag of lagged covariate xt , θi = (θi1, . . . , θip)T are regression coefficient vectors of lagged
covariates xt−i for i = 0, . . . , d, εt is independent and identically distributed (i.i.d) error
terms with finite first-order moment. The above model (1) is denoted as ARDL(d, q). In
model (1), we assume that each variable xt have the same lag truncation d for convenience.
The case of different lag truncation for each variable is immediate.

Denote Zt = (1, xTt , . . . , xTt−d)
T , Yt−1 = (yt−1, . . . , yt−q)

T , β = (μ, θT0 , . . . , θ
T
d )

T , φ =
(φ1, . . . ,φq)T , ARDL model (1) can be represented as

yt = ZT
t β + YT

t−1φ + εt , t = s + 1, . . . , n, (2)

where s = max(d, q).
For model (1), the conditional τ th quantile of response variable can be specified as

Qτ (yt|�t−1) = ZT
t βτ + YT

t−1φτ , τ ∈ (0, 1), (3)

where �t−1 is a sigma algebra of information up to time t−1, the subscript τ in both βτ
and φτ can be omitted for simplicity.

2.2. The hierarchical working likelihood

Based on Koenker and Bassett [13], the τ th quantile estimator of regression coefficient β

and autoregression coefficient φ can be obtained by minimizing the following objective



120 Y. TIAN ET AL.

loss function:

argmin
β ,φ

n∑
t=s+1

ρτ

(
yt − ZT

t β − YT
t−1φ

)
, (4)

where ρτ (u) = u(τ − I(u < 0)) is the quantile check function. FromYu andMoyeed [35],
minimizing the objective loss function of quantile regression is equivalent to maximizing
the working likelihood of the asymmetric Laplace distribution (ALD) errors. And they
argued that empirical results are robust by forcing the ALD on errors even if it is a mis-
specification of the true errors. Sriram et al. [27] studied posterior consistency of Bayesian
QR based on the ALD specification. The probability density function (pdf) of ALD is

f (y|μ, σ , τ) = τ(1 − τ)

σ
exp

{
−ρτ

(
y − μ

σ

)}
, (5)

where μ is the location, σ is the scale, and 0 < τ < 1 is the skewness.
Using the working likelihood of ALD, the working likelihood of model (2) is

L(β ,φ, σ |x, y) =
n∏

t=s+1

τ(1 − τ)

σ
exp

{
−ρτ

[
yt − ZT

t β − YT
t−1φ

σ

]}
,

where y = (y1, . . . , yn)T , x = {x1, . . . , xn}.
Additionally, based on the mixture representation of ALD developed by Reed and

Yu [25] and Kozumi and Kobayashi [14], model (2) can be hierarchically represented as

yt = ZT
t β + YT

t−1φ + κ1υt + √
κ2συt · et , t = s + 1, 2, . . . , n, (6)

where υt ∼ Exp(1/σ), et ∼ N(0, 1), κ1 = 1 − 2τ/τ(1 − τ), κ2 = 2/τ(1 − τ), et and υt
are independent of each other.

From (6), the joint hierarchical working likelihood of the complete data {y, x,υ} is
HL(β ,�, σ |y, x, v)

=
n∏

t=s+1

[
1√
κ2συt

exp

{
− (yt − ZT

t β − YT
t−1φ − κ1υt)

2

2κ2συt

}
· 1
σ
exp

{
− 1
σ
υt

}]
. (7)

3. The estimationmethodology

3.1. EM algorithm procedure

The EM algorithm is an iterative method which has widely been used to find MLE of
parameters in statistical models, where the model depends on incomplete data such as
missing data or unobserved latent variables. EM algorithm has been broadly applied in sta-
tistical learning, mixture models, image processing, data mining and other applied fields.
There are two key steps in EM algorithm including an expectation (E) step, which creates a
function for the expectation of the log-likelihood evaluated using the current estimate for
the parameters, and amaximization (M) step, which computes parameters maximizing the
expected log-likelihood found on the E step. One can refer to Dempster et al. [4], McLach-
lan and Krishnan [21] as well as Gupta and Chen [8] for some comprehensive summaries



JOURNAL OF APPLIED STATISTICS 121

of EM algorithm. In the following contents, we employ the EM algorithm to conduct the
QR estimation of the ARDL model.

From the joint hierarchical likelihood (7), up to a constant, we derive it working log-
likelihood function as follows:

logHL(β ,φ, σ |y, x, v) = −3(n − s)
2

log σ − 1
2

n∑
t=s+1

log υt

−
n∑

t=s+1

1
σ

[
(yt − ZT

t β − YT
t−1φ)

2

2κ2
υ−1
t

+κ
2
1 + 2κ2
2κ2

υt − κ1(yt − ZT
t β − YT

t−1φ)

κ2

]
. (8)

Set initial value of parameters set � = {β ,φ, σ } to be �̂(0), the EM algorithm can be
implemented as follows:

E-step: Assume the hth iteration value �̂(h) has been derived, the optimized objective
loss function of the (h + 1)th iteration is

Q(�|�(h))
� E[logHL(β ,�, σ |y, x, v)|�̂(h)]

= −3(n − s)
2

log σ − 1
2

n∑
t=s+1

E
(
logυt|�̂(h)

)

− 1
σ

n∑
t=s+1

[(
yt − ZT

t β − YT
t−1φ

)2
2κ2

E(υ−1
t |�̂(h))

+κ
2
1 + 2κ2
2κ2

E(υt|�̂(h))− κ1
(
yt − ZT

t β − YT
t−1φ

)
κ2

]
. (9)

For deriving parameter estimator �̂(h+1) of the (h + 1)th iteration, it is essential for us to
calculate the conditional expectation values for variables log(υt),υ−1

t and υt . It is noticed
that the conditional pdf of υt van be easy to get as follows:

f (υt|y, x) ∝ 1√
υt

exp

{
−1
2

[(
yt − ZT

t β − YT
t−1φ

)2
κ2σ

υ−1
t + κ21 + 2κ2

κ2σ
υt

]}

∼ GIG

(
1
2
,
(
yt − ZT

t β − YT
t−1φ

)2
κ2σ

,
κ21 + 2κ2
κ2σ

)
, t = s + 1, . . . , n,

where GIG(λ,χ ,ψ) denotes the generalized inverse Gaussian (GIG) distribution. Hence,
we have

E(υαt ) =
(
χ

ψ

)α/2 Kλ+α(√χψ)
Kλ(

√
χψ)

, α ∈ R,E(log υt) = dE(υαt )
dα

|α=0.
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Hence, we obtain

δ̂
(h)
t � E(υ−1

t |�̂(h)) =
√
κ21 + 2κ2∣∣∣yt − ZT

t β̂
(h) − YT

t−1φ̂
(h)∣∣∣ ,

γ̂
(h)
t � E(log υt|�̂(h)) = dE(υαt |�̂(h))

dα
|α=0,

ξ̂
(h)
t � E(υt|�̂(h)) = κ2σ̂

(h)

κ21 + 2κ2
+

∣∣∣yt − ZT
t β̂

(h) − YT
t−1φ̂

(h)∣∣∣√
κ21 + 2κ2

.

M-step: Maximize the Q function of E-step with respect to � = {β ,φ, σ } and obtain
updated estimator �̂(h+1). For regression parameter β , let

∂Q
∂β

= − 1
σκ2

[ n∑
t=s+1

Zt δ̂
(h)
t ZT

t

]
β + 1

σκ2

n∑
t=s+1

[
δ̂
(h)
t

(
yt − YT

t−1φ
)
Zt − κ1Zt

]
= 0.

(10)
Represent the regularized equation (10) as the following linear equation group:[ n∑

t=s+1
Zt δ̂

(h)
t ZT

t

]
· β =

n∑
t=s+1

Zt
[
δ̂
(h)
t

(
yt − YT

t−1φ
)

− κ1

]
. (11)

Denote ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y = (ys+1 − YT
s φ, . . . , yn − YT

n−1φ)
T , Z = (Zs+1, . . . ,Zn)T ,

Ŵ(h) =

⎛
⎜⎝
δ̂
(h)
s+1

. . .
δ̂
(h)
n

⎞
⎟⎠ , η =

⎛
⎜⎝
κ1
...
κ1

⎞
⎟⎠
(n−s)×1

,

Equation (11) can be represented to be matrix equation as follows:

ZTŴ(h)Z · β = ZTŴ(h)Y − ZTη. (12)

Furthermore, we replace the autoregressive parameter vector φ in Y of Equation (3.1) as
the hth iteration value φ̂

(h)
, and denote

Ŷ =
(
ys+1 − YT

s φ̂
(h)

, . . . , yn − YT
n−1φ̂

(h))T
.

Therefore, the (h + 1)th iteration QR estimator β̂
(h+1)

is obtained as follows:

β̂
(h+1) =

(
ZTŴ(h)Z

)−1
ZTŴ(h)Ȳ , (13)

where Ȳ = Ŷ − [Ŵ(h)]−1η, Ŵ(h) is a weight matrix which is associated with quantile τ .
From (13), additionally, we find that the derived estimator β̂

(h+1)
has the form of the

IWLSE.
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For autoregressive parameter φ, from the Q function (9), we obtain its regularized
equation group as follows:

∂Q
∂φk

= − 1
σκ2

n∑
t=s+1

⎡
⎣δ̂(h)t

⎛
⎝yt − ZT

t β −
q∑

j=1
φjyt−j

⎞
⎠ · (−yt−k)+ κ1yt−k

⎤
⎦ = 0,

k = 1, . . . , q. (14)

Equation (14) can be represented as the following linear equation group:

q∑
j=1

φj

n∑
t=s+1

δ̂
(h)
t yt−jyt−k =

n∑
t=s+1

yt−k

[
δ̂
(h)
t

(
yt − ZT

t β
)

− κ1

]
, k = 1, . . . , q. (15)

To obtain the updated estimator �̂(h+1), we use the Gauss–Seidel method [9]. Replac-
ing regression parameter β in Equation (15) as the (h + 1)-th updated value β̂

(h+1)
in

Equation (13), and denote

êt = yt − ZT
t β̂

(h+1), t = s + 1, . . . , n. (16)

From Equation (15), we see (h + 1)th iteration estimator �̂(h+1) is the solution of linear
equation group A� = b, where A and b are given respectively by

A = (alk)q×q, alk =
{ ∑n

t=s+1 δ̂
(h)
t y2t−l, l = k,∑n

t=s+1 δ̂
(h)
t yt−lyt−k, l �= k,

b =
( n∑
t=s+1

yt−1

(
δ̂
(h)
t êt − κ1

)
, . . . ,

n∑
t=s+1

yt−q

(
δ̂
(h)
t êt − κ1

))T

.

Furthermore, denote

E =

⎛
⎜⎜⎜⎝

ys ys−1 · · · ys+1−q
ys+1 ys · · · ys+2−q
...

...
...

yn−1 yn−2 · · · yn−q

⎞
⎟⎟⎟⎠ .

MatrixA can be represented asA = ETŴ(h)E and vector b is expressed as b = ETŴ(h)(ê −
(Ŵ(h))−1η), where ê = (ês+1, . . . , ên)T .

Thus, the (h + 1)th iteration value �̂(h+1) is

�̂(h+1) = A−1b =
(
ETŴ(h)E

)−1 ·
[
ETŴ(h)

(
ê − (Ŵ(h))−1η

)]
. (17)

From (17), it can be seen that �̂(h+1) has the form of the IWLSE with the same weighted
matrix Ŵ(h) with β̂

(h+1)
.
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For σ , let

∂Q
∂σ

= −3(n − s)
2σ

+ 1
σ 2

n∑
t=s+1

[(
yt − ZT

t β − YT
t−1φ

)2
2κ2

δ
(h)
t + κ21 + 2κ2

2κ2
ξ
(h)
t

−κ1
(
yt − ZT

t β − YT
t−1φ

)
κ2

]
= 0. (18)

Replacing parameter β and� in Equation (17) as the (h + 1)th iteration values β̂
(h+1)

and
�̂(h+1), and denote

ω̂
(h+1)
t = yt − ZT

t β̂
(h+1) − YT

t−1φ̂
(h+1)

, t = s + 1, . . . , n.

We obtain the (h + 1)th iteration estimator of scale parameter σ as follows:

σ̂ (h+1) =
∑n

t=s+1

[
δ̂
(h)
t (ω̂

(h+1)
t )2 − 2κ1ω̂

(h+1)
t + (κ21 + 2κ2) · ξ (h)t

]
3(n − s)κ2

. (19)

From (13), (17), (21), we repeat E-step and M-step to update {β ,φ, σ } continually till the
total error of the estimates attains the predetermined convergence constraint. In practice,
in order to make the algorithm fully converge, we can start the EM iterations from sev-
eral different initial points. Additionally, Oakes [22] provided a calculation formula to
derive the confidence intervals of parameters for EM algorithm. However, it is essential
to estimate complex variance–covariance matrix. As a kind of widespread random simu-
lation algorithm, Bootstrap resampling method provide an efficient and simple alternative
to construct confidence intervals of unknown parameters. A large number of empirical
studies demonstrated that Bootstrap method generally outperform the direct confidence
intervals based on asymptotic variance, especially for small sample cases. A detailed intro-
duction about Bootstrap method can refer to Efron and Tibshirani [6] and Davison and
Hinkley [3], etc.

3.2. Choices of orders

In subsection 3.1, we discussed the QR estimators of ARDL model (1) under prefixed lag
order d and regressive order q. In practical application, both two orders are unknown and
need to estimate. AIC (Akaike information criterion) or BIC (Bayesian information cri-
terion) can be used to select appropriate lag orders. It is well-known that BIC criterion is
consistent. We suggest to adopt BIC criteria in real applications. The BIC criterion based
on quantile regression estimates is defined as

BIC(d, q) = log(σ̂ )+ 1 + q + (1 + d)× dim(x)
2n

log(n), (20)

where σ̂ = 1/n − s
∑n

t=s+1 ρτ (yt − ZT
t β̂ − YT

t−1φ̂), dim(x) is the dimension of covariate
xt . The appropriate d and p can be selected by mind,q BIC(d, q).
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4. Numerical simulations

In this section, some Monte Carlo simulation experiments are conducted to evaluate the
finite sample performance of the proposed estimation procedure. We generate 1000 data
sets from the following three ARDL(1, 1)models with sample size n=200:

yt = μ+ xTt θ0 + xTt−1θ1 + φyt−1 + εt . (21)

Model 1: μ = 0.5, θ0 = 2, θ1 = 1,φ = 0.5.
Model 2: μ = 0.5, θ0 = (2, 1.5)T , θ1 = (1, 0.5)T ,φ = 0.5.
Model 3: μ = 0.5, θ0 = (2, 1.5, 0, 0)T , θ1 = (1, 0.5, 0, 0)T ,φ = 0.5.
For each model, we employ the following three schemes to generate the errors εt :

standard normal distribution (N(0, 1)); standard Laplace distribution (L(0, 1)); mixture
normal distribution (0.5N(0, 1)+ 0.5N(0, 9)). Three quantiles 0.25, 0.5 and 0.75 are con-
sidered for each models. For all cases, we set y0 = 0 to generate yt for t = 1, . . . , n based

Table 1. Estimation results of model 1.

Error τ Parameter μ = 0.5 θ0 = 2 θ1 = 1 φ = 0.5

N(0,1) 0.25 Bias 0.081 −0.002 0.062 −0.023
RMSE 0.158 0.099 0.139 0.043
95% C.L. 0.324 1.793 0.814 0.405
95% C.U. 0.868 2.186 1.323 0.544

0.50 Bias 0.002 0.001 0.001 0.002
RMSE 0.085 0.089 0.106 0.032
95% C.L. 0.336 1.836 0.787 0.436
95% C.U. 0.676 2.185 1.210 0.567

0.75 Bias −0.011 −0.006 −0.019 0.005
RMSE 0.089 0.102 0.122 0.034
95% C.L. 0.313 1.789 0.753 0.437
95% C.U. 0.653 2.196 1.203 0.572

L(0,1) 0.25 Bias 0.087 −0.025 0.027 −0.018
RMSE 0.336 0.261 0.278 0.056
95% C.L. 0.044 1.480 0.402 0.381
95% C.U. 1.238 2.451 1.564 0.588

0.50 Bias −0.014 0.005 −0.025 0.004
RMSE 0.147 0.165 0.181 0.040
95% C.L. 0.207 1.682 0.615 0.420
95% C.U. 0.779 2.342 1.307 0.579

0.75 Bias −0.013 0.006 −0.025 0.002
RMSE 0.240 0.240 0.265 0.054
95% C.L. 0.028 1.553 0.432 0.390
95% C.U. 0.983 2.478 1.481 0.602

Mixture 0.25 Bias 0.098 −0.010 0.037 −0.021
RMSE 0.251 0.209 0.221 0.050
95% C.L. 0.150 1.605 0.593 0.387
95% C.U. 1.047 2.348 1.462 0.558

0.50 Bias −0.003 0.000 −0.014 0.004
RMSE 0.125 0.138 0.159 0.039
95% C.L. 0.263 1.723 0.679 0.425
95% C.U. 0.741 2.270 1.326 0.576

0.75 Bias −0.005 −0.005 −0.027 0.002
RMSE 0.182 0.186 0.205 0.050
95% C.L. 0.177 1.630 0.572 0.400
95% C.U. 0.838 2.338 1.366 0.594
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Table 2. Estimation results of model 2.

Error τ Parameter μ = 0.5 θ01 = 2 θ02 = 1.5 θ11 = 1 θ12 = 0.5 φ = 0.5

N(0,1) 0.25 Bias 0.063 −0.001 −0.004 0.044 0.024 −0.017
RMSE 0.143 0.102 0.101 0.127 0.113 0.035
95% C.L. 0.318 1.803 1.298 0.817 0.314 0.423
95% C.U. 0.830 2.193 1.690 1.264 0.748 0.542

0.50 Bias −0.002 0.000 0.001 −0.012 −0.010 0.004
RMSE 0.085 0.090 0.088 0.111 0.095 0.028
95% C.L. 0.324 1.820 1.328 0.779 0.303 0.449
95% C.U. 0.661 2.169 1.673 1.198 0.672 0.560

0.75 Bias −0.013 −0.003 −0.001 −0.015 −0.017 0.008
RMSE 0.089 0.098 0.105 0.114 0.107 0.031
95% C.L. 0.316 1.806 1.302 0.761 0.279 0.450
95% C.U. 0.665 2.182 1.694 1.195 0.690 0.565

L(0,1) 0.25 Bias 0.082 −0.023 −0.009 0.025 0.030 −0.018
RMSE 0.318 0.278 0.267 0.264 0.254 0.050
95% C.L. 0.013 1.492 0.964 0.510 0.019 0.388
95% C.U. 1.191 2.488 1.991 1.550 1.032 0.572

0.50 Bias −0.011 −0.007 −0.013 −0.032 −0.029 0.009
RMSE 0.150 0.178 0.173 0.184 0.175 0.040
95% C.L. 0.200 1.643 1.155 0.605 0.108 0.430
95% C.U. 0.785 2.339 1.821 1.303 0.792 0.585

0.75 Bias 0.018 0.002 −0.009 −0.026 −0.023 0.007
RMSE 0.253 0.253 0.262 0.267 0.249 0.050
95% C.L. 0.041 1.487 0.986 0.449 0.010 0.403
95% C.U. 1.058 2.483 2.008 1.487 0.953 0.607

Mixture 0.25 Bias 0.050 −0.005 −0.016 0.022 0.036 −0.015
RMSE 0.244 0.214 0.205 0.214 0.214 0.045
95% C.L. 0.095 1.648 1.098 0.615 0.109 0.398
95% C.U. 1.010 2.358 1.849 1.434 0.952 0.566

0.50 Bias −0.008 0.003 0.000 −0.024 −0.017 0.009
RMSE 0.130 0.138 0.137 0.154 0.150 0.034
95% C.L. 0.224 1.734 1.222 0.688 0.184 0.442
95% C.U. 0.752 2.269 1.774 1.278 0.768 0.570

0.75 Bias 0.008 −0.010 −0.005 −0.029 −0.023 0.008
RMSE 0.175 0.200 0.189 0.211 0.196 0.046
95% C.L. 0.174 1.629 1.099 0.518 0.081 0.415
95% C.U. 0.864 2.329 1.864 1.340 0.846 0.594

on model (21). For exogenous covariate xt , we generate them using the standard normal
distribution. We set the ordinary LSEs as the initial values of regression coefficient β and
autoregressive parameter� for simplicity. Specifically, we first obtain the LSE of β by omit-
ting the lag terms of model (21). Then, we derive the LSE of autoregressive parameter
� based on the residual of the LSE of regression coefficient β . The initial value of scale
parameter σ is simply set as 1. The estimation biases, root mean square errors (RMSE) and
95% equal-tailed confidence intervals (CI) of parameters based on 1000 simulations are
reported in Tables 1–3, where 95% C.L. and 95% C.U. are 95% confidence lower limit and
confidence upper limit, respectively.

From Tables 1 and 2, it is evident that the EM algorithm procedure performs very
well for the considered error distributions over three quantile values. The EM algorithm
can achieve a fast convergence in simulations for both regression coefficients and autore-
gressive parameters. Generally, autoregressive parameters are estimated more accurately
with smaller RMSEs than regressive parameters. Additionally, we find that the estimation
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Table 3. Estimation results of model 3.

Error τ Parameter μ = 0.5 θ01 = 2 θ02 = 1.5 θ03 = 0 θ04 = 0 θ11 = 1 θ12 = 0.5 θ13 = 0 θ14 = 0 φ = 0.5

N(0,1) 0.25 Bias 0.070 −0.007 −0.006 0.004 −0.000 0.049 0.039 0.001 −0.002 −0.023
RMSE 0.150 0.112 0.101 0.102 0.100 0.133 0.124 0.107 0.104 0.040
95% C.L. 0.323 1.775 1.285 −0.198 −0.203 0.810 0.313 −0.204 −0.203 0.415
95% C.U. 0.832 2.195 1.678 0.205 0.193 1.287 0.762 0.201 0.207 0.541

0.50 Bias −0.005 −0.005 −0.004 −0.001 −0.001 −0.009 −0.009 −0.001 −0.000 0.005
RMSE 0.092 0.102 0.093 0.089 0.094 0.108 0.102 0.095 0.093 0.029
95% C.L. 0.318 1.803 1.314 −0.167 −0.185 0.776 0.282 −0.192 −0.191 0.446
95% C.U. 0.676 2.174 1.687 0.175 0.183 1.198 0.689 0.170 0.177 0.560

0.75 Bias −0.018 −0.015 −0.010 0.000 0.002 −0.031 −0.017 0.002 −0.004 0.013
RMSE 0.098 0.130 0.128 0.097 0.105 0.129 0.116 0.103 0.106 0.032
95% C.L. 0.292 1.768 1.278 −0.194 −0.201 0.740 0.275 −0.192 −0.191 0.458
95% C.U. 0.651 2.199 1.704 0.182 0.202 1.194 0.687 0.195 0.195 0.569

L(0,1) 0.25 Bias 0.061 −0.057 −0.044 −0.004 −0.005 0.020 0.021 0.004 −0.003 −0.021
RMSE 0.321 0.282 0.272 0.242 0.247 0.276 0.257 0.249 0.255 0.050
95% C.L. −0.058 1.366 0.932 −0.472 −0.486 0.457 −0.017 −0.513 −0.491 0.390
95% C.U. 1.225 2.451 1.953 0.469 0.486 1.533 1.001 0.497 0.502 0.566

0.50 Bias −0.019 0.001 −0.005 −0.009 −0.003 −0.039 −0.040 0.003 0.003 0.020
RMSE 0.154 0.181 0.173 0.167 0.174 0.189 0.192 0.172 0.180 0.043
95% C.L. 0.179 1.616 1.179 −0.351 −0.345 0.617 0.069 −0.347 −0.350 0.443
95% C.U. 0.784 2.339 1.838 0.332 0.354 1.323 0.806 0.347 0.373 0.590

0.75 Bias 0.040 −0.027 −0.033 −0.012 0.021 −0.053 −0.007 0.004 0.007 0.016
RMSE 0.246 0.258 0.265 0.236 0.244 0.271 0.261 0.229 0.244 0.051
95% C.L. 0.064 1.487 0.967 −0.488 −0.453 0.404 −0.057 −0.454 −0.475 0.422
95% C.U. 1.024 2.462 1.966 0.422 0.501 1.465 0.996 0.459 0.495 0.611

Mixture 0.25 Bias 0.041 −0.039 −0.032 0.001 0.003 0.032 0.030 0.004 0.000 −0.021
RMSE 0.246 0.218 0.204 0.193 0.199 0.207 0.205 0.201 0.197 0.045
95% C.L. 0.081 1.537 1.098 −0.354 −0.383 0.615 0.130 −0.382 −0.395 0.401
95% C.U. 1.017 2.351 1.851 0.385 0.395 1.441 0.921 0.404 0.379 0.554

0.50 Bias −0.021 0.000 −0.011 0.009 −0.004 −0.036 −0.033 0.001 −0.002 0.019
RMSE 0.137 0.151 0.152 0.139 0.139 0.167 0.161 0.149 0.141 0.040
95% C.L. 0.237 1.719 1.212 −0.259 −0.281 0.651 0.164 −0.284 −0.288 0.447
95% C.U. 0.741 2.284 1.778 0.268 0.276 1.286 0.768 0.309 0.264 0.585

0.75 Bias 0.030 −0.037 −0.020 0.000 0.016 −0.057 −0.043 0.002 −0.007 0.021
RMSE 0.190 0.221 0.210 0.189 0.198 0.216 0.210 0.184 0.194 0.047
95% C.L. 0.173 1.520 1.096 −0.375 −0.350 0.546 0.075 −0.364 −0.402 0.442
95% C.U. 0.905 2.334 1.864 0.374 0.434 1.331 0.839 0.363 0.359 0.606
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results under N(0, 1) error have smaller estimation RMSEs and shorter confidence inter-
vals than t3 error and mixture normal error in most cases. From Table 3, it can be seen the
EM algorithm procedure also performs well for sparse model 3. The estimation values of
unknown parameters are close to the true values for both nonzero coefficients and zero-
valued coefficients. For zero-valued parameters, the estimated 95% confidence intervals
cover zeros for all cases. Those results show that the proposed estimation procedures have
good estimation effects even for sparse models.

5. Real data example

The dataset can be found from Ramanathan [24] which presented the consumption of
electricity served by San Diego Gas and Electric Company. 87 quarterly observations from
February 1974 to April 1994 were recorded. This dataset has also been analyzed by Lim
and Oh [18], Jiang and Li [11] as well as Tian et al.[29] based on the linear QR model
with autoregressive errors. Lim and Oh [18] and Jiang and Li [11] considered the penal-
ized variable selection, while Tian et al. [29] presented a EM algorithm estimation. In this
section, we use the proposed QR ARDL model to fit this dataset. The response variable is
the electricity consumptionmeasured by the logarithm of the kwh sales per residential cus-
tomer (LKWH, y). The explanatory covariates include the logarithm of per-capita income
(LIncome, x1), the logarithm of price of electricity (LPrice, x2), cooling degree days (CCD,
x3) and heat degree days (HDD, x4). We centralize the response variable, standardize the
covariates (minus the sample mean and divided by the sample standard deviation), and
then construct the first-order ARDL(1, 1)model as follows:

yt = μ+ xTt θ0 + xTt−1θ1 + φyt−1 + εt , t = 1, . . . , n, (22)

where xt = (x1t , x2t , x3t , x4t)T , θ0 = (θ01, . . . , θ04)T , θ1 = (θ11, . . . , θ14)T .
The responses yt in model (22) has an increasing linear trend as time t increases. The

mean and standard deviation are 0 and 0.099, the quantiles at 0.25th, 0.50th and 0.75th
are -0.060, -0.004 and 0.080, respectively. In order to test the prediction efficiency of the
proposed estimationmethod, we split 87 observations into two parts. The first 85 observa-
tions are used to fit the model, and the last two observations are used to make a prediction.
We employ the proposed EM algorithm procedure to fit the first 85 observations over the
0.25th, 0.5th and 0.75th quantiles. In order to derive the estimated standard errors (SE)
and 95% confidence intervals, 1000 residual bootstrap replications are employed. The ini-
tial values of parameters are set as the same to Section 4. The average estimation values
(Est.), SE, 95% confidence lower limits and confidence upper limits are listed in Table 4.

From the estimation results of Table 4, we see four explanatory covariates LIncome,
LPrice, CCD andHDDhave the expected signs as Ramanathan [24], where LIncome, CCD
and HDD have positive effects on LKWH while LPrice exhibits negative effect over three
quantiles. In addition, LIncome has 1st-order positive lag effect on LKWH while LPrice,
CCD and HDD have 1st-order negative lag effects. Furthermore, we find 95% Bootstrap
confidence intervals of parameters θ01, θ02 and θ11 cover zero over all three quantiles, which
indicate that LIncome and LPrice have no significant effect and LIncome has no significant
1st-order lag effect on current LKWHover three given quantiles. 95%Bootstrap confidence
intervals of parameters θ12 and θ13 cover zero at the 0.50th and 0.75th quantiles but do
not cover zero at 0.25th quantile, which indicate that LPrice and CDD have significant



JOURNAL OF APPLIED STATISTICS 129

Table 4. Estimation results for the data of electricity consumption.

τ Parameter μ θ01 θ02 θ03 θ04 θ11 θ12 θ13 θ14 φ

0.25 Est. −0.009 0.074 −0.008 0.015 0.030 0.036 −0.039 −0.007 −0.018 0.136
SE 0.003 0.074 0.020 0.003 0.003 0.072 0.020 0.003 0.003 0.013
95% C.L. −0.019 −0.010 −0.025 0.009 0.025 −0.221 −0.080 −0.013 −0.025 0.111
95% C.U. −0.005 0.335 0.047 0.022 0.036 0.120 −0.009 −0.001 −0.012 0.163

0.50 Est. 0.001 0.073 −0.015 0.017 0.031 0.033 −0.019 −0.006 −0.021 0.156
SE 0.004 0.089 0.020 0.003 0.003 0.087 0.020 0.004 0.004 0.015
95% C.L. −0.009 −0.057 −0.057 0.010 0.025 −0.208 −0.063 −0.013 −0.028 0.126
95% C.U. 0.007 0.316 0.028 0.024 0.038 0.158 0.024 0.002 −0.013 0.186

0.75 Est. 0.013 0.073 −0.015 0.010 0.025 0.033 −0.027 −0.007 −0.026 0.174
SE 0.004 0.103 0.020 0.004 0.004 0.101 0.021 0.004 0.004 0.019
95% C.L. 0.001 −0.113 −0.052 0.002 0.018 −0.265 −0.070 −0.015 −0.034 0.132
95% C.U. 0.020 0.375 0.028 0.017 0.033 0.217 0.012 0.001 −0.018 0.211

Table 5. Prediction values of the data of electricity consumption.

The 86th response The 87th response
Prediction model τ True value: 0.144 True value: 0.140

QR ARDL model 0.25 0.121 0.138
0.50 0.126 0.148
0.75 0.136 0.164

QR model with AR errors 0.25 0.098 0.131
0.50 0.136 0.126
0.75 0.139 0.145

1st-order lag effects on current LKWH only at low quantile. 95% Bootstrap confidence
intervals of parameters θ03, θ04, θ14 and φ don’t cover zero at three given quantiles, which
show CCD, HDD, 1st-order lagged HDD and LKWH have significant effects on current
LKWH. In addition, the estimation values of φ have an increasing trend as quantiles range
from 0.25 to 0.75, which indicates 1st-order lagged LKWH has a bigger impact at higher
quantile. From the above analysis results, we know that CCD, HDD and 1st-order lagged
HDD and 1st-order lagged LKWH are main influence factors on current LKWH.

Furthermore, we conduct prediction studies for the 86th and 87th responses of
model (22) over three quantiles using the proposed method. The prediction values of
the 86th response and the 87th response over the 0.25th, 0.50th and 0.75th quantiles are
presented in Table 5. We see that the proposed method performs well. To compare the
prediction efficiency with QR model with autoregressive errors, we also provide model
prediction values using the proposed method by Tian et al. [29] for the 86th and the 87th
responses over three quantiles in Table 5. From Table 5, we see both two predictionmodels
have good prediction effects, but the QR ARDL model has better prediction results which
are closer to true values for most of the cases.

6. Conclusion

We study the EM algorithm QR estimation of the ARLD models. Using the proposed
estimation procedure, the IWLSE forms of theQRARLDmodels are derived. Some simula-
tions and a real data example are implemented to illustrate the proposed procedures. High-
dimensional regression modeling is a hot issue in recent statistical literatures. In future
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work, we will incorporate the penalized likelihood method into the QR ARDL models to
conduct variable selection or sparse estimation in the high-dimensional framework.
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