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Abstract

The phenotypes of complex biological systems are fundamentally driven by various multi-

scale mechanisms. Multi-modal data, such as single cell multi-omics data, enables a deeper 

understanding of underlying complex mechanisms across scales for phenotypes. We developed an 

interpretable regularized learning model, deepManReg, to predict phenotypes from multi-modal 

data. First, deepManReg employs deep neural networks to learn cross-modal manifolds and then 

to align multi-modal features onto a common latent space. Second, deepManReg uses cross-modal 

manifolds as a feature graph to regularize the classifiers for improving phenotype predictions and 

also for prioritizing the multi-modal features and cross-modal interactions for the phenotypes. We 

applied deepManReg to (1) an image dataset of handwritten digits with multi-features and (2) 

single cell multi-modal data (Patch-seq data) including transcriptomics and electrophysiology for 

neuronal cells in the mouse brain. We show that deepManReg improved phenotype prediction in 

both datasets, and also prioritized genes and electrophysiological features for the phenotypes of 

neuronal cells.
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1. Introduction

Recent large-scale multi-modal data such as various next generation sequencing data allows 

a deeper understanding of cellular and molecular mechanisms from genotype to phenotype 

in complex biological systems. Also, many of those data have been used to predict 

phenotypes, transforming the bioinformatics research from descriptive to predictive [1]. 

However, it is still challenging to integrate and analyze those multi-modal data which are 

typically high-dimensional and heterogeneous across modalities. In particular, cross-modal 

features likely have the nonlinear relationships that many computational methods may miss 

in phenotype prediction [2]. For example, feature extraction and selection are widely used 

to reduce the dimensionality for prediction. However, the unselected features may also have 

useful relationships (likely nonlinear) which potentially are able to contribute to prediction 

[3]. Therefore, systematic identification of nonlinear features and feature relationships 

across modalities is key to improve phenotype prediction from multi-modal data. To this 

end, manifold alignment has been widely used to simultaneously reduce the dimensions of 

multiple data types and preserve the geometric nonlinear local structures in and between 

data types (which is also known as multiview nonlinear dimensionality reduction [4, 

5, 6]). However, such methods suffer from a trade-off, being either non-parametric–and 

thus incapable of generalizing to new data without re-training the whole model from the 

beginning–or linear–that leads to inaccuracy alignment.

Besides, for improving phenotype prediction, feature selection and/or extraction 

(unsupervised learning) are widely used as a preprocessing step prior to supervised 

learning. However, since the preprocessing step is separated from the prediction step, highly 

predictive features may be missed, potentially affecting the prediction performance. For 

instance, many disease genes are actually not differentially expressed between disease and 

control [7]. To address this, regularization is used as complementary approaches. Basically, 

regularization imposes prior information to the supervised learning models for prediction. 

For example, previous methods impose the L1 regularization for implicitly selecting features 

[8]. Other methods apply the Laplacian regularization for imposing feature networks such 

as gene regulatory networks and protein-protein interactions [9]. Instead of penalizing each 

network edge equally as in Laplacian regularization, another method penalizes each network 

feature equally [10]. However, these regularizations are driven from general biological 

knowledge, rather than from the data. Those prior knowledge might be noisy and biased 

towards to the input multi-modal data and target phenotypes. Thus, using such prior 

knowledge highly likely misses the predictive cross-modal feature relationships from the 

input data, resulting in only incremental improvements of phenotype prediction.

To address above issues, we developed a data-driven, interpretable regularized learning 

model, deep-ManReg to predict phenotypes from multi-modal data (Figure 1). In particular, 

deepManReg simultaneously (I) identifies nonlinear multi-modal relationships and (II) 

predicts phenotypes from multi-modal features and relationships. In particular, it first learns 

coupled deep neural networks to align multi-modal features via cross-modal manifolds 

onto a common latent space. This step aims to preserve both global consistency and local 

smoothness across modalities and reveal higher-order nonlinear cross-modal relationships 

and, especially, solving the trade-off between nonlinear and parametric manifold alignments. 
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Second, deepManReg uses cross-modal manifolds as a feature graph [10] to regularize the 

learning model for improving phenotype predictions (i.e., improving classification accuracy 

for classifiers or reducing the regression error for regressions) and also prioritizing the 

features and cross-modal interactions for the phenotypes. To solve this learning problem, we 

further developed an optimization algorithm to back-propagate the Riemannian gradients 

on a Stiefel manifold. As demo, we applied deepManReg primarily to (1) the image 

data of handwritten digits with multi-features [11] and (2) recent single cell mutli-modal 

data such as transcriptomics and electrophysiology for neuronal cells in the mouse visual 

cortex [12]. We found that deepManReg significantly improves predicting the phenotypes 

in both datasets and also prioritizes genes and electrophysiological features for the cellular 

phenotypes.

2. Results

Using our recent theoretic framework for multiview learning [6], deepManReg inputs multi-

modal data of samples, aligns multi-modal features and predicts the samples’ phenotypes. 

There are two major phases in deepManReg: (Phase 1) aligning multi-modal features by 

deep-neural-network based manifold alignment (deep manifold alignment) for identifying 

nonlinear, cross-modal feature relationships on a common latent space, and (Phase 2) 

predicting the phenotypes of the samples from both modalities using the classification 

regularized by cross-modal feature relationships. Figure 1 illustrates these two phases of 

deepManReg workflow.

2.1. Classifying digits from multiple-features dataset

We first tested deepManReg by a multiple features (mfeat) dataset [11], which contains 

2000 images of the handwritten digits 0–9 (i.e., 10 classes). In our experiment, two types 

of features, 216 profile correlations and 76 Fourier coefficients, which are considered as 

two modalities, are used to represent images. We applied deepManReg and compared with 

three other alignment methods, linear manifold alignment (LMA) [13], canonical correlation 

analysis (CCA) [14], and MATCHER [15], to the mfeat data.

Basically, CCA is a way of projecting the two data views on a common space that 

maximizes the correlation between them; linear manifold alignment is a manifold alignment 

method using linear operators for projection instead of using neural nets as in deepManReg 

for non-linear projection; MATCHER is a method for integrative analysis of single-cell 

measurements, aligning 1D pseudotime trajectories across different modalities (i.e., scRNA-

seq and single-cell methylome in case of the original paper). The core of MATCHER is 

also manifold alignment, but not parameterized and thus not able to be generalized for new 

instances as in deepManReg.

In Phase 1, we did two separate experiments. The first one was for visualizing alignment 

performances only, in which the features from two modalities are projected onto a 2-

dimensional (2D) space. Specifically, we defined two deep neural networks (DNNs) for 

cross-modal feature alignment in deepManReg with the same architecture with 2 hidden 

layers (500/100 hidden units) and 2 output-units. As shown in Figure 2, deepManReg 

outperforms CCA and LMA to align cross-modal features: the sums of pairwise distances 
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on the latent space are 86.0, 165.8, and 56.9 for CCA, LMA, and deepManReg, respectively. 

We defined the partial correspondence between the two modalities as an all-ones matrix with 

size 76×216. As such, we obtained a similarity matrix with size 292×292.

In Phase 2, we also used a deep neural network model for classification with two hidden 

layers (200/50 hidden units) and regularize the model with the similarity matrix found in 

Phase 1, i.e., feature graph regularization. We did a multiple train-test splits, randomly 

splitting all samples into the training/testing sets with a stratified ratio of 80/20 10 times. 

As above, we also used other alignment methods to find the cross-modal feature graphs and 

regularize the classifications. Further, we directly input the raw data to the classification to 

get the result without using feature graph regularization. Figures 3A, 3B and Supplementary 

Figure 1 show that deepManReg outperforms the other methods by using cross-modal 

feature graph from its aligned latent space to regularize classification. To compare the 

classification accuracy across different methods, we used one-sided Kolmogorov-Smirnov 

test (k.s. test) to see if deepManReg’s accuracy is significantly higher than other methods. 

The null hypothesis in the one-sided k.s. test is that the accuracy distributions of 

deepManReg and another method are not different with the alternative hypothesis that they 

are different (deepManReg is higher). The k.s. test p-values are adjusted by Bonferroni 

correction. We found that the accuracy of deepManReg for the testing sets to classify digits 

is significantly higher than LMA (Kolmogorov–Smirnov (k.s.) test statistic = 0.7, p< 1e-2), 

MATCHER (k.s. test = 1.0 p< 2e-3), CCA (k.s. test = 0.7, p< 2e-3), and the classification 

without any regularization (k.s. test = 1.0, p< 1.08e-05). Also, its average accuracy, 80.3% 

is higher than the random guess baseline of 10% (ten labels), LMA (75.3% mean accuracy), 

CCA (72.8% mean accuracy), MATCHER (74.3% mean accuracy) and the average accuracy 

of the classification without regularization (10.0% mean accuracy). Moreover, as shown in 

Figure 3C, deepManReg also achieves relatively high Area under the ROC Curve (AUC) 

values (i.e, above 0.9) for classifying ten digits 0–9.

2.2. Reconstructing gene regulatory networks by simulation data

We also applied deepManReg on simulated multi-omics data [16] to show that the aligned 

feature graph by deepManReg can reconstruct gene regulatory networks. The simulated 

data is generated by dyngen [16], a multimodal simulator. It first defines a model gene 

regulatory network and then generates multi-omics data of genes by a set of reactions on 

the network, such as various molecular abundances (i.e., pre-mRNA, mRNA, protein) at 

multiple time points. We tested deepManReg and other alignment methods (e.g., CCA, 

LMA, MATCHER) using two modalities—namely, mRNA and protein abundances—driven 

by the example model data of dyngen consisting of 5 genes and their corresponding products 

in a closed-loop controlling feedback. We used the same hyperparameters from our two 

other applications (mfeat and Patch-set data), e.g., two hidden layers (500/100 hidden 

units) for deepManReg and default parameters for other methods. Specifically, we aligned 

two modalities, mRNA and protein abundances, of the network model, consisting of 5 

genes (i.e., A, B, C, D, E) and their (activate or repress) relationships. After alignment 

(i.e., projecting two modalities onto the common manifold), we used kNN graphs (k=2) 

to reconstruct the network from projected data. As shown in Supplementary Figure 2, the 

evaluation results show that deepManReg outperforms other methods for reconstructing the 
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model gene regulatory network that generates simulation data. To evaluate the differences 

between original network and reconstructed networks, we used the following score (which is 

similar to the manifold alignment formula) as evaluation metric: S = |X′ − Original| + |Y′ − 

Original| + |X′ − Y′ |, where X′ and Y′are the adjacency matrices of networks reconstructed 

by mRNA abundance and protein abundance (i.e., Modalities 1 and 2) respectively, and 

Original is the original model network adjacency matrix. The two first terms show the 

degree of matching between the reconstructed networks (from two modalities) and the 

original network, and the third term evaluates the alignment of reconstructed networks by 

two modalities. Thus, the lower score, the better reconstruction. We found that deepManReg 

has a lower score (i.e., 16) than all other methods. This suggests that the capability 

of deepManReg for reconstructing gene regulatory networks via its aligning multi-omits 

features.

2.3. Classifying cellular phenotypes from multi-modal data

Recent Patch-seq technique measures multi-modal characteristics of single cells such as 

transcriptomics, electrophysiology and morphology [17]. For example, the Brain Initiative 

project has generated multimodal data of neuronal cells in the human and mouse brains 

[12]. Using those single-cell multi-modal data, ones have identified many cell types 

corresponding to various cellular phenotypes. Here, we applied deepManReg to recent 

Patch-seq data for the mouse visual cortex from Allen Brain Atlas for predicting neuronal 

phenotypes, including cell layers and transcriptomic types. Specifically, this dataset includes 

the transcriptomic, and electrophysiological data of 4435 neuronal cells (GABAergic 

cortical neurons) in the mouse visual cortex [12]. For cellular phenotypes for our prediction, 

we included six transcriptomically defined neuronal cell types (t-types), based on primarily 

expressed genes: Vip-type, Sst-type, Sncg-type, Serpinf1-type, Pvalb-type, and Lamp5-type, 

and five cell layers revealing the locations of cells on the visual cortex: L1, L2/3, L4, L5, 

and L6.

2.3.1. Single cell multi-modal dataset and data processing—The 

electrophysiological data includes the responses of three stimuli: short (3 ms) current pulses, 

long (1 s) current steps, and slow (25 pA/s) current ramp current injections. We extracted 

47 electrophysiological features (e-features) on stimuli and responses, identified by Allen 

Software Development Kit (Allen SDK) and IPFX Python package [18]. We then filtered the 

e-features with many missing values, extracted the cells from t-types and layers as above, 

and finally selected 41 e-features for 3654 neuronal cells. The transcriptomic data quantifies 

gene expression levels of the neuronal cells on the genome wide. We extracted the 1000 

genes that have the highest expression variations among the 3654 cells. Then, we input 

the log-transformed gene expression and e-features of those cells as input multi-modal data 

into deepManReg for predicting cellular phenotypes, i.e., X is 1000 genes by 3654 cells 

and Y is 41 e-features by 3654 cells. As shown in Figure 4, the latent space from deep 

manifold alignment (Phase 1) reveals that many genes and e-features have strong nonlinear 

relationships (via aligned cross-modal manifolds) (Supplementary Figure 3).

2.3.2. Aligning genes with electrophysiology for classification—We first 

applied the deep manifold alignment from deepManReg (Phase 1) into the multi-modal 
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feature set of the mouse visual cortex (1041 in total). To find the common latent space, we 

constructed two deep neural networks with the same architecture of 2 hidden layers (512/64 

hidden units) and reproduced a 3-dimensional latent space for similarity measurement. 

The partial correspondence matrix W is a 1041×1041 matrix defined by a combination of 

correlation matrix between two feature modalities (1000×41 on the top left, 41×1000 on the 

bottom right) and the kNN (k = 5) graph within each modality (1000×1000 in the top right, 

41×41 on the bottom left). As a comparison, we applied linear manifold alignment (LMA), 

canonical-correlation analysis (CCA) with the correspondence matrix constructed the same 

way, and MATCHER [15] to get three other latent spaces, and then constructed a similarity 

matrix in the latent space for regularization in Phase 2. We also directly applied the raw data 

of the features to the classification, i.e., without regularization. In addition, deepManReg 

ran faster than other methods for alignment, e.g., with the running times by a laptop with 

CPU i5–8250U: CCA (725.96 seconds), Manifold Alignment (663.43 seconds), MATCHER 

(150.94 seconds), and deepManReg (90.10 seconds). If GPU GTX 1060Ti was used for deep 

learning, deepManReg alignment took 57.90 seconds.

After multi-modal feature alignment, we applied deepManReg to use the distances of genes 

and e-features on the latent space as a ”feature graph” to regularize another deep neural 

network model to classify the cellular phenotypes such as cortical layers of cells in the brain, 

which is achieved by adding a regularization term into the neural network model (Methods). 

In particular, the regularization matrix is a 1000×41 matrix by assigning the observations 

over 50% percentile in matrix 1/(1+distance) to be 1 and others to be 0. The neural network 

for classification has the input layer consisting of 1041 nodes (1000 genes + 41 e-features), 

two hidden layers (100/50 hidden units) and the final output layer with the same number 

of units as phenotypes along with a Softmax operation. For instance, for classifying cell 

layers, the five output units represent L1, L2/3, L4, L5, and L6. We randomly split all 

cells into the training/testing sets with a stratified ratio of 80/20 and obtained 500 sets. 

For each training set, we oversampled the cells from each label to be 941 cells and thus 

balance sample sizes across labels (e.g., L1: 262 cells; L2/3 1097 cells; L4: 385 cells; L5: 

1176 cells; L6:734 cells) [19]. As shown in Figures 5A, 5B, and Supplementary Figure 

4, the prediction accuracy of deepManReg for the testing sets to classify cell layers is 

significantly higher than other methods (k.s. test p-values < Bonferroni corrected cutoff 

0.05/6=0.0083): LMA (k.s. test statistic = 0.95, p< 2.8003221e-50), CCA (k.s. test statistic 

= 0.80, p< 1.7820141e-32), MATCHER (k.s. test statistic = 0.72, p< 1.3383191e-25), and 

the classification without any regularization (k.s. test statistic = 0.89, p< 4.2826771e-42). 

Besides, deepManReg outperforms the neural network classifications using single modality 

only, i.e., e-features only (k.s. test statistic = 0.89, p < 4.2826771e-42) and gene expression 

only (k.s. test statistic = 0.98, p < 2.1977161e-55). Also, its average accuracy, 51.4% 

(with a 95% confidence interval [47.9%, 54.8%]) is higher than the random guess 

baseline of 20% (five labels), LMA (43.0% mean accuracy, [32.2%, 49.6%] confidence 

interval), CCA (46.2% mean accuracy, [40.1%, 51.3%] confidence interval), MATCHER 

(46.5% mean accuracy, [40.9%, 52.8%] confidence interval), e-features only (30.1% mean 

accuracy, [7.1%, 51.8%] confidence interval), gene expression only (44.0% mean accuracy, 

[40.4%, 47.4%] confidence interval), and the average accuracy of the classification without 

regularization (30.6% mean accuracy, [7.1%, 51.6%] confidence interval). Moreover, as 
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shown in Figure 5C, deepManReg also achieves relatively high AUC values of 0.96, 0.86, 

0.84, 0.79, and 0.91 for the five layers L1, L2/3, L4, L5, and L6, respectively. In addition 

to predicting cell types, we also found that deepManReg outperforms other methods for 

predicting t-types, i.e., average accuracy 90% ([87.0%, 93.4%] confidence interval) for 

deepManReg vs. 35.0% ([3.2%, 76.8%] confidence interval) for LMA vs. 71.6% ([48.2%, 

86.4%] confidence interval) for CCA vs. 71.1% ([50.6%, 89.1%] confidence interval) 

for MATCHER vs. 64.1% ([20.1%, 92.9%] confidence interval) for classification without 

regularization. These results show that the regularized classification by deepManReg’s 

alignment improves predicting cellular phenotypes from single cell multimodal data. This 

also suggests the contributions from the nonlinear manifold relationships of gene expression 

and electrophysiology to the cellular phenotypes.

2.3.3. Prioritizing multi-modal features for cellular phenotypes—After training 

a deepManReg model, we further used a derivative-based method called integrated gradient 

[20] to prioritize genes and e-features for each phenotype (e.g., cell layers in Supplementary 

Data 1). Specifically, we calculated the gradient of the model’s prediction for each e-feature 

and/or gene to quantify the changes of the output response values (e.g., cell layers) by 

a small change of input gene expression and e-feature values [21]. We used the recent 

Python package, Captum [22] to implement the integrated gradient method and calculate 

the importance scores of each gene/e-feature for output labels (i.e., cellular phenotypes). 

We then ranked the genes and e-features by the scores and prioritized top ones for 

each phenotype. For instance, we summarized top prioritized genes and e-features for 

each cell layer in Supplementary Data 1. To evaluate the prioritization of cross-modal 

features, we calculated their Spearman correlation coefficients across cells. As shown on 

Supplementary Figure 5, the prioritized genes and e-features for each layer have higher 

Spearman correlations across the layer’s cells than the rest of the cells (one-sided t-test 

p ¡ 0.0001 for Layer 1, 0.0004 for Layer 2/3, 0.0001 for Layer 4, 0.11 for Layer 5 and 

0.13 for Layer 6). This suggests that our deepManReg identifies such cross-modal feature 

interactions for different cortical layers. However, Spearman correlation is a ranking based 

correlation, only providing descriptive measurements between genes and e-features. Thus, 

deepManReg is further able to uncover predictive cross-modal interactions for classifying 

cortical layers.

3. Discussion

Our deepManReg method learns multiple deep neural networks for different modalities and 

jointly trains them to align multi-modal features onto a common latent space. The distances 

of various features within and between modalities on the space represent their nonlinear 

relationships identified by cross-modal manifolds. The applications in the paper focus on 

classification, but the loss function of the regularized learning in deepManReg (Phase 2) can 

work generally for regression as well, i.e., to predict continuous phenotypes. Specifically, 

the loss function in Phase 2 of deepManReg is in general form where the label ok can 

take discrete or continuous values. If ok is continuous and loss l(·, U ) is a square loss, the 

learning problem becomes a regression problem.
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Although we demonstrated that deepManReg works for two particular datasets, 

deepManReg can be generalized to any multi-modal data such as additional single cell 

omics (scATAC-seq, scHi-C, etc) (Methods). Also, the architectures of its deep neural 

networks for manifold alignment can be designed specific for each modality. For example, 

if two modalities are genomics and images, the neural network for aligning images can be 

changed to a convolutional neural network. Also, one can model those neural networks by 

recent graph neural networks [23], aiming to not only align multi-modal features but also 

underlying biological networks in the modalities.

deepManReg solves the trade-off between nonlinear and parametric manifold alignment 

(by utilizing the nonlinearity and parametric of neural architecture which is trained by 

a Riemannian optimization procedure). Specifically, deepManReg solved the non-linear 

projections (from multiple datasets) by gradient descent on a Stiefel manifold. One 

significant advantage of deepManReg is that it is a parameterized method: using two 

deep neural nets as projection functions and learning the networks’ parameters by 

backpropagating the Riemannian gradient of the gradient descent procedure so that it can 

generalize to new instances. Solving non-linear dimension reduction by gradient descents 

on Stiefel manifold has been researched extensively [24] and well implemented [25]. To 

our knowledge, however, this is the first time a parameterized non-linear method has been 

proposed so the projection can be generalized for unseen data. Although generalized Stiefel 

manifolds have been developed thoroughly [26], our solution showed that, calculating the 

gradient on the (plain) Stiefel manifold is more efficient for two reasons: (1) the matrix 

multiplication is simpler because we only need to calculate FFT, not FLFT as in generalized 

Stiefel manifold, and (2) we have the closed form solution [24] for the projection onto the 

(plain) Stiefel manifold that is of the essence since this is the last layer of the model and 

needs to be differentiable.

Furthermore, deepManReg works as both representation learning and regularized 

classification. Since dimensionality reduction is the essential characteristic of manifold 

alignment, deepManReg is scalable for various input feature sizes and thus able to perform 

the transcriptome-wide analysis such as inputting all possible genes. We experimented 

with different numbers of highly variable genes and found that the average accuracies for 

classifying five major cortical layers do not change too much: 53.1% for 500 genes, 51.4% 

for 1000 genes, and 49.1% for 2000 genes. However, training deepManReg requires a non-

trivial hyperparameter optimization since training two deep neural networks simultaneously 

includes a large combination of parameters. Another potential issue for aligning such large 

datasets in deepManReg which may be computational intensive is the large joint Laplacian 

matrix (Supplementary Algorithm). Thus, how to reduce the computational burden in 

deepManReg will be a key future improvement. For example, we may use the Nystrom 

method [27] to approximate the Laplacian matrix for making deepManReg more scalable 

and computationally efficient.

It is also worth noting that there are differences between deepManReg and other geometric-

based learning methods: (a) structured-output learning methods, such as graph neural 

networks can only learn the structures or relationships among samples [23]; (b) graph-

regularized learning methods (mostly based on Laplacian graphs [28, 29, 30], spectral 
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graph convolutions [31]) use the relationships of features to regularize the learning model 

but aim to penalize each network edge, rather than each feature itself [10]. Moreover, 

manifold learning has been used to align single cell multi-omics data, aiming to find 

the correspondence across single cell multi-omics, such as in MATCHER [15] and MMD-

MA [32]. While MATCHER works mainly on a bi-modal data (i.e., DNA methylation 

and gene expression), MMD-MA can work on multiple modals and does not require the 

correspondence among modals by means of a maximum mean discrepancy (MMD) term. 

Thus, deepManReg can be extended in a similar way in which the correspondence matrix 

is not given but learned using manifold warping [33] or local geometry matching [13]. 

Furthermore, deepManReg can also be generalized to integrate more than two modalities by 

concatenating input data and similarity matrices, aiming to improve phenotype prediction 

from multi-modal data and prioritize cross-modal features for phenotypes.

4. Methods

Using our recent theoretic framework for multiview learning [6], deepManReg inputs multi-

modal data of samples, aligns multi-modal features and predicts the samples’ phenotypes. 

For instance, two modalities of a set of p samples can be modeled as T = zk, tk, ok k = 1
p

with zk ∈ ℝn being the kth sample of Modal 1 and tk ∈ ℝm being the kth sample of Modal 2, 

and associated phenotypes for both modalities (i.e., labels) ok ∈ O. Also, Modal 1 and Modal 

2 have n and m features, respectively. The features of Modal 1 and Modal 2 are modeled 

as X = xi i = 1
n  and Y = yj j = 1

m  respectively, where xi ∈ ℝp is the ith feature of Modal 1 

and yj ∈ ℝp is the jth feature of Modal 2. In matrix notation, zk and xi are respectively 

columns and rows of the same matrix, representing Modal 1 data. Similarly, tk and yj are 

of the matrix representing Modal 2 data. There are two major phases in deepManReg: 

(Phase 1) aligning multi-modal features, i.e. xi i = 1
n  and yj j = 1

m , by deep-neural-network 

based manifold alignment (deep manifold alignment) for identifying nonlinear, cross-modal 

feature relationships on a common latent space, and (Phase 2) predicting the phenotypes 

ok k = 1
p  of the samples from both modalities, i.e., zk, tk k = 1

p , using the classification 

regularized by cross-modal feature relationships.

4.1. Phase 1: Deep manifold alignment of multi-modal features

4.1.1. Parametric nonlinear alignment via manifolds—Manifold alignment is 

a class of techniques for learning representations of multiple data views, such that 

the presentation of each view is the most predictive of, and, at the same time, the 

most predictable by, the representation of other views. It can also be considered as a 

generalization of canonical correlation analysis (CCA) [14] whereas the intrinsic geometry 

of data views are preserved and/or the projections are nonlinear [6].

Manifold alignment has been applied to identify linear (feature-level) projections, or 

nonlinear (instance-level) embeddings of multi-modal data. While the instance-level 

version generally aligns and matches different data-views with high accuracy, it cannot 

be generalized for new instances since the new coordinates in the common latent 

Nguyen et al. Page 9

Nat Comput Sci. Author manuscript; available in PMC 2022 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



space are learned directly, not via parameterized projections. The feature-level version is 

generalizable, allowing new instances to be easily embedded into the learned latent space via 

parameterized yet linear projections. These properties are crucial for transferring knowledge 

across modalities. Thus, deepManReg simultaneously learns different nonlinear mappings 

for different data modalities for discovering cross-modal manifolds and aligns them onto 

a common latent space. This idea combines appealing properties of both feature-level and 

instance-level projections for achieving accurate alignment and generalization. Furthermore, 

traditional solutions for manifold alignment rely on the eigendecompostion that is typically 

computationally intensive. To improve this, we utilize the stochastic gradient descent (SGD) 

and backpropagation techniques for speeding up training in deepManReg.

Particularly, deepManReg first calculates the similarities in terms of nonlinear manifolds 

among all possible features across modalities. To this end, deepManReg conducts a 

deep manifold alignment between all features so that the features are aligned onto a 

common latent space. The distances of the features on the latent space thus reveal 

such similarities of the features in terms of nonlinear manifold structures, suggesting 

nonlinear, cross-modal feature relationships. Mathematically, given two modal datasets, 

X = xi i = 1
n  and Y = yj j = 1

m  where X are the features of Modal 1 and Y are the 

features of Modal 2, and the partial correspondences between the instances in X and Y, 

encoded by the matrix W X, Y ∈ ℝn × m, we want to learn the two mappings f (.) and 

g(.) that map xi and yj to f xi ∈ ℝd and g yj ∈ ℝd, respectively onto the latent space 

with dimension d ≪ p that preserves the local geometry of X, Y and also matches cross-

modal features from the correspondence. The correspondence matrix W(X,Y ) could be 

defined as W i, j =
1 if Xi and Y j are correspondent to each other
0 otherwise

 and thus need otherwise not 

be symmetric.

Further, the instance xi is correspondent to the instance yj if and only if f (xi) = 

g(yj). Besides, any prior correspondence information between the features from different 

modalities can be used as partial information to initially build the corresponding matrix 

W(X,Y ). After mappings, f X ∈ ℝn × d and g Y ∈ ℝm × d represents the new coordinates of 

the features of Modal 1 and 2 on the latent space with the dimension d, respectively. That 

said, the concatenation of the new coordinates F = f X
g Y  the unified representation of the 

features from X and Y on the common latent space.

Then, according to [34], the loss function for manifold alignment can be formed as the 

Laplacian eigenmaps [35] using the joint Laplacian and the joint adjacency matrix of the two 

datasets:

ℓ F = ∑
i, j

F i, ⋅ − F j, ⋅ 2W i, j ,
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where the sum is taken over all pairs of instances from both datasets, F  is the unified 

representation of both datasets, and W =
W X W X, Y

W X, Y
T W Y

 is the joint similarity matrix (Wx 

and Wy are similarity matrices within each dataset X and Y )

Using the facts that M i, ⋅ 2 = ∑kM i, k 2 and that the Laplacian is a quadratic difference 

operator, the above equation can be transformed into:

ℓ F = ∑
i, j

∑
k

F i, k − F j, k 2W i, j (1)

= tr FTLF , (2)

where L = D − W (D is the diagonal matrix of W ) is the joint Laplacian [34] of both 

datasets.

For this loss function to work properly, i.e., avoiding a trivial solution of mapping all 

instances to zero, we need an additional constraint:

FTDF = I,

where D is the diagonal matrix of W and I is the d × d identity matrix.

Finally, we solve the following optimization problem for manifold alignment, i.e., to find the 

optimal mapping functions f (.) and g(.):

min
f, g

tr FTLF

s . t . FTDF = I .

Normally, this optimization can be solved by eigendecomposition [4], which however is 

computationally intensive. Moreover, solving generalized eigenvector problem gives us 

merely the new coordinates of the latent manifold (i.e., Xʹ = f(X), Yʹ = g(Y )), not 

the closed form of mappings themselves (i.e., f (·) and g(·)), and thus is incapable of 

generalizing for new instances. To solve this, we parameterized the mappings f (·) and g(·) 

by using coupled deep neural networks (Section 2.1.2) and finally form the optimization 

problem as below:

min
f, g

tr FTLF
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s . t . FTF = I

if we set F = FD1/2 and L = D−1/2LD−1/2.

This is actually an optimization problem on the Stiefel manifold, where the feasible set 

of the orthogonality constraints Sn, p: = X ∈ ℝn × p:XTX = I  is referred to as the Stiefel 

manifold [36].

4.1.2. Nonlinear manifold co-embedding by deep neural networks—As above, 

we model the relationships between the observable data xi, yj and its latent representation 

f (xi), g(yj ) using two nonlinear mappings f xi; W , g yj; Z  where f ⋅ ; W , g ⋅ ; Z  denote 

the mapping functions and W, Z denote the set of the function parameters. In deepManReg, 

we employ the deep neural networks (DNNs) to model our mapping functions, since DNNs 

have the ability of approximating any continuous mapping using a reasonable number of 

parameters. Note that, of the two DNNs, the numbers of input nodes are unnecessary to 

be the same, but the numbers of output nodes (i.e., latent representations of two modal 

features) have to be exactly the same for allowing having a common latent space. Precisely, 

if X ∈ ℝn × p is a matrix of data row vectors xi ∈ ℝp, the number of input nodes for the first 

network f ⋅ ; W  is p, and if Y ∈ ℝm × q is a matrix of data row vectors yj ∈ ℝq, the number 

of input features for the second network g ⋅ ; Z  is q. The number of output represented 

features of both DNNs is d, the dimension of the common latent manifold space.

4.1.3. Training neural networks by Stiefel manifolds for alignment—There exist 

two key issues for generalizing backpropagation to train our DNNs for deep manifold 

alignment. The first one is preserving the manifold constraint in the output layer. As we 

force the outputs to be on Stiefel manifolds, merely using the forward propagation in the 

normal DNN is not guaranteed to yield valid orthogonal outputs. Second, while the gradient 

of loss function with respect to output layer, i.e., F , can be calculated easily, computing those 

with hidden layers, i.e. W, Z has not been well-solved by the traditional backpropagation.

To solve the first issue of preserving the constraint, we construct the last layer by projecting 

the output of the preceding layer 
f X
g Y  onto the Stiefel manifold Sm+n,d. Specifically, we 

use the classical projection operator π(·) which is defined as:

F = π ∘ f X
g Y = argmin

Z ∈ Sm + n, d

f X
g Y − Z

F

2
.

It is known that the solution of this problem is given by

F = UIm + n, dV T ,
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where 
f X
g Y = UΣV T  is the SVD decompostion of 

f X
g Y . Thus, F  now is an orthogonal 

output, i.e. FTDF = I.

As for the second issue, we have developed a new way of updating the weights W, Z by 

exploiting an SGD setting on the Stiefel manifolds. The steepest descent direction for the 

corresponding loss function ℓ F  with respect to F  on the Stiefel manifold is the Riemannian 

gradient ∇F l. To obtain it, the Euclidean gradient ∇F ℓ =
∂tr FTLF

∂F
= LF + L⊤F  is projected 

onto the tangent space TF Sm + n, d  of Stiefel manifold Sm+n,d. The projection is defined as

∇F ℓ = π ∇F ℓ = argmin
X ∈ TF Sm + n, d

∇F ℓ − X F
2

= Fskew FT ∇F ℓ + I − FFT ∇F ℓ,

where skew FT ∇F ℓ = 1
2 FT ∇F ℓ − ∇F ℓ TF . The project of 

f X
g Y  onto the Stiefel manifold 

and the Euclidean gradient onto the tangent space of the Stiefel manifold are illustrated in 

Supplementary Figure 6.

Putting all together, we summarized our optimization for deep manifold alignment in 

Supplementary Algorithm, which can be readily implemented with the modern tools for 

automatic differentiation such as PyTorch [37].

4.2. Phase 2: Regularized classification by cross-modal feature relation-ships

After finding the common latent space from deep manifold alignment, we can now calculate 

the distance matrix D for each row pairs of matrix F , and then similarity matrix S = 1
1 + D . 

The latter finally gives the similarities of all multi-modal features in terms of nonlinear 

manifold structures, systematically evaluating cross-modal feature relationships.

In Phase 2 of deepManReg, we want to improve phenotype prediction from multi-

modal data using such cross-modal feature relationships. In particular, back to the 

training set T = zk, tk, ok k = 1
p , deepManReg learns a classifier paramaterized by a weight 

U ∈ ℝ m + n × d by minimizing a loss function ℓ z, t, o; U  over the training instances (zk, tk, 
ok) [10]. U has m + n columns (total number of cross-modal features) and d rows (number 

of reduced dimensions on the aligned latent space). Now, with the similarity information of 

features, provided by matrix S from the previous step, we can use S as an adjacency matrix 

of a feature graph encoding the relationship between all pairs of features within and across 

modalities. The degree of each vertex in the feature graph has to be sum to one, ∑jSij = 1, 

to avoid some features dominating the whole graph. Because similar features should have 

similar weights after training, we regularize each feature’s weight by the squared amount 

that it differs from the weighted average of its neighbors. Thus, the loss function for this 

feature-graph-regularized learning is given by [10]:
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loss U = ∑
k = 1

p
ℓ zk, tk, ok; U + α ∑

j = 1

n + m
Uj − ∑

i
SjiUi

2
+ β U 2

2 .

The hyperparameters α and β are to balance between the feature graph regularization and 

the ridge regularization. Finally, the combined regularization can be rewritten as UT MU 

where M = α I − S T I − S + βI. We also did an ablation study on the values of α and β 
and found that the larger α is, the higher prediction accuracy our model has (Supplementary 

Table 1). This implies that our feature-network regularized term contributes to improved 

classification more than the L2 term. The classification improvement by feature-network 

regularization was also observed in previous studies [10].

The classifiers can be general. In practice, here, we use a neural network as a classifier so 

the optimization problem above can be solved easily with gradient descent methods. Also, 

we can use other approaches for regularization such as the graph Laplacian [10]. The main 

difference between the Laplacian regularization and the feature graph regularization is that 

the former penalizes each edge (between two features) equally while the latter penalizes 

each feature (e.g., nodes) equally. The efficiency of the approaches depends on the problem 

domain.

4.3. Data Availability

The multiple-features (mfeat) dataset is available at [11]. The Patch-seq transcriptomics data 

and electrophysiological data are available at [12]. The simulated multi-omics data and gene 

regulatory network (i.e., the example model data of dyngen for 5 genes) are available at [16]. 

Source Data are available with this paper.

4.4. Code Availability

Code for deepManReg implementation and data analysis are available at https://github.com/

daifengwanglab/deepManReg. An interactive version of the code base is provided in [38].

4.5. Statistics & Reproducibility

To compare the classification accuracy across different methods, we used one-sided 

Kolmogorov-Smirnov test (k.s. test) to see if deepManReg’s accuracy is significantly higher 

than other methods. The null hypothesis in the one-sided k.s. test is that the accuracy 

distributions of deepManReg and another method are not different with the alternative 

hypothesis that they are different (deepManReg is higher). The k.s. test p-values are adjusted 

by Bonferroni correction. No statistical method was used to predetermine sample size.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: deepManReg: a deep manifold-regularized learning model for improving phenotype 
prediction from multi-modal data.
deepManReg inputs multi-modal datasets, e.g., Modal 1 (left top) and Modal 2 (left 

bottom), across the same set of samples. In Phase 1 (top flow), deepManReg aligns 

all features (the rows) across modalities by deep manifold alignment. In particular, it 

uses coupled deep neural networks f ⋅ ; W  and g ⋅ ; Z , parameterized with W and Z
to project the features onto a common latent manifold space F . The similarity matrix S
of features on the latent space is then calculated, encoding the similarity of nonlinear 

manifolds among all pairs of both cross-modal and within-modal features. In Phase 2 

(bottom flow), deepManReg inputs all the samples (the columns of the input data) into 

a regularized classification model, parameterized by U. The similarity matrix of features 

on the latent manifold space S in Phase 1 is used to regularize this classification model 

(i.e., via feature graph regularization), imposing similar features to have similar weights, 

when training. Finally, deepManReg outputs a regularized classification (i.e., deep manifold-

regularized) for improving phenotype prediction and prioritizing cross-modal features for 

the phenotypes.
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Figure 2: Multi-modal feature alignment of handwritten digits.
Two modalities, Fourier coefficient (Blue) and profile correlation (Orange), are aligned on 

a 2D common space. Each dot is a digit represented by either Fourier coefficient or profile 

correlation. The total sum of pairwise Euclidean distances between the features of two 

modalities on the latent space are 86.0, 165.8, 226 and 56.9 for CCA, Linear Manifold 

Alignment (LMA), MATCHER and deepManReg respectively.
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Figure 3: Regularized classification results for the mfeat digits dataset.
(A) Boxplot and (B) Cumulative distributions of testing accuracies for classifying digits 

by deepManReg (Orange) vs. the neural network classification without any regularization 

(Blue), by Linear Manifold Alignment (Green), CCA (Red), and MATCHER (Purple). The 

box extends from the lower to upper quartile values of the data (i.e., test accuracies of 10 

experiments), with a line at the median. (C) Receiver operating characteristic (ROC) curves 

for classifying digits by deepManReg. x-axis: False Positive Rate, y-axis: True Positive 

Rate.
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Figure 4: The network showing the relationships across two modalities—genes and 
electrophysiology.
The genes and electrophysiological features (e-features) of neuronal cells in the mouse 

visual cortex having small Euclidean distances on the aligned latent space by deepManReg 

Phase 1, i.e., deep manifold alignment. Cyan: genes. Yellow: e-features. Nodes are 

connected by Similarity = 1/(1+Euclidean distance) > 0.997 on 3D aligned space.
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Figure 5: Regularized classification results for single-cell multi-modal data in the mouse visual 
cortex.
(A) Boxplots and (B) Cumulative distributions of testing accuracies for classifying cell 

layers in the mouse visual cortex by deepManReg (Orange) vs. neural network classification 

without any regularization using both modalities (Blue), Electrophysiological features (E-

feature) only (Brown), and gene expression only (Pink) by Linear Manifold Alignment 

(Green), CCA (Red), and MATCHER (Purple). The box extends from the lower to upper 

quartile values of the data (i.e., test accuracies of 100 experiments), with a line at the 

median. (C) Receiver operating characteristic (ROC) curves for classifying cell layers in the 

mouse visual cortex by deepManReg. Cell layers include Blue: L1, Yellow: L2/3, Green: L4, 

Orange: L5 and Purple: L6. x-axis: False Positive Rate, y-axis: True Positive Rate.
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