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Abstract

The phenotypes of complex biological systems are fundamentally driven by various multi-

scale mechanisms. Multi-modal data, such as single cell multi-omics data, enables a deeper
understanding of underlying complex mechanisms across scales for phenotypes. We developed an
interpretable regularized learning model, deepManReg, to predict phenotypes from multi-modal
data. First, deepManReg employs deep neural networks to learn cross-modal manifolds and then
to align multi-modal features onto a common latent space. Second, deepManReg uses cross-modal
manifolds as a feature graph to regularize the classifiers for improving phenotype predictions and
also for prioritizing the multi-modal features and cross-modal interactions for the phenotypes. We
applied deepManReg to (1) an image dataset of handwritten digits with multi-features and (2)
single cell multi-modal data (Patch-seq data) including transcriptomics and electrophysiology for
neuronal cells in the mouse brain. We show that deepManReg improved phenotype prediction in
both datasets, and also prioritized genes and electrophysiological features for the phenotypes of
neuronal cells.
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1. Introduction

Recent large-scale multi-modal data such as various next generation sequencing data allows
a deeper understanding of cellular and molecular mechanisms from genotype to phenotype
in complex biological systems. Also, many of those data have been used to predict
phenotypes, transforming the bioinformatics research from descriptive to predictive [1].
However, it is still challenging to integrate and analyze those multi-modal data which are
typically high-dimensional and heterogeneous across modalities. In particular, cross-modal
features likely have the nonlinear relationships that many computational methods may miss
in phenotype prediction [2]. For example, feature extraction and selection are widely used
to reduce the dimensionality for prediction. However, the unselected features may also have
useful relationships (likely nonlinear) which potentially are able to contribute to prediction
[3]. Therefore, systematic identification of nonlinear features and feature relationships
across modalities is key to improve phenotype prediction from multi-modal data. To this
end, manifold alignment has been widely used to simultaneously reduce the dimensions of
multiple data types and preserve the geometric nonlinear local structures in and between
data types (which is also known as multiview nonlinear dimensionality reduction [4,

5, 6]). However, such methods suffer from a trade-off, being either non-parametric-and
thus incapable of generalizing to new data without re-training the whole model from the
beginning-or linear—that leads to inaccuracy alignment.

Besides, for improving phenotype prediction, feature selection and/or extraction
(unsupervised learning) are widely used as a preprocessing step prior to supervised

learning. However, since the preprocessing step is separated from the prediction step, highly
predictive features may be missed, potentially affecting the prediction performance. For
instance, many disease genes are actually not differentially expressed between disease and
control [7]. To address this, regularization is used as complementary approaches. Basically,
regularization imposes prior information to the supervised learning models for prediction.
For example, previous methods impose the L1 regularization for implicitly selecting features
[8]. Other methods apply the Laplacian regularization for imposing feature networks such

as gene regulatory networks and protein-protein interactions [9]. Instead of penalizing each
network edge equally as in Laplacian regularization, another method penalizes each network
feature equally [10]. However, these regularizations are driven from general biological
knowledge, rather than from the data. Those prior knowledge might be noisy and biased
towards to the input multi-modal data and target phenotypes. Thus, using such prior
knowledge highly likely misses the predictive cross-modal feature relationships from the
input data, resulting in only incremental improvements of phenotype prediction.

To address above issues, we developed a data-driven, interpretable regularized learning
model, deep-ManReg to predict phenotypes from multi-modal data (Figure 1). In particular,
deepManReg simultaneously (1) identifies nonlinear multi-modal relationships and (11)
predicts phenotypes from multi-modal features and relationships. In particular, it first learns
coupled deep neural networks to align multi-modal features via cross-modal manifolds

onto a common latent space. This step aims to preserve both global consistency and local
smoothness across modalities and reveal higher-order nonlinear cross-modal relationships
and, especially, solving the trade-off between nonlinear and parametric manifold alignments.

Nat Comput Sci. Author manuscript; available in PMC 2022 July 31.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Nguyen et al.

Page 3

Second, deepManReg uses cross-modal manifolds as a feature graph [10] to regularize the
learning model for improving phenotype predictions (i.e., improving classification accuracy
for classifiers or reducing the regression error for regressions) and also prioritizing the
features and cross-modal interactions for the phenotypes. To solve this learning problem, we
further developed an optimization algorithm to back-propagate the Riemannian gradients
on a Stiefel manifold. As demo, we applied deepManReg primarily to (1) the image

data of handwritten digits with multi-features [11] and (2) recent single cell mutli-modal
data such as transcriptomics and electrophysiology for neuronal cells in the mouse visual
cortex [12]. We found that deepManReg significantly improves predicting the phenotypes
in both datasets and also prioritizes genes and electrophysiological features for the cellular
phenotypes.

2. Results

Using our recent theoretic framework for multiview learning [6], deepManReg inputs multi-
modal data of samples, aligns multi-modal features and predicts the samples’ phenotypes.
There are two major phases in deepManReg: (Phase 1) aligning multi-modal features by
deep-neural-network based manifold alignment (deep manifold alignment) for identifying
nonlinear, cross-modal feature relationships on a common latent space, and (Phase 2)
predicting the phenotypes of the samples from both modalities using the classification
regularized by cross-modal feature relationships. Figure 1 illustrates these two phases of
deepManReg workflow.

2.1. Classifying digits from multiple-features dataset

We first tested deepManReg by a multiple features (mfeat) dataset [11], which contains
2000 images of the handwritten digits 0-9 (i.e., 10 classes). In our experiment, two types

of features, 216 profile correlations and 76 Fourier coefficients, which are considered as

two modalities, are used to represent images. We applied deepManReg and compared with
three other alignment methods, linear manifold alignment (LMA) [13], canonical correlation
analysis (CCA) [14], and MATCHER [15], to the mfeat data.

Basically, CCA is a way of projecting the two data views on a common space that
maximizes the correlation between them; linear manifold alignment is a manifold alignment
method using linear operators for projection instead of using neural nets as in deepManReg
for non-linear projection; MATCHER is a method for integrative analysis of single-cell
measurements, aligning 1D pseudotime trajectories across different modalities (i.e., SCRNA-
seq and single-cell methylome in case of the original paper). The core of MATCHER is
also manifold alignment, but not parameterized and thus not able to be generalized for new
instances as in deepManReg.

In Phase 1, we did two separate experiments. The first one was for visualizing alignment
performances only, in which the features from two modalities are projected onto a 2-
dimensional (2D) space. Specifically, we defined two deep neural networks (DNNs) for
cross-modal feature alignment in deepManReg with the same architecture with 2 hidden
layers (500/100 hidden units) and 2 output-units. As shown in Figure 2, deepManReg
outperforms CCA and LMA to align cross-modal features: the sums of pairwise distances
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on the latent space are 86.0, 165.8, and 56.9 for CCA, LMA, and deepManReg, respectively.
We defined the partial correspondence between the two modalities as an all-ones matrix with
size 76x216. As such, we obtained a similarity matrix with size 292x292.

In Phase 2, we also used a deep neural network model for classification with two hidden
layers (200/50 hidden units) and regularize the model with the similarity matrix found in
Phase 1, i.e., feature graph regularization. We did a multiple train-test splits, randomly
splitting all samples into the training/testing sets with a stratified ratio of 80/20 10 times.
As above, we also used other alignment methods to find the cross-modal feature graphs and
regularize the classifications. Further, we directly input the raw data to the classification to
get the result without using feature graph regularization. Figures 3A, 3B and Supplementary
Figure 1 show that deepManReg outperforms the other methods by using cross-modal
feature graph from its aligned latent space to regularize classification. To compare the
classification accuracy across different methods, we used one-sided Kolmogorov-Smirnov
test (k.s. test) to see if deepManReg’s accuracy is significantly higher than other methods.
The null hypothesis in the one-sided k.s. test is that the accuracy distributions of
deepManReg and another method are not different with the alternative hypothesis that they
are different (deepManReg is higher). The k.s. test p-values are adjusted by Bonferroni
correction. We found that the accuracy of deepManReg for the testing sets to classify digits
is significantly higher than LMA (Kolmogorov-Smirnov (k.s.) test statistic = 0.7, p<le-2),
MATCHER (k.s. test = 1.0 p<2e-3), CCA (k.s. test = 0.7, p<2e-3), and the classification
without any regularization (k.s. test = 1.0, p< 1.08e-05). Also, its average accuracy, 80.3%
is higher than the random guess baseline of 10% (ten labels), LMA (75.3% mean accuracy),
CCA (72.8% mean accuracy), MATCHER (74.3% mean accuracy) and the average accuracy
of the classification without regularization (10.0% mean accuracy). Moreover, as shown in
Figure 3C, deepManReg also achieves relatively high Area under the ROC Curve (AUC)
values (i.e, above 0.9) for classifying ten digits 0-9.

2.2. Reconstructing gene regulatory networks by simulation data

We also applied deepManReg on simulated multi-omics data [16] to show that the aligned
feature graph by deepManReg can reconstruct gene regulatory networks. The simulated
data is generated by dyngen [16], a multimodal simulator. It first defines a model gene
regulatory network and then generates multi-omics data of genes by a set of reactions on
the network, such as various molecular abundances (i.e., pre-mRNA, mRNA, protein) at
multiple time points. We tested deepManReg and other alignment methods (e.g., CCA,
LMA, MATCHER) using two modalities—namely, mRNA and protein abundances—driven
by the example model data of dyngen consisting of 5 genes and their corresponding products
in a closed-loop controlling feedback. We used the same hyperparameters from our two
other applications (mfeat and Patch-set data), e.g., two hidden layers (500/100 hidden

units) for deepManReg and default parameters for other methods. Specifically, we aligned
two modalities, mMRNA and protein abundances, of the network model, consisting of 5
genes (i.e., A, B, C, D, E) and their (activate or repress) relationships. After alignment

(i.e., projecting two modalities onto the common manifold), we used KNN graphs (k=2)

to reconstruct the network from projected data. As shown in Supplementary Figure 2, the
evaluation results show that deepManReg outperforms other methods for reconstructing the

Nat Comput Sci. Author manuscript; available in PMC 2022 July 31.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Nguyen et al.

Page 5

model gene regulatory network that generates simulation data. To evaluate the differences
between original network and reconstructed networks, we used the following score (which is
similar to the manifold alignment formula) as evaluation metric: S=|.X" - Original| + | Y -
Original| + | X" - Y |, where X" and Y”are the adjacency matrices of networks reconstructed
by mRNA abundance and protein abundance (i.e., Modalities 1 and 2) respectively, and
Original is the original model network adjacency matrix. The two first terms show the
degree of matching between the reconstructed networks (from two modalities) and the
original network, and the third term evaluates the alignment of reconstructed networks by
two modalities. Thus, the lower score, the better reconstruction. We found that deepManReg
has a lower score (i.e., 16) than all other methods. This suggests that the capability

of deepManReg for reconstructing gene regulatory networks via its aligning multi-omits
features.

2.3. Classifying cellular phenotypes from multi-modal data

Recent Patch-seq technique measures multi-modal characteristics of single cells such as
transcriptomics, electrophysiology and morphology [17]. For example, the Brain Initiative
project has generated multimodal data of neuronal cells in the human and mouse brains
[12]. Using those single-cell multi-modal data, ones have identified many cell types
corresponding to various cellular phenotypes. Here, we applied deepManReg to recent
Patch-seq data for the mouse visual cortex from Allen Brain Atlas for predicting neuronal
phenotypes, including cell layers and transcriptomic types. Specifically, this dataset includes
the transcriptomic, and electrophysiological data of 4435 neuronal cells (GABAergic
cortical neurons) in the mouse visual cortex [12]. For cellular phenotypes for our prediction,
we included six transcriptomically defined neuronal cell types (t-types), based on primarily
expressed genes: Vip-type, Sst-type, Sncg-type, Serpinfl-type, Pvalb-type, and Lamp5-type,
and five cell layers revealing the locations of cells on the visual cortex: L1, L2/3, L4, L5,
and L6.

2.3.1. Single cell multi-modal dataset and data processing—The
electrophysiological data includes the responses of three stimuli: short (3 ms) current pulses,
long (1 s) current steps, and slow (25 pA/s) current ramp current injections. We extracted

47 electrophysiological features (e-features) on stimuli and responses, identified by Allen
Software Development Kit (Allen SDK) and IPFX Python package [18]. We then filtered the
e-features with many missing values, extracted the cells from t-types and layers as above,
and finally selected 41 e-features for 3654 neuronal cells. The transcriptomic data quantifies
gene expression levels of the neuronal cells on the genome wide. We extracted the 1000
genes that have the highest expression variations among the 3654 cells. Then, we input

the log-transformed gene expression and e-features of those cells as input multi-modal data
into deepManReg for predicting cellular phenotypes, i.e., X is 1000 genes by 3654 cells

and Y is 41 e-features by 3654 cells. As shown in Figure 4, the latent space from deep
manifold alignment (Phase 1) reveals that many genes and e-features have strong nonlinear
relationships (via aligned cross-modal manifolds) (Supplementary Figure 3).

2.3.2. Aligning genes with electrophysiology for classification—We first
applied the deep manifold alignment from deepManReg (Phase 1) into the multi-modal
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feature set of the mouse visual cortex (1041 in total). To find the common latent space, we
constructed two deep neural networks with the same architecture of 2 hidden layers (512/64
hidden units) and reproduced a 3-dimensional latent space for similarity measurement.

The partial correspondence matrix W is a 1041x1041 matrix defined by a combination of
correlation matrix between two feature modalities (1000x41 on the top left, 41x1000 on the
bottom right) and the kNN (k = 5) graph within each modality (1000x1000 in the top right,
41x41 on the bottom left). As a comparison, we applied linear manifold alignment (LMA),
canonical-correlation analysis (CCA) with the correspondence matrix constructed the same
way, and MATCHER [15] to get three other latent spaces, and then constructed a similarity
matrix in the latent space for regularization in Phase 2. We also directly applied the raw data
of the features to the classification, i.e., without regularization. In addition, deepManReg
ran faster than other methods for alignment, e.g., with the running times by a laptop with
CPU i5-8250U: CCA (725.96 seconds), Manifold Alignment (663.43 seconds), MATCHER
(150.94 seconds), and deepManReg (90.10 seconds). If GPU GTX 1060Ti was used for deep
learning, deepManReg alignment took 57.90 seconds.

After multi-modal feature alignment, we applied deepManReg to use the distances of genes
and e-features on the latent space as a "feature graph” to regularize another deep neural
network model to classify the cellular phenotypes such as cortical layers of cells in the brain,
which is achieved by adding a regularization term into the neural network model (Methods).
In particular, the regularization matrix is a 1000x41 matrix by assigning the observations
over 50% percentile in matrix 1/(1+distance) to be 1 and others to be 0. The neural network
for classification has the input layer consisting of 1041 nodes (1000 genes + 41 e-features),
two hidden layers (100/50 hidden units) and the final output layer with the same number

of units as phenotypes along with a Softmax operation. For instance, for classifying cell
layers, the five output units represent L1, L2/3, L4, L5, and L6. We randomly split all

cells into the training/testing sets with a stratified ratio of 80/20 and obtained 500 sets.

For each training set, we oversampled the cells from each label to be 941 cells and thus
balance sample sizes across labels (e.g., L1: 262 cells; L2/3 1097 cells; L4: 385 cells; L5:
1176 cells; L6:734 cells) [19]. As shown in Figures 5A, 5B, and Supplementary Figure

4, the prediction accuracy of deepManReg for the testing sets to classify cell layers is
significantly higher than other methods (k.s. test p-values < Bonferroni corrected cutoff
0.05/6=0.0083): LMA (k.s. test statistic = 0.95, p<2.8003221e-50), CCA (k.s. test statistic
=0.80, p<1.7820141e-32), MATCHER (k.s. test statistic = 0.72, p<1.3383191e-25), and
the classification without any regularization (k.s. test statistic = 0.89, p<4.2826771e-42).
Besides, deepManReg outperforms the neural network classifications using single modality
only, i.e., e-features only (k.s. test statistic = 0.89, p <4.2826771e-42) and gene expression
only (k.s. test statistic = 0.98, p <2.1977161e-55). Also, its average accuracy, 51.4%

(with a 95% confidence interval [47.9%, 54.8%]) is higher than the random guess

baseline of 20% (five labels), LMA (43.0% mean accuracy, [32.2%, 49.6%] confidence
interval), CCA (46.2% mean accuracy, [40.1%, 51.3%] confidence interval), MATCHER
(46.5% mean accuracy, [40.9%, 52.8%] confidence interval), e-features only (30.1% mean
accuracy, [7.1%, 51.8%] confidence interval), gene expression only (44.0% mean accuracy,
[40.4%, 47.4%] confidence interval), and the average accuracy of the classification without
regularization (30.6% mean accuracy, [7.1%, 51.6%] confidence interval). Moreover, as
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shown in Figure 5C, deepManReg also achieves relatively high AUC values of 0.96, 0.86,
0.84, 0.79, and 0.91 for the five layers L1, L2/3, L4, L5, and L6, respectively. In addition
to predicting cell types, we also found that deepManReg outperforms other methods for
predicting t-types, i.e., average accuracy 90% ([87.0%, 93.4%] confidence interval) for
deepManReg vs. 35.0% ([3.2%, 76.8%] confidence interval) for LMA vs. 71.6% ([48.2%,
86.4%] confidence interval) for CCA vs. 71.1% ([50.6%, 89.1%] confidence interval)

for MATCHER vs. 64.1% ([20.1%, 92.9%] confidence interval) for classification without
regularization. These results show that the regularized classification by deepManReg’s
alignment improves predicting cellular phenotypes from single cell multimodal data. This
also suggests the contributions from the nonlinear manifold relationships of gene expression
and electrophysiology to the cellular phenotypes.

2.3.3. Prioritizing multi-modal features for cellular phenotypes—After training
a deepManReg model, we further used a derivative-based method called integrated gradient
[20] to prioritize genes and e-features for each phenotype (e.g., cell layers in Supplementary
Data 1). Specifically, we calculated the gradient of the model’s prediction for each e-feature
and/or gene to quantify the changes of the output response values (e.g., cell layers) by

a small change of input gene expression and e-feature values [21]. We used the recent
Python package, Captum [22] to implement the integrated gradient method and calculate
the importance scores of each gene/e-feature for output labels (i.e., cellular phenotypes).
We then ranked the genes and e-features by the scores and prioritized top ones for

each phenotype. For instance, we summarized top prioritized genes and e-features for

each cell layer in Supplementary Data 1. To evaluate the prioritization of cross-modal
features, we calculated their Spearman correlation coefficients across cells. As shown on
Supplementary Figure 5, the prioritized genes and e-features for each layer have higher
Spearman correlations across the layer’s cells than the rest of the cells (one-sided t-test

p i 0.0001 for Layer 1, 0.0004 for Layer 2/3, 0.0001 for Layer 4, 0.11 for Layer 5 and

0.13 for Layer 6). This suggests that our deepManReg identifies such cross-modal feature
interactions for different cortical layers. However, Spearman correlation is a ranking based
correlation, only providing descriptive measurements between genes and e-features. Thus,
deepManReg is further able to uncover predictive cross-modal interactions for classifying
cortical layers.

3. Discussion

Our deepManReg method learns multiple deep neural networks for different modalities and
jointly trains them to align multi-modal features onto a common latent space. The distances
of various features within and between modalities on the space represent their nonlinear
relationships identified by cross-modal manifolds. The applications in the paper focus on
classification, but the loss function of the regularized learning in deepManReg (Phase 2) can
work generally for regression as well, i.e., to predict continuous phenotypes. Specifically,
the loss function in Phase 2 of deepManReg is in general form where the label o4 can

take discrete or continuous values. If ok is continuous and loss A, U) is a square loss, the
learning problem becomes a regression problem.
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Although we demonstrated that deepManReg works for two particular datasets,
deepManReg can be generalized to any multi-modal data such as additional single cell
omics (SCATAC-seq, scHi-C, etc) (Methods). Also, the architectures of its deep neural
networks for manifold alignment can be designed specific for each modality. For example,
if two modalities are genomics and images, the neural network for aligning images can be
changed to a convolutional neural network. Also, one can model those neural networks by
recent graph neural networks [23], aiming to not only align multi-modal features but also
underlying biological networks in the modalities.

deepManReg solves the trade-off between nonlinear and parametric manifold alignment
(by utilizing the nonlinearity and parametric of neural architecture which is trained by

a Riemannian optimization procedure). Specifically, deepManReg solved the non-linear
projections (from multiple datasets) by gradient descent on a Stiefel manifold. One
significant advantage of deepManReg is that it is a parameterized method: using two

deep neural nets as projection functions and learning the networks’ parameters by
backpropagating the Riemannian gradient of the gradient descent procedure so that it can
generalize to new instances. Solving non-linear dimension reduction by gradient descents
on Stiefel manifold has been researched extensively [24] and well implemented [25]. To
our knowledge, however, this is the first time a parameterized non-linear method has been
proposed so the projection can be generalized for unseen data. Although generalized Stiefel
manifolds have been developed thoroughly [26], our solution showed that, calculating the
gradient on the (plain) Stiefel manifold is more efficient for two reasons: (1) the matrix
multiplication is simpler because we only need to calculate #F7, not FLF as in generalized
Stiefel manifold, and (2) we have the closed form solution [24] for the projection onto the
(plain) Stiefel manifold that is of the essence since this is the last layer of the model and
needs to be differentiable.

Furthermore, deepManReg works as both representation learning and regularized
classification. Since dimensionality reduction is the essential characteristic of manifold
alignment, deepManReg is scalable for various input feature sizes and thus able to perform
the transcriptome-wide analysis such as inputting all possible genes. We experimented
with different numbers of highly variable genes and found that the average accuracies for
classifying five major cortical layers do not change too much: 53.1% for 500 genes, 51.4%
for 1000 genes, and 49.1% for 2000 genes. However, training deepManReg requires a non-
trivial hyperparameter optimization since training two deep neural networks simultaneously
includes a large combination of parameters. Another potential issue for aligning such large
datasets in deepManReg which may be computational intensive is the large joint Laplacian
matrix (Supplementary Algorithm). Thus, how to reduce the computational burden in
deepManReg will be a key future improvement. For example, we may use the Nystrom
method [27] to approximate the Laplacian matrix for making deepManReg more scalable
and computationally efficient.

It is also worth noting that there are differences between deepManReg and other geometric-
based learning methods: (a) structured-output learning methods, such as graph neural
networks can only learn the structures or relationships among samples [23]; (b) graph-
regularized learning methods (mostly based on Laplacian graphs [28, 29, 30], spectral
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graph convolutions [31]) use the relationships of features to regularize the learning model
but aim to penalize each network edge, rather than each feature itself [10]. Moreover,
manifold learning has been used to align single cell multi-omics data, aiming to find

the correspondence across single cell multi-omics, such as in MATCHER [15] and MMD-
MA [32]. While MATCHER works mainly on a bi-modal data (i.e., DNA methylation
and gene expression), MMD-MA can work on multiple modals and does not require the
correspondence among modals by means of a maximum mean discrepancy (MMD) term.
Thus, deepManReg can be extended in a similar way in which the correspondence matrix
is not given but learned using manifold warping [33] or local geometry matching [13].
Furthermore, deepManReg can also be generalized to integrate more than two modalities by
concatenating input data and similarity matrices, aiming to improve phenotype prediction
from multi-modal data and prioritize cross-modal features for phenotypes.

4. Methods

4.1.

Phase

Using our recent theoretic framework for multiview learning [6], deepManReg inputs multi-
modal data of samples, aligns multi-modal features and predicts the samples’ phenotypes.

For instance, two modalities of a set of psamples can be modeled as T = {z., 1, o} 5 —

with z;, € R" being the Ath sample of Modal 1 and 7, € R being the Ath sample of Modal 2,
and associated phenotypes for both modalities (i.e., labels) o, € 6. Also, Modal 1 and Modal
2 have nand m features, respectively. The features of Modal 1 and Modal 2 are modeled
as X = {x;}f= 1 and Y = {y;}7'= | respectively, where x; € R” is the /th feature of Modal 1

and y; € R is the jth feature of Modal 2. In matrix notation, z,and x;are respectively
columns and rows of the same matrix, representing Modal 1 data. Similarly, #and y;are

of the matrix representing Modal 2 data. There are two major phases in deepManReg:
(Phase 1) aligning multi-modal features, i.e. {x;}7 = ; and {;}7'= 1, by deep-neural-network
based manifold alignment (deep manifold alignment) for identifying nonlinear, cross-modal
feature relationships on a common latent space, and (Phase 2) predicting the phenotypes
{ox}% _  of the samples from both modalities, i.e., {z, 7 }% — ;, using the classification

regularized by cross-modal feature relationships.

1: Deep manifold alignment of multi-modal features

4.1.1. Parametric nonlinear alignment via manifolds—Manifold alignment is

a class of techniques for learning representations of multiple data views, such that

the presentation of each view is the most predictive of, and, at the same time, the

most predictable by, the representation of other views. It can also be considered as a
generalization of canonical correlation analysis (CCA) [14] whereas the intrinsic geometry
of data views are preserved and/or the projections are nonlinear [6].

Manifold alignment has been applied to identify linear (feature-level) projections, or
nonlinear (instance-level) embeddings of multi-modal data. While the instance-level
version generally aligns and matches different data-views with high accuracy, it cannot
be generalized for new instances since the new coordinates in the common latent
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space are learned directly, not via parameterized projections. The feature-level version is
generalizable, allowing new instances to be easily embedded into the learned latent space via
parameterized yet linear projections. These properties are crucial for transferring knowledge
across modalities. Thus, deepManReg simultaneously learns different nonlinear mappings
for different data modalities for discovering cross-modal manifolds and aligns them onto

a common latent space. This idea combines appealing properties of both feature-level and
instance-level projections for achieving accurate alignment and generalization. Furthermore,
traditional solutions for manifold alignment rely on the eigendecompostion that is typically
computationally intensive. To improve this, we utilize the stochastic gradient descent (SGD)
and backpropagation techniques for speeding up training in deepManReg.

Particularly, deepManReg first calculates the similarities in terms of nonlinear manifolds
among all possible features across modalities. To this end, deepManReg conducts a
deep manifold alignment between all features so that the features are aligned onto a
common latent space. The distances of the features on the latent space thus reveal

such similarities of the features in terms of nonlinear manifold structures, suggesting
nonlinear, cross-modal feature relationships. Mathematically, given two modal datasets,
X ={x;}]=1and Y = {y;}7= | where Xare the features of Modal 1 and Yare the
features of Modal 2, and the partial correspondences between the instances in Xand Y,
encoded by the matrix Wy y) € R"*"™, we want to learn the two mappings 7(.) and

9(.) that map x;and y;to f(x;) € R¢ and 8(vj) e RY, respectively onto the latent space

with dimension ¢« pthat preserves the local geometry of X, Yand also matches cross-

modal features from the correspondence. The correspondence matrix Wx v could be

1 if X; and Y ; are correspondent to each other

defined as W (i, j) = o and thus need otherwise not

otherwise

be symmetric.

Further, the instance x;is correspondent to the instance y;if and only if 7(x;) =
9(y))- Besides, any prior correspondence information between the features from different
modalities can be used as partial information to initially build the corresponding matrix

Wi x, vy After mappings, f(X) € R" Xd and g(Y)e R™* 4 represents the new coordinates of
the features of Modal 1 and 2 on the latent space with the dimension @, respectively. That

said, the concatenation of the new coordinates F = 4 ((Y))] the unified representation of the
g

features from Xand Y on the common latent space.

Then, according to [34], the loss function for manifold alignment can be formed as the
Laplacian eigenmaps [35] using the joint Laplacian and the joint adjacency matrix of the two
datasets:

£(F) = Y NIFG -) = F(. )IPW . ).
iJj
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where the sum is taken over all pairs of instances from both datasets, [ is the unified
Wx Wx,v)

representation of both datasets, and W = is the joint similarity matrix (W

T
Wix,yy Wy
and W, are similarity matrices within each dataset X'and Y’)

Using the facts that | M(i, -)||> = X, M(i, k)* and that the Laplacian is a quadratic difference
operator, the above equation can be transformed into:

£F) = Y, D (FGi. k) - F(. k) Wi, ) ®
i,j k

= tr([FTL[F), @)

where L = D- W/(Dis the diagonal matrix of W) is the joint Laplacian [34] of both
datasets.

For this loss function to work properly, i.e., avoiding a trivial solution of mapping all
instances to zero, we need an additional constraint:

¥l pF =1,

where D s the diagonal matrix of Wand 1 is the @ x didentity matrix.

Finally, we solve the following optimization problem for manifold alignment, i.e., to find the
optimal mapping functions 7(.) and g(.):

r}l’irgltr([FTL[F)

s.t.FIDF=1.

Normally, this optimization can be solved by eigendecomposition [4], which however is
computationally intensive. Moreover, solving generalized eigenvector problem gives us
merely the new coordinates of the latent manifold (i.e., X”= .X), Y= g(Y)), not

the closed form of mappings themselves (i.e., 7(:) and g(*)), and thus is incapable of
generalizing for new instances. To solve this, we parameterized the mappings 7(-) and g()
by using coupled deep neural networks (Section 2.1.2) and finally form the optimization
problem as below:

mintr(ﬁTLAﬁ)
/.8
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s.LEF=1

ifwesetF =FpY2and L = p~ 2D~ 12,

This is actually an optimization problem on the Stiefel manifold, where the feasible set
of the orthogonality constraints ,, ,: = { X € R"*?: xx =1} is referred to as the Stiefel

manifold [36].

4.1.2. Nonlinear manifold co-embedding by deep neural networks—As above,
we model the relationships between the observable data x; yjand its latent representation
f(x), g(y;) using two nonlinear mappings f(x;; %), g(y;; Z) where f(-; %), g(- ; Z) denote
the mapping functions and 7, Z denote the set of the function parameters. In deepManReg,
we employ the deep neural networks (DNNSs) to model our mapping functions, since DNNs
have the ability of approximating any continuous mapping using a reasonable number of
parameters. Note that, of the two DNNSs, the numbers of input nodes are unnecessary to

be the same, but the numbers of output nodes (i.e., latent representations of two modal
features) have to be exactly the same for allowing having a common latent space. Precisely,
if X € R"*? is a matrix of data row vectors x; € R?, the number of input nodes for the first

network f(-;%) is p, and if Y € R * 4 is a matrix of data row vectors y; € RY, the number

of input features for the second network g( - ; Z) is g. The number of output represented
features of both DNNs is @, the dimension of the common latent manifold space.

4.1.3. Training neural networks by Stiefel manifolds for alignment—There exist
two key issues for generalizing backpropagation to train our DNNs for deep manifold
alignment. The first one is preserving the manifold constraint in the output layer. As we
force the outputs to be on Stiefel manifolds, merely using the forward propagation in the
normal DNN is not guaranteed to yield valid orthogonal outputs. Second, while the gradient
of loss function with respect to output layer, i.e., F, can be calculated easily, computing those
with hidden layers, i.e. 7, Z has not been well-solved by the traditional backpropagation.

To solve the first issue of preserving the constraint, we construct the last layer by projecting

the output of the preceding layer f(j)) onto the Stiefel manifold Sp,+,, »» Specifically, we
g

use the classical projection operator 7(:) which is defined as:

o= e i)l

=ro

It is known that the solution of this problem is given by

E=U”m+n,dVT’
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f(X)
8(Y)
output, i.e. £ DF = 1.

where ] =UzvT is the SVD decompostion of [fgf))] Thus, T now is an orthogonal
g

As for the second issue, we have developed a new way of updating the weights 77, Z by
exploiting an SGD setting on the Stiefel manifolds. The steepest descent direction for the
corresponding loss function f(ﬁ) with respect to  on the Stiefel manifold is the Riemannian
o . _ _ onffTIE)
gradient V/. To obtain it, the Euclidean gradient V¢ = —= LF+ L Fis projected

onto the tangent space T¢(.S,, + . 4) Of Stiefel manifold Sy, # The projection is defined as

Vet =n(VEt)=  argmin  |[VE/ - X|%
X e TUA:(Sm +n, d)

- ﬁskew(@T vw) + (1 - ﬁT) vee,

where skew(ﬁTV@t’) = %(@TV[AFK - (Vﬁf)TﬂA:). The project of K E})f)) ] onto the Stiefel manifold

and the Euclidean gradient onto the tangent space of the Stiefel manifold are illustrated in
Supplementary Figure 6.

Putting all together, we summarized our optimization for deep manifold alignment in
Supplementary Algorithm, which can be readily implemented with the modern tools for
automatic differentiation such as PyTorch [37].

2: Regularized classification by cross-modal feature relation-ships

After finding the common latent space from deep manifold alignment, we can now calculate
1
1+D°

The latter finally gives the similarities of all multi-modal features in terms of nonlinear
manifold structures, systematically evaluating cross-modal feature relationships.

the distance matrix D for each row pairs of matrix F, and then similarity matrix S =

In Phase 2 of deepManReg, we want to improve phenotype prediction from multi-
modal data using such cross-modal feature relationships. In particular, back to the

training set T = {z. 14, ok }% — |, deepManReg learns a classifier paramaterized by a weight

UeRrmtnxd by minimizing a loss function #(z, ¢, o; U) over the training instances (zx,
0y [10]. Uhas m+ ncolumns (total number of cross-modal features) and o'rows (number
of reduced dimensions on the aligned latent space). Now, with the similarity information of
features, provided by matrix S from the previous step, we can use S as an adjacency matrix
of a feature graph encoding the relationship between all pairs of features within and across
modalities. The degree of each vertex in the feature graph has to be sum to one, ¥;S;; = 1,
to avoid some features dominating the whole graph. Because similar features should have
similar weights after training, we regularize each feature’s weight by the squared amount
that it differs from the weighted average of its neighbors. Thus, the loss function for this
feature-graph-regularized learning is given by [10]:
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n+m

p
loss(U) = z (zg tg, 0 U) + Z
k=1

i=1

2
+lullz.

2
Uj— ZSJ,‘U,‘
1

The hyperparameters a and S are to balance between the feature graph regularization and
the ridge regularization. Finally, the combined regularization can be rewritten as U7 MU
where M = o(1 — )T (I = S) + pI. We also did an ablation study on the values of a and 8
and found that the larger a is, the higher prediction accuracy our model has (Supplementary
Table 1). This implies that our feature-network regularized term contributes to improved
classification more than the L2 term. The classification improvement by feature-network
regularization was also observed in previous studies [10].

The classifiers can be general. In practice, here, we use a neural network as a classifier so
the optimization problem above can be solved easily with gradient descent methods. Also,
we can use other approaches for regularization such as the graph Laplacian [10]. The main
difference between the Laplacian regularization and the feature graph regularization is that
the former penalizes each edge (between two features) equally while the latter penalizes
each feature (e.g., nodes) equally. The efficiency of the approaches depends on the problem
domain.

4.3. Data Availability

The multiple-features (mfeat) dataset is available at [11]. The Patch-seq transcriptomics data
and electrophysiological data are available at [12]. The simulated multi-omics data and gene
regulatory network (i.e., the example model data of dyngen for 5 genes) are available at [16].
Source Data are available with this paper.

4.4. Code Availability

Code for deepManReg implementation and data analysis are available at https://github.com/
daifengwanglab/deepManReg. An interactive version of the code base is provided in [38].

4.5. Statistics & Reproducibility

To compare the classification accuracy across different methods, we used one-sided
Kolmogorov-Smirnov test (k.s. test) to see if deepManReg’s accuracy is significantly higher
than other methods. The null hypothesis in the one-sided k.s. test is that the accuracy
distributions of deepManReg and another method are not different with the alternative
hypothesis that they are different (deepManReg is higher). The k.s. test p-values are adjusted
by Bonferroni correction. No statistical method was used to predetermine sample size.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: deepManReg: a deep manifold-regularized learning model for improving phenotype
prediction from multi-modal data.

deepManReg inputs multi-modal datasets, e.g., Modal 1 (left top) and Modal 2 (left
bottom), across the same set of samples. In Phase 1 (top flow), deepManReg aligns

all features (the rows) across modalities by deep manifold alignment. In particular, it
uses coupled deep neural networks f(-;%’) and g( - ; Z), parameterized with %7 and Z

to project the features onto a common latent manifold space F. The similarity matrix S

of features on the latent space is then calculated, encoding the similarity of nonlinear
manifolds among all pairs of both cross-modal and within-modal features. In Phase 2
(bottom flow), deepManReg inputs all the samples (the columns of the input data) into

a regularized classification model, parameterized by U. The similarity matrix of features
on the latent manifold space S in Phase 1 is used to regularize this classification model
(i.e., via feature graph regularization), imposing similar features to have similar weights,
when training. Finally, deepManReg outputs a regularized classification (i.e., deep manifold-
regularized) for improving phenotype prediction and prioritizing cross-modal features for

the phenotypes.
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Figure 2: Multi-modal feature alignment of handwritten digits.
Two modalities, Fourier coefficient (Blue) and profile correlation (Orange), are aligned on

a 2D common space. Each dot is a digit represented by either Fourier coefficient or profile
correlation. The total sum of pairwise Euclidean distances between the features of two
modalities on the latent space are 86.0, 165.8, 226 and 56.9 for CCA, Linear Manifold
Alignment (LMA), MATCHER and deepManReg respectively.
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Figure 3: Regularized classification results for the mfeat digits dataset.
(A) Boxplot and (B) Cumulative distributions of testing accuracies for classifying digits

by deepManReg (Orange) vs. the neural network classification without any regularization
(Blue), by Linear Manifold Alignment (Green), CCA (Red), and MATCHER (Purple). The
box extends from the lower to upper quartile values of the data (i.e., test accuracies of 10
experiments), with a line at the median. (C) Receiver operating characteristic (ROC) curves
for classifying digits by deepManReg. x-axis: False Positive Rate, y-axis: True Positive

Rate.
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Figure 4: The network showing the relationships across two modalities—genes and
electrophysiology.

The genes and electrophysiological features (e-features) of neuronal cells in the mouse
visual cortex having small Euclidean distances on the aligned latent space by deepManReg
Phase 1, i.e., deep manifold alignment. Cyan: genes. Yellow: e-features. Nodes are
connected by Similarity = 1/(1+Euclidean distance) >0.997 on 3D aligned space.
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Figure 5: Regularized classification results for single-cell multi-modal data in the mouse visual

cortex.

(A) Boxplots and (B) Cumulative distributions of testing accuracies for classifying cell
layers in the mouse visual cortex by deepManReg (Orange) vs. neural network classification
without any regularization using both modalities (Blue), Electrophysiological features (E-
feature) only (Brown), and gene expression only (Pink) by Linear Manifold Alignment
(Green), CCA (Red), and MATCHER (Purple). The box extends from the lower to upper
quartile values of the data (i.e., test accuracies of 100 experiments), with a line at the
median. (C) Receiver operating characteristic (ROC) curves for classifying cell layers in the
mouse visual cortex by deepManReg. Cell layers include Blue: L1, Yellow: L2/3, Green: L4,
Orange: L5 and Purple: L6. x-axis: False Positive Rate, y-axis: True Positive Rate.
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