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Electricity can be provided to small-scale communities like commercial areas and villages through microgrid, one of the small-
scale, advanced, and independent electricity systems out of the grid. Microgrid is an appropriate choice for specific purposes
reducing emission and generation cost and increasing efficiency, reliability, and the utilization of renewable energy sources. /e
main objective of this paper is to elucidate the combined economic emission dispatch CEED problem in the microgrid to attain
optimal generation cost. A combined cost optimization approach is examined to minimize operational cost and emission levels
while satisfying the load demand of the microgrid. With this background, the authors proposed a novel improved mayfly al-
gorithm incorporating Levy flight to resolve the combined economic emission dispatch problem encountered in microgrids. /e
islanded mode microgrid test system considered in this study comprises thermal power, solar-powered, and wind power
generating units./e simulation results were considered for 24 hours with varying power demands./eminimization of total cost
and emission is attained for four different scenarios. Optimization results obtained for all scenarios using IMA give a com-
paratively better reduction in system cost than MA and other optimization algorithms considered revealing the efficacy of IMA
taken for comparison with the same data. /e proposed IMA algorithm can solve the CEED problem in a grid-
connected microgrid.

1. Introduction

Microgrid is one of the advanced small-scale centralized
electricity systems and it usually contains energy storage
resources, Distributed Generation (DG) units, and loads.
Microgrids are generally designed and installed nearby
energy consumers in a confined community [1]. But there
has been a drastic increase in recent years regarding in-
stalling renewable energy sources in microgrids, owing to
environmental advantages and low cost compared to its
counterparts [2]. Microgrid meets different load

requirements in residential, commercial, agriculture, and
industrial sectors [3]. Microgrids can function under two
different modes: grid-connected and islanded modes. In the
former mode, the microgrid and main grid are connected,
while in the latter the microgrid is isolated from the main
grid during an emergency outbreak. It continues its power
delivery functions to local loads as usual [4]. /ere are loads
of advantages present in using microgrid reduction of
carbon emission and generation cost, thanks to renewable
energy sources, and increased reliability and power quality,
etc. [5].
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Optimal operations and effective planning of electric
power generation systems are the two most crucial elements
in electric industries. Controlling and operating power
systems, cost-efficient load dispatch (Economic Load Dis-
patch, i.e., ELD) related problems are too much concerning
to address [6]. Power system optimization problems that
employ ELD are useful in identifying the most suitable,
cheap, and seamless operations with the regulation of
outputs produced by different power generation units that
meet the load demands. ELD has a primary aim to mitigate
the overall cost incurred upon power generation without
compromising or producing any constraints [7]. ELD de-
termines active power output generated by different power
generation systems to attain the objective functions and
simultaneously overcome many problems [8]. It is impor-
tant to develop novel power management algorithms to
translate the microgrid as a viable and happening choice
compared to traditional power systems [9]./emitigation of
both power generation costs and the emission of environ-
mental pollutants is the sole aim of utility operators. For
these goals, two contradictory objectives must be considered.
Combined economic emission dispatch (CEED) is utilized
to mitigate emission levels from all generating units and
costs incurred by the operating units [9].

CEED problem has been discussed earlier by different
authors who proposed several optimization techniques to
overcome the issue [10]. In [10], the researchers proposed a
balanced trade-off method to resolve the ECED (Environ-
ment Constrained Economic Dispatch) problem. /e study
conducted a first-of-its-kind comparative analysis of three
methods: Fractional Programming (FP), ECED, and price
penalty factor (PPF) to overcome the CEED problem.
Chimp Optimization Algorithm (ChOA) was proposed to
address the optimal design of microgrid which comprises PV
panels, wind turbines, and battery storage systems [11].
Optimization results had been compared with Improved
Grey Wolf Optimizer (IGWO) and Grey Wolf Optimizer
(GWO). Optimal sizing of photovoltaic cell and solar water
heater by considering environmental parameters and fuel-
saving was carried out in [12]. Energy and economic analysis
of solar energy-based cogeneration system for a building in
Saveh City were studied. /e researchers simulated the
model in a 3-Unit dynamic test system incorporating re-
newable energy sources. In the study conducted by Ala-
moush [13], Bernstein-search differential evolution (BSDE)
algorithm was proposed to resolve the Dynamic Combined
Heat and Power Economic emission Dispatch (DCHPED)
generation problem in microgrid comprised of renewable
energy sources, fixed nondeferrable and deferrable loads,
fossil-fuel combined heat and power units, and thermal
energy storage devices. In [14], whale optimization algo-
rithm (WOA) has been applied to carry out the combined
economic emission dispatch problem. /e simulation was
performed by considering four different load sharing sce-
narios among the distributed energy resources. /e re-
searchers also conducted ANOVA and Wilcoxon signed-
rank tests to validate the supreme characteristic of WOA. In
[15], Stochastic Fractal Search (SFS) algorithm was applied
to resolve multiobjective economic emission dispatch

problems that arise in combined heat and power (CHP)
generation. /is study was conducted in large microgrids in
which solar-powered generating units, wind power units,
and fossil-fuel-powered generating units were installed.

Collective Neuro Dynamic Optimization (CNO)method
was proposed in the earlier study. In this study, the authors
combined a heuristic approach and projection neural net-
work (PNN) to optimize the scheduling of an electrical
microgrid containing ten thermal generators and mitigate
the costs incurred upon emission and generation [16]. A
mixed-integer nonlinear programming formulation was
proposed in [17] to dispatch the distributed generators
cohesively. Further, the model was also aimed at fulfilling the
water demands and the building’s thermal energy require-
ments in a standalone water energy microgrid.

In [18], Giza Pyramids Construction (GPC) was pro-
posed to implement the optimal design of an isolated
microgrid. Net present cost (NPC), Levelized Cost of
Energy (LCOE), loss of power supply probability, and
availability index were considered objective functions.
Modified adaptive accelerated particle swarm optimization
(MAACPSO) algorithm was proposed to investigate the
grid-tied PV systems reliability [19]. /is study focused on
the probability analysis and reliability assessment of the
components of grid-tied PV systems through IEEE 24 bus
integrated with PV system with four different case studies.
A first-of-its-kind Sequential Optimization Strategy (SOS)
was formulated in the study conducted earlier to allocate
active and reactive power to Dispatchable Distributed
Generator (DDG) units in an optimal manner. /ese DDG
units are installed in a droop-controlled islanded AC
microgrid [20]. /e research proposed improved Quantum
Particle Swarm Optimization (QPSO) earlier [21] to ad-
dress the Short-Term Economic Environmental Dispatch
(EED) problem in a microgrid. Recently, a multiobjective
seeker optimization algorithm has been proposed to ana-
lyze the influence of charging and discharging behaviour of
electric vehicles and demand side response resources on the
economic functioning of PV-connected microgrid systems.
/e model considered three objectives: power fluctuation
between microgrid and main grid, comprehensive oper-
ating cost of the microgrid, and utilization rate of pho-
tovoltaic energy [22].

In [23], the researchers proposed a mathematical opti-
mization approach to achieve an optimal operation upon
economic dispatch in DC microgrid. To allot the schedules
for unit commitment and achieve economic dispatch in
microgrid, the study conducted earlier [24] proposed an
enhanced real-coded genetic algorithm in the enhanced
mixed-integer linear programming (MILP) based method.
/e authors proposed a stochastic model in [25] to manage
CHP-based microgrids optimally. /e study took economic,
reliability, and environmental aspects into consideration.
Nonconvex and nonlinear stochastic problems are used to
resolve complexity. /e Exchange Market Algorithm (EMA)
was proposed in a study. /is study considered three
contradictory objectives through a weighted sum approach
to resolving the multiobjective problem as a single-objective
problem.
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A multiobjective optimal dispatch model was proposed
in [26] for a grid-connected microgrid. In this study, the
authors considered reducing environmental protection costs
and the generation cost of the microgrid with the incor-
poration of an enhanced PSO algorithm. In [27], a genetic
algorithm is applied to optimize the focal area of the par-
abolic trough concentration photovoltaic/thermal system.
/e objective function was considered a combination of
electrical efficiency and thermal efficiency. A parabolic
trough concentrating photovoltaic thermal (CPVT) was
utilized to afford the energy required for a residential
building [28]. CPVTwas used as a source of heat and cooling
and electrical energy for the building and simulation was
carried out using TRNSYS software. Samy et al. addressed
the problem of power outages in distant districts by taking
advantage of the available renewable energy resources in the
contiguous environment [29]. Hybrid Firefly and Harmony
Search optimization technique (HFA/HS) was implemented
to improve the net present cost of the proposed hybrid
system which comprises photovoltaic (PV), wind turbine
(WT), and fuel cell (FC). MINLP, a novel optimization
model, was proposed in [30] to resolve the economic dis-
patch problem of a microgrid which contains numerous
units of wind turbines (WTs), heat-only units, traditional
power generators, photovoltaic (PV) systems, CHP units,
and battery storage systems under certain uncertainties. In
the study conducted earlier [31], MBGSA (Memory-Based
Gravitational Search Algorithm) was proposed to overcome
the ELD problem. In one of the research investigations [32],
a novel Multiobjective Virus Colony Search (MOVCS) was
proposed to elucidate the multiobjective dynamic economic
emission dispatch (DEED) problem. /is model aims to
mitigate the emissions produced by fossil-fuel power gen-
erators and simultaneously reduce the cost incurred upon
wind-thermal electrical energy costs. In [33], HOMER
software is used to model and simulate a wind-solar hybrid
system independent of the national grid in the northwest of
Iran. A multiobjective particle swarm optimization tech-
nique is proposed to optimize the sizing of a green energy
system connected to a randomly disrupted grid [34]. /e
energy cost for evaluating hybrid system economies, the loss
of probability of power supply (LPSP) for reliability as-
sessments, and the System Surplus Energy Rates (SSER) were
considered objective functions for evaluating hybrid system
compatibility and efficiency. A sustainable energy distri-
bution configuration for microgrids integrated into the
national grid using back-to-back converters in a renewable
power system was examined in [35]. Different scenarios of
several sustainability schemes of power management in
microgrids were analyzed.

SGEO (Social Group Entropy Optimization) technique
was proposed in [36] to resolve Fuel Constrained Dynamic
Economic Dispatch (FCDED) with Demand Side Man-
agement (DSM). /e technique combined the pumped
hydrostorage plant with renewable energy sources. /is
research used a stochastic fractal search algorithm to
overcome the biobjective combined heat and power eco-
nomic dispatch (CHPED) problem [37].

In [38], mayfly algorithm (MA) was proposed by Dr.
Konstantinos Zervoudakis in 2021. In this paper, an im-
proved mayfly optimization algorithm was investigated
with the help of a microgrid model under varying sce-
narios. /e results were contrasted against recent state-of-
the-art algorithms that also employed the same microgrid
model.

/e contributions of the current research paper are
summarized herewith.

(i) An improved version of the mayfly optimization
algorithm incorporating Levy flight is proposed to
elucidate the microgrid test system’s CEED
problem.

(ii) An improved mayfly optimization algorithm is
proposed in addition to Levy flight to overcome the
CEED problem encountered in microgrid test
system.

(iii) Levy flight has been leveraged in this study since it
possesses huge advantages in not engaging local
optimal. An optimal trade-off is provided by the
proposed algorithm between exploration and ex-
ploitation phases.

(iv) /e authors validated the supremacy of the pro-
posed algorithm in terms of resolving the CEED
problem under two different objective functions
that involve advanced energy sources.

(v) Compared with existing population-based optimi-
zation tools such as PSO and GA, only a few control
parameters exist in IMA. /is feature helps in
making it the best optimization procedure. IMA-
based CEED was authenticated as a unique and
robust technique since it incurred less total gen-
eration cost than the solution even after conducting
multiple random trials.

2. Mathematical Formulation of
CEED for Microgrid

2.1. Combined Economic Emission Dispatch (CEED). /e
simultaneous mitigation of economic and environmental
dispatch objective functions remains the primary objective
for the CEED problem in the microgrid. In other terms, the
total fuel cost must be reduced, while at the same time the
emission levels should also be mitigated without compro-
mising the constraints. So, it is suggested to formulate CEED
as a single optimization problem as given herewith [9].

minTC � 􏽘
NG

i�1
Fi PGi( 􏼁, Ei PGi( 􏼁􏼈 􏼉. (1)

Here, TC denotes the total operating cost that should be
minimized. /e fuel cost of the ith generator is represented
as Fi(PGi), the emission level of the ith generator is rep-
resented as Ei(PGi), PGi denotes the ith generating unit’s
output power, and finally, NG corresponds to the whole
generating unit count.
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2.1.1. Minimization of Fuel Cost. In general, the fuel cost
function is denoted through the quadratic equation given
below [9]:

Ft � 􏽘
NG

i�1
Fi PGi( 􏼁 � 􏽘

NG

i�1
xi + yiPGi + ziP

2
Gi􏼐 􏼑. (2)

Here, Ft corresponds to overall fuel cost incurred in
terms of $ and xi($/h), yi($/MWh), and zi($/MW2h)

correspond to the cost coefficients of ith generating unit.

2.1.2. Minimization of Emission. When fossil fuels are used,
the generators emit different sorts of pollutants. So, pollu-
tionmitigation forms the primary goal of most power system
operations. Equation (3) denotes the expression for total
emission from [5, 9]:

Et � 􏽘
NG

i�1
Ei PGi( 􏼁 � 􏽘

NG

i�1
αi + βiPGi + ciP

2
Gi􏼐 􏼑. (3)

Here, Et denotes the overall emission and αi (kg/h),
βi(kg/(MWh)), ci(kg/(MW2h)) correspond to the ith gen-
erating unit’s emission coefficients.

2.1.3. Total Generation Cost of CEED Problem. It is possible
to convert the dual-objective optimization problem, fo-
cusing emission, and fuel cost, into a single-objective op-
timization problem with the induction of PPF (price penalty
factor) as given earlier [9]:

minTC � Ft + Λ × Et. (4)

Here, Λ denotes the price penalty factor (PPF), which is
calculated as a ratio between fuel cost and the emission of the
corresponding generating unit ($/kg). PPFs are of different
types, while in the current study, the authors use min-max
types sourced from [5, 9] for comparison. Following is the
equation for min-max type [9]:

Λi �
Ft P

min
Gi􏼐 􏼑

Et P
max
Gi( 􏼁

, i � 1, 2, . . . ,NG, (5)

where Pmax
Gi and Pmin

Gi Here, Λ denotes the ratio between
maximum fuel cost and maximum emission of the corre-
sponding generator in $/kg [9]. /e maximum and mini-
mum output power of the generator combines emission with
fuel cost. Afterwards, TC corresponds to the total operating
cost of $.

/e following is the list of steps to be followed to de-
termine the price penalty factor for a specific load demand
[39].

(i) /e ratio between minimum fuel cost and the
maximum emission of every generating unit should
be determined.

(ii) Price Penalty Factor values are sorted out in as-
cending order.

(iii) /e maximum capacity of every unit (Pmax
Gi ) one is

added at a time that starts from the lowest Λi, until
􏽐 Pmax

Gi ≥PD.

(iv) /en, Λi, which has an association with the lowest
unit in this process, remains the tentative PPF value
(Λ) for the load under consideration.

So, a modified PPF (Λ) is utilized to arrive at the exact
value for specific load demand based on the interpolation of
Λ values corresponding to their load demand values.

2.2. Cost Functions of Renewable Energy Sources. Across the
globe, renewable energy sources are the foremost choice of
transmission when energy is produced, compared to tra-
ditional generators. In such a scenario, solar and wind power
can be denoted as negative loads and can be used to mitigate
the total load demand in the system [9]. However, the
economic dispatch solution is considered a base to distribute
the rest of the load demands on traditional generators. In the
current study, the CEED solution for the microgrid takes
cost functions of wind and solar-powered generating units
into account. From [9], the input data for cost and emission
coefficients are considered.

2.2.1. Cost Function of Wind Power Generating Unit.
Current economic analysis is conducted for wind-based
power generation and the specific cost can be determined
with inputs, operation, maintenance, and equipment costs.
/is cost function is expressed as per [5, 9]:

Cw Pw( 􏼁 �
r

1 − (1 + r)
− N

􏽨 􏽩
l
p

+ O
E⎛⎝ ⎞⎠Pw. (6)

Here, Pw denotes the wind power produced in terms of
kW, r corresponds to the interest rate, a denotes the
Annuitization coefficient, N corresponds to lifetime in-
vestment in terms of years, and lp and OE correspond to the
costs incurred upon investment per unit installed power
($/kW) and operating and maintenance costs per unit in-
stalled power ($/kW), respectively.

/e 24-hour data for the wind power generating unit is
considered from [5]. /e parameters required for wind
power cost function are chosen from [5, 9].

2.2.2. Cost Function of Solar Power Generating Unit.
Similar to wind power, solar-powered generating unit’s cost
function is expressed as in [5, 9]:

Cs Ps( 􏼁 �
r

1 − (1 + r)
− N

􏽨 􏽩
l
p

+ O
E⎛⎝ ⎞⎠Ps, (7)

where Ps is the output power from the solar-powered
generating unit, r corresponds to interest rate, N denotes
lifetime investment in terms of years, and lp and OE cor-
respond to investment costs made upon per unit installed
power ($/kW) and operating and maintenance costs per
unit installed power ($/kW), respectively.
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/e 24-hour data of the solar power generating unit is
considered [5]./e parameters required for solar power cost
function are chosen from [5, 9].

2.3. Total Cost of CEED for Microgrid. /e equation for the
total CEED cost for the microgrid is shown below./is value
gets minimized based on the cost functions regarding wind
and solar power [9].

CT � Ft + Λ × Et +
r

1 − (1 + r)
− N

􏽨 􏽩
l
p

+ O
E⎛⎝ ⎞⎠Pw +

r

1 − (1 + r)
− N

􏽨 􏽩
l
p

+ O
E⎛⎝ ⎞⎠Ps. (8)

2.4. Constraints. /e researcher considered both generator
capacity and power balance constraints to contrast with
existing optimization algorithms.

2.4.1. Islanded Mode of Microgrid. /e current study con-
sidered islanded mode microgrid to compare with the op-
timization results achieved in [5, 9]. /ere is no trade-off for
the power between the main grid and the microgrid in this
mode. So, the microgrid needs to fulfil the local or confined
community load demands.

2.4.2. Power Balance Constraint. /e load demand must be
equal to that of the total power generation [9].

􏽘
NG

i�1
PGi + Pw + Ps � PD. (9)

Here, PD corresponds to the total load demand.

2.4.3. Generation Capacity Constraints. Every generating
unit’s output power gets flanked by both lower and upper
bounds [9].

P
min
Gi ≤PGi ≤P

max
Gi . (10)

Here, Pmin
Gi and Pmax

Gi correspond to the minimum and
maximum output powers of the ith generating unit
correspondingly.

3. Improved Mayfly Algorithm

Mayfly algorithm takes its inspiration from the social be-
haviour of mayflies, especially how they mate with each
other [38]. It is assumed that mayflies are instantly con-
sidered adults as soon as the eggs are hatched. Leaving beside
the period of their life, only the fittest mayflies tend to
survive. Each mayfly has a position in search space that
corresponds to a solution that overcomes the problem.
RAND functions are utilized in conventional mayfly algo-
rithm to produce novel variables that lead to local optimal.
To increase MA’s searching ability and create an optimal
solution, the researchers integrated MA with Levy flight. If a
Levy flight-based approach is utilized for system identifi-
cation, it achieves rapid convergence and does not entail
derivative information [40], attributed to stochastic random
search, in line with the Levy flight concept [41]. Levy flight
contributes heavily to increasing the optimal solution’s local

search avoidance and local trapping [42]. /e flowchart of
the proposed IMA algorithm is shown in Figure 1.

/e steps required for the proposed mayfly optimization
algorithm works are described as follows:

Step 1. Two mayfly sets, each representing a male and a
female population, should be generated randomly. /en,
every mayfly is arbitrarily placed in problem space as a
candidate solution which is denoted by a d-dimensional
vector PGi � (PG1, . . . , PGd). /en the performance is
assessed based on the predefined objective function
f(CT(PGi)).

Step 2. A mayfly’s velocity v � (v1, . . . , vd) is initialized
through its positional change. Its direction is decided as a
hybrid interaction between individuals and the social flying
experiences. To be specific, every mayfly tends to alter its
trajectory in alignment with its personal best position
(pbest) so far. It also alters based on the best position
achieved by any other mayfly present in the swarm so far
(gbest).

Step 3. /e population of the male mayflies is initialized as
PGmi(i � 1, 2, . . . , NG) with velocities vmi. /e male may-
flies, gathered in swarms, denote that the position of every
mayfly gets altered in alignment with its individual’s ex-
perience and that of the neighbor’s. Pt

Gi is assumed to be the
current position of mayfly i in search space at time step t and
the position gets altered with the addition of velocity vt+1

i , to
the current position. /is notation is formulated as given
herewith.

P
t+1
Gmi � P

t
Gmi + v

t+1
i . (11)

Male mayflies are considered as present a few meters
above the water, with P0

Gim U(PGmmin, PGmmax), performing
nuptial dance. It can be assumed that these mayflies lack
great speeds due to constant movements. /is results in the
calculation of a male mayfly’s velocity i as follows [38]:

v
t+1
ij � g∗ v

t
ij + a1e

− βr2p pbestij − P
t
Gmij􏼐 􏼑

+ a2e
− βr2g gbestj − P

t
Gmij􏼐 􏼑.

(12)

Here, vt
ij corresponds to mayfly i’s velocity in dimension

j � 1, ..., n at time step t, Pt
Gmij denotes the mayfly’s ith

position in dimension j at time step t, a1 and a1 correspond
to positive attraction constants utilized in scaling up the
contribution of cognitive and social components,
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respectively. Furthermore, pbesti denotes the mayfly ith best
position which it had ever visited. Based on the minimi-
zation problems under consideration, the personal best
position pbestij at the next time step t + 1 is determined as
given herewith.

pbesti �
P

t+1
Gmi, iff P

t+1
Gmi􏼐 􏼑<f pbesti( 􏼁

is kept the same, otherwise

⎧⎨

⎩ . (13)

Following is the equation for the global best position
gbest at time step t.

gbest ∈ pbest1, pbest2, . . . , pbestN, |f(cbest)􏼈 􏼉,

� min f pbest1( 􏼁, f pbest2( 􏼁, . . . , f pbestNG( 􏼁􏼈 􏼉.
(14)

Here β represents the fixed visibility coefficient used in
(7). It is utilized to confine the visibility of the mayfly to
others. Further, rp denotes the Cartesian distance between
PGi and pbesti and rg corresponds to the Cartesian distance
between PGi and gbest. Following is the equation used to
determine these distances.

PGmi − Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

��������������

􏽘

n

j�1
PGmij − Xij􏼐 􏼑

2

􏽶
􏽴

, (15)

where PGmij corresponds to the jth element of mayfly i and
Xi denotes the pbesti or gbest. If the algorithm needs to
function appropriately, then the best mayflies present in the
swarmmust continuously perform the up-and-down nuptial
dance. So, the velocity of these best mayflies must be kept on
changing which is calculated as follows [38]:

v
t+1
ij � v

t
ij + d × r. (16)

Here, d denotes the coefficient of nuptial dance whereas
the random value in the range of [− 1, 1] is denoted by r.

Step 4. In this step, the female mayfly population is ini-
tialized PGfi(i � 1, 2, . . . , NG) with velocities vfi. Female
mayflies tend not to gather as a swarm alike males. Instead, it
tends to fly towards its male counterparts for mating. Pt

Gfi is
assumed as the current position of female mayfly i in search
space at time step t, while its position gets altered with the
addition of velocity vt+1

i to the current position, i.e.,

P
t+1
Gfi � P

t
Gfi + v

t+1
i . (17)

Here, due to P0
Gfi U(PGfmin, PGfmax) one cannot ran-

domize the attraction process. So, the model is decided to be
a deterministic process. As a result, their velocities are
determined as given herewith in the presence of minimi-
zation problems [38].

v
t+1
ij �

g∗ v
t
ij + a2e

− βr2mf P
t
Gmij − P

t
Gfij􏼐 􏼑, if f PGfi( 􏼁> f PGmi( 􏼁,

g∗ v
t
ij + fl × r, if f PGfi( 􏼁≤ f PGmi( 􏼁.

⎧⎪⎨

⎪⎩

(18)

Here, vt
ij corresponds to the female mayfly’s velocity i in

dimension j � 1, ..., n at time step t, Pt
Gfij denotes the female

mayfly i’s position in dimension j at time step t, and a2
denotes the positive attraction constant whereas it remains a
fixed visibility coefficient. Further, the gravity coefficient is
denoted by g, and rmf corresponds to the Cartesian distance
between male and female mayflies. Here fl corresponds to a
random walk coefficient and r denotes the random value in
the range of [− 1, 1]. /is value is determined based on (15).

Step 5. In this step, the Levy flight approach is involved in
calculating the velocity of a mayfly candidate solution.
Equation (19) is used to determine the velocity of the mayfly
candidate solution [38].

Evaluate the fitness

Update pbest and gbest

Update the location and velocity of male and
female mayfly 

Start

Generate initial population of male mayfly and
allocate maximum no. of iterations 

End of
Iterations 

Stop

No

Arbitrarily segregate offspring to male and female mayfly 

Yes

Determine the global best

Evaluate the fitness

Rank the mayflies

Evaluate offspring

Reinstate the worst solutions with the best new ones

Apply Levy Flight to evaluate the velocity of mayfly

Determine the value of gravity coefficient

Figure 1: Flowchart of the proposed improved mayfly optimiza-
tion algorithm.
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v
t+1
ij �

Vmax, if v
t+1
ij >Vmax,

− Vmax, if v
t+1
ij < − Vmax.

⎧⎪⎨

⎪⎩
(19)

/is stage uses the Levy flight approach to alter the
position of the global finest component. /ough the Levy
flight method has been used for exploration purposes so far,
it is associated with a specific search.

Here, Vmax is calculated as follows:

Vmax � Levy(λ)∗ PGmmax − PGmmin( 􏼁. (20)

Here, δ corresponds to a scale factor designed in
alignment with the search space element. /e author fixed δ
as 1.

Levy(λ) � 0.01
r5σ

r6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1/β. (21)

Further, σ is calculated as follows [42]:

σ �
Γ(1 + λ)sin(π(λ/2))

Γ((1 + λ)/2)λ 2(λ− 1)/2􏼂 􏼃( 􏼁
􏼢 􏼣

1/λ

. (22)

Here, Γ(x) � (x − 1)!, r5 corresponds to r6 indiscrimi-
nate numbers that lie in the range of [0, 1], and 1< β≤ 2,
where there is a constant value, i.e., 1.5 incorporated for β in
the current study [40–42].

Levy(λ) denotes the step length, incorporated by Levy
distribution with infinite variance and mean values with
1< λ< 3. λ corresponds to the distribution factor, whereas
the gamma distribution function is denoted by Γ(.).

Step 6. Gravity coefficient value calculation [38]:
Gravity coefficient g value can be considered a fixed

number that lies in (0, 1].

g � gmax −
gmax − gmin

itermax
× iter, (23)

where gmax, gmin correspond to maximum and minimum
values which can be taken for the gravity coefficient, and iter

denotes the algorithm’s current iteration, whereas the
maximum count of iterations is denoted by itermax.

Step 7. Mayflies are mated and the offspring are evaluated.
/e mating process between the mayflies is discussed by

the crossover operator as given herewith. From the male and
female population, each one parent is selected through the
same selection process, i.e., the attraction of females towards
the males. Specifically, fitness function-based or random
selection of the parents can be made. In terms of the fitness
function, the best female mates with the best male, the
second-best female with the second-best male, etc. /is
crossover results in two offsprings for which the formulation
is given herewith [38]:

offspring1 � L × male +(1 − L) × female,

offspring2 � L × female +(1 − L) × male.
(24)

Here, male denotes the male parent, and female cor-
responds to the female parent, while L is a random value
within a specific range. /e initial velocity of the offspring is
fixed as zero.

3.1. ?e Pseudocode of the Improved Mayfly Algorithm.
/e pseudocode of the improvedmayfly algorithm is devised
as follows:

(1) Formulate the objective function f(CT(PGi)),

PGi � (PGi1, . . . , PGid)T

(2) Set the male mayfly population PGmi(i � 1, 2,

. . . ,NG) and velocities vmi

(3) Set the female mayfly population
PGfi(i � 1, 2, . . . ,NG) and velocities vfi

(4) Evaluate solutions
(5) Determine global best gbest
(6) Do While stopping criteria are not meet
(7) Update velocities and solutions of males and

females
(8) Evaluate solutions
(9) Rank the mayflies
(10) Apply Levy flight approach to evaluate the ve-

locity of a mayfly candidate solution
(11) Determine the value of the gravity coefficient
(12) Mate the mayflies
(13) Evaluate offspring
(14) Separate offspring to male and female randomly
(15) Reinstate worst solutions with the best new ones
(16) Update pbest and gbest
(17) End While
(18) Post-process results and visualization

4. Results and Discussion

/e current study used a microgrid model with three
conventional generators, solar, and wind units. One of the
generators is a combined heat and power generator, whereas
the other two conventional generators are synchronous. As
per [9], three conventional generators and their daily load
profile details were used in the current study. During the
improved mayfly optimization algorithm implementation,
various parameters were chosen for the optimal search
process.

In order to assess the proposed IMA, various scenarios
were considered as given herewith.

(i) All sources included
(ii) /ermal power generating units without renewable

sources
(iii) /ermal power generating units with wind source

only
(iv) /ermal power generating units with solar source

only

Computational Intelligence and Neuroscience 7



4.1. Case 1: All Sources Included. In the first case, the pro-
posed IMO was utilized in the elucidation of the CEED
problem in the microgrid and the case considered both wind
and solar energy-powered generators. /e optimization
results were obtained using the proposed IMA and con-
trasted with the results obtained from other optimization
algorithms. /e generation cost calculated by the proposed
IMA and other published methods is shown in Table 1 for
comparative purposes. Figure 2 shows the convergence
characteristics required to mitigate the total generation cost
incurred from MA and IMA algorithms. As shown in
Figure 2, when cross-verifying the proposed algorithm’s cost
convergence characteristic, a quicker and more smooth
transition was obtained than other optimization techniques
considered. Further, Figure 3 shows the comparison results
of total generation cost saving from CEED problem when
using the mayfly algorithm and other such optimization
algorithms. /e results achieved from the simulation reveal
that the proposed IMA is superior to MA and other opti-
mization algorithms. Moreover, the total generation cost
obtained using the proposed IMA algorithm was less than
other optimization algorithms. In Figure 4, the total gen-
eration cost was obtained using IMA with MA and other
published algorithms. It is observed from Figure 4 that
improved mayfly optimization algorithm enhanced the total
generation cost by 19.68%, 14.37%, 3.08%, 3.05%, 2.17%,

1.88%, 0.94%, and 0.23% over RGM, ACO, CSA, ISA, HIS,
IAHS, MHS, and MA, respectively.

4.2. Case 2: ?ermal Power Generating Units without Re-
newable Sources. In this case, the mayfly optimization al-
gorithm was utilized to resolve the CEED problem in the
microgrid. /e case took a total of 3 fossil-fuel-powered
thermal generation units under consideration. /e opti-
mization results achieved by IMA were contrasted with
other such algorithm results. Table 2 shows the total gen-
eration cost achieved by the proposed IMA and other such
optimization algorithms. /e cost convergence profile re-
sults are shown in Figure 5 for the proposed IMA and other
optimization algorithms. From the results, it can be un-
derstood that IMA has promptly converged to the optimal
outcome. /e comparison results of total generation cost
savings are shown in Figure 6 for the CEED problem when
using IMA. It shows that IMA achieved better results than
MA and other optimization algorithms. /e comparison of
total generation cost savings obtained using MA and other
published algorithms is presented in Figure 7. Figure 7 infers
that the total generation cost improved when using the IMA
algorithm by 18.52%, 14.67%, 2.93%, 3.3%, 3.27%, 1.32%,
and 0.94% over RGM ACO, CSA, ISA, MHS, and MA,
respectively. Furthermore, the total generation cost obtained

Table 1: Optimal generation schedule of microgrid for case 1.

Time RGM cost ACO cost CSA cost ISA cost IHS cost IAHS cost MHS cost MA IMA
($/h)(h) ($/h) [5] ($/h) [5] ($/h) [5] ($/h) [5] ($/h) [9] ($/h) [9] ($/h) [9] ($/h)

1 8529 7250 7153 7153 7090.5 7058.0 6942.8 6857.4 6824.6
2 8648 7511 7203 7203 7151.1 7130.2 7010.3 6904.7 6891.4
3 8675 7704 7278 7278 7170.8 7151.5 7100.7 7015.6 6994.8
4 8795 7742 7280 7285 7159.6 7130.8 7049.6 7020.3 7004.8
5 8758 8211 7545 7545 7528.2 7450.1 7377.2 7334.1 7309.7
6 8848 8459 7723 7679 7600.1 7572.2 7553.3 7544.2 7537.6
7 8964 8406 7457 7457 7444.2 7423.8 7294.1 7207.3 7189.5
8 9308 7923 7138 7138 7051.0 7050.3 6935.6 6879.7 6851.3
9 9609 9040 7731 7731 7660.3 7640.9 7576.4 7528.1 7505.8
10 10049 9599 7920 7937 7851.5 7845.4 7770.8 7752.6 7731.2
11 11520 11184 9231 9231 9152.0 9150.0 9073.4 9025.3 9006.8
12 12098 11616 9470 9470 9394.3 9381.3 9314.3 9271.4 9253.7
13 10676 10320 8482 8482 8400.3 8374.4 8326.2 8297.6 8273.9
14 9982 9707 8186 8186 8135.4 8119.9 8025.4 7758.9 7729.4
15 9569 9351 8154 8159 8100.6 8090.5 7984.4 7903.2 7892.7
16 9030 8469 7622 7626 7550.5 7539.6 7457.9 7419.7 7401.4
17 8872 8189 7526 7525 7470.6 7440.2 7362.6 7305.8 7291.3
18 9273 9061 8132 8131 8050.8 8040.4 7956.6 7904.3 7889.5
19 9990 9852 8652 8636 8549.6 8511.0 8462.3 8445.7 8436.1
20 12646 11897 9846 9811 9760.6 9710.0 9690.9 9681.4 9675.8
21 11496 11101 9383 9383 9249.9 9219.7 9221.6 9217.8 9216.1
22 9534 9488 8371 8370 8300.8 8281.4 8194.5 8146.7 8122.3
23 8667 8077 7572 7572 7463.7 7440.1 7403.1 7389.6 7378.4
24 8517 7498 7254 7262 7225.8 7195.7 7070.8 6991.3 6973.5
Total 232053 217655 192309 192250 190512.3 189947.5 188154.4 186802.7 186381.6
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in case 1 can be less than in case 2 due to incorporating
renewable energy sources in a microgrid.

4.3. Case 3: ?ermal Power Generating Units with Wind
Sources Only. Improved mayfly optimization algorithm was
deployed in this case to resolve the CEED problem found in
microgrids. /is case considered fossil-fuel-powered ther-
mal generators in addition to wind sources. IMA and other
models (MA, IHS, CSA, and ISA algorithms) were simu-
lated, and the results were compared. Table 3 shows the
generation cost calculated for IMA and other such

optimization algorithms. In Figure 8, the author shows the
cost convergence characteristic for the optimization algo-
rithms under comparison and the proposed IMA.

Further, Figure 8 also provides an inference; i.e., the
convergence characteristic of the proposed LISA strategy II
was smooth and quick compared to other strategies. In
Figure 9, the researcher compared the total cost saving of
IMA and other optimization algorithms from the CEED
problem. It is observed from the application results that IMA
yielded less total generation cost compared to MA, IHS,
CSA, and ISA algorithms. Figure 10 shows the comparison
results of operation cost savings obtained using IMA and
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Figure 3: Comparison of total generation cost for case 1.
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other published algorithms. It is observed from Figure 10
that IMA improved the operation cost by 3.66%, 3.64%,
1.6%, and 0.55% over CSA, ISA, MHS, andMA, respectively.
Further, the total generation cost obtained in this case re-
mains lower than in case 2 because of integrating a wind-
powered energy source with the microgrid.

4.4. Case 4:?ermal PowerGeneratingUnitswith Solar Source
Only. /e case scenario considered fossil-fuel-powered
thermal generating units with solar sources. In this scenario,
improved mayfly optimization algorithm was selected to
resolve the CEED problem found in microgrids. Simulation
results obtained using an improved mayfly optimization
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Figure 4: Total generation cost saving of CEED problem for case 1.
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algorithm are compared with the outcomes attained by MA
and other such algorithms. /e total generation cost of the
improved mayfly optimization algorithm and other opti-
mization algorithms is presented in Table 4. Figure 11
represents the convergence characteristics obtained to
minimize total generation cost using MA and IMA. From
Figure 11, it is concluded that the proposed IMA provides
steady and quick convergence characteristics. Figure 12
show the comparison results of total generation cost sav-
ing achieved by IMA and other optimization algorithms for
CEED problem found in microgrids. It is observed from the
optimization results that an improved mayfly algorithm
provides less total generation cost than other optimization
techniques. Figure 13 shows the optimization results of total
generation cost saving obtained using IMA and other
published metaheuristic optimization algorithms. Figure 13
infers that the proposed IMA algorithm enhanced the total
generation cost by 18.5%, 14.7%, 3.44%, 3.41%, 1.43%, and
0.41% over RGM, ACO, CSA, ISA, MHS, and MA, re-
spectively. /e authors also conclude that the total gener-
ation cost is less in this scenario than in case 2 because of the

incorporation of solar-powered energy sources with the
microgrid.

4.5. Comparison between the Cost Curves of All Scenarios.
Figures 14 and 15 show the comparison results of total
generation cost curves under all the scenarios compared to
IMA and MA algorithms 24 hours a day. Furthermore,
Figure 16 shows the quantitative comparative results of total
cost under all the scenarios using IMA. One can notice from
Figures 14–16 that case 1 provides a minimum generation
cost compared to other scenarios. Also, it can be observed
from case 2 that the highest generation cost is obtained in
this case. /is might be attributed to the reason that re-
newable energy sources function as negative loads, while the
rest are provided by the fossil-fuel-powered thermal gen-
erating units only. It reduces the total generation cost.
Furthermore, the total generation cost obtained was less in
case 3 than in case 4. It could have occurred due to heavy
investment costs incurred upon solar power compared to
wind power.

Table 2: Optimal generation schedule of microgrid for case 2.

Time RGM cost ACO cost CSA cost ISA cost MHS MA IMA
($/h)(h) ($/h) [5] ($/h) [5] ($/h) [5] ($/h) [5] ($/h) [9] ($/h)

1 8490 7317 7179 7179 6977.4 6849.7 6810.2
2 8528 7694 7365 7367 7194.4 7089.6 7061.3
3 8592 7922 7479 7499 7310.3 7223.8 7198.5
4 8675 8117 7598 7608 7429.5 7351.7 7319.3
5 8756 8318 7721 7722 7550.8 7448.2 7416.7
6 8878 8600 7849 7851 7675.4 7567.1 7534.3
7 9005 8768 7978 7978 7802.5 7731.8 7707.4
8 9167 8998 8110 8110 7933.7 7861.8 7829.1
9 10527 10406 8943 8943 8774.3 8697.4 8669.1
10 11867 11347 9540 9540 9380.9 9304.8 9275.4
11 12664 12032 9851 9850 9696.6 9612.5 9590.1
12 13511 12476 10170 10170 10020.0 9973.4 9942.8
13 12664 12032 9850 9746 9696.6 9668.2 9651.6
14 11160 10889 9238 9230 9074.4 8994.6 8971.3
15 10009 9936 8657 8675 8483.5 8401.7 8375.4
16 9167 8998 8110 8109 7933.7 7894.6 7869.2
17 8875 8599 7849 7849 7675.6 7632.8 7605.2
18 9347 9186 8244 8244 8067.5 7992.7 7969.1
19 10009 9936 8657 8657 8483.5 8401.8 8372.4
20 12664 12032 9851 9847 9696.6 9613.8 9589.5
21 11495 11197 9388 9388 9226.1 9148.7 9129.2
22 9540 9479 8377 8379 8203.0 8115.3 7991.5
23 8675 8117 7598 7598 7429.5 7349.3 7317.6
24 8515 7491 7265 7260 7082.8 7005.4 6974.1
Total 240780 229887 202867 202799 198798.4 196930.7 196170.3
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Figure 7: Total generation cost saving of CEED problem for case 2.
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Table 3: Optimal generation schedule of microgrid for case 3.

Time CSA cost ISA cost MHS MA IMA
($/h)(h) ($/h) [5] ($/h) [5] ($/h) [9] ($/h)

1 7153 7152 6943.4 6851.3 6819.6
2 7203 7199 7010.5 6917.4 6882.7
3 7279 7279 7099.6 7012.6 6990.8
4 7235 7235 7050.2 6972.8 6943.5
5 7544 7545 7377.2 7293.5 7269.3
6 7724 7724 7553.4 7476.8 7435.4
7 7606 7606 7439.4 7355.1 7321.9
8 7443 7443 7278.5 7194.3 7162.8
9 8364 8364 8190.1 8101.6 7784.2
10 9006 9006 8840.7 8753.4 8729.1
11 9454 9461 9295.8 9211.8 9178.6
12 9581 9581 9425.9 9346.9 9313.4
13 9408 9407 9248.7 9168.4 9132.8
14 8933 8933 8766.3 8679.5 8643.7
15 8427 8427 8252.3 8162.9 8123.1
16 7756 7758 7584.2 7495.4 7461.8
17 7761 7761 7590.1 7503.9 7481.6
18 8194 8193 8017.2 7927.1 7893.9
19 8636 8644 8461.9 8361.8 8329.2
20 9845 9842 9690.7 9613.9 9581.3
21 9383 9383 9221.8 9139.6 9107.9
22 8371 8325 8194.7 8127.4 8094.9
23 7572 7571 7403.7 7317.8 7293.5
24 7254 7254 7070.8 6976.7 6943.1
Total 197132 197093 193006.9 190962 189918
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Figure 10: Total generation cost saving of CEED problem for case 3.
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Figure 9: Comparison of total generation cost for case 3.
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Table 4: Optimal generation schedule of microgrid for case 4.

Time RGM cost ACO cost CSA cost ISA cost MHS MA IMA
($/h)(h) ($/h) [5] ($/h) [5] ($/h) [5] ($/h) [5] ($/h) [9] ($/h)

1 8490 7317 7179 7156 6977.4 6885.7 6827.4
2 8528 7694 7365 7364 7194.4 7106.1 7073.2
3 8592 7922 7479 7508 7310.3 7208.9 7174.3
4 8675 8117 7598 7599 7429.5 7335.2 7302.8
5 8756 8318 7721 7721 7550.8 7461.5 7423.9
6 8878 8600 7848 7841 7675.3 7589.8 7554.2
7 8849 8589 7816 7816 7647.2 7559.7 7523.4
8 8969 8559 7692 7692 7530.9 7447.5 7419.2
9 9788 9630 8269 8244 8105.9 8034.4 7994.2
10 10235 10139 8397 8337 8242.2 8187.3 8149.7
11 12153 11648 9620 9634 9465.9 9377.2 9341.8
12 13327 12336 10052 10053 9903.0 9847.2 9829.6
13 10957 10788 8887 8887 8734.9 8660.7 8639.1
14 10153 10012 8467 8467 8305.8 8227.1 8194.7
15 9707 9617 8377 8378 8206.8 8119.4 8094.9
16 9093 8829 7974 7970 7797.9 7707.6 7679.2
17 8810 8279 7608 7608 7444.4 7359.8 7336.2
18 9340 9137 8182 8182 8006.6 7912.4 7884.1
19 10009 9937 8657 8657 8483.5 8391.2 8357.4
20 12664 12032 9851 9849 9696.6 9617.2 9589.7
21 11495 11197 9388 9400 9226.1 9171.2 9143.8
22 9540 9479 8379 8379 8203.0 8112.3 8084.7
23 8675 8117 7598 7596 7429.5 7344.8 7312.2
24 8515 7491 7264 7263 7082.8 6990.4 6943.1
Total 234198 223784 197668 197601 193650.8 191654.6 190872.8
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Figure 12: Comparison of total generation cost for case 4.
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Figure 13: Total generation cost saving of CEED problem for case.
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Figure 14: Comparison of the cost curve for all cases for 24 hours of a day using mayfly algorithm.
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Figure 15: Comparison of the cost curve for all cases for 24 hours of a day using improved mayfly algorithm.
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5. Conclusion

In the current study, the improved mayfly optimization
algorithm (IMA) has been implemented to resolve the
combined economic emission dispatch (CEED) with re-
newable energy sources. /e study incorporated the pro-
posed IMA as a solution for the CEED problem encountered
in the microgrid. Solar and wind power are considered as the
cost functions in this study. /e proposed IMA algorithm
was validated for its supremacy and efficiency in a microgrid
model under varying scenarios. /e outcomes of IMA and
other algorithms were compared and contrasted. /e
comparison results show that the proposed IMA algorithm is
better in cost reduction under all the scenarios. /is infers
that the proposed IMA is superior, robust, and efficient over
other metaheuristic optimization algorithms published
earlier. In future, the improved mayfly optimization algo-
rithm can be applied to tackle the CEED problem in grid-
connected microgrids comprising battery storage and
electric vehicles to accomplish single and multiobjective
optimization.

Nomenclature

List of Symbols

a: Annuitization coefficient
Cw: Cost of wind power generating unit
Cs: Cost of solar-powered generating unit
d: Coefficient of nuptial dance
Ei(PGi): Emission level of the ith generator
Et: Overall emission
fl: Random walk coefficient
Fi(PGi): Fuel cost of the ith generator

Ft: Overall fuel cost incurred
g: Gravity coefficient
gbest: Global best
iter: Current iteration
itermax: Maximum no. of iterations
L: Random number
lp: Costs incurred upon investment per unit

installed power
N: Lifetime investment
NG: No. of generating units
OE: Operating and maintenance costs per unit

installed power
pbest: Personal best
Pmax
Gi : Maximum output power of generator i

Pmin
Gi : Minimum output power of generator i

PD: Total load demand
PGi, PGmi, PGfi: Power output of ith generating unit
Ps: Output power from solar-powered

generating unit
Pw: Output power from wind power generating

unit
r: Interest rate
rp: Cartesian distance between xi and pbesti
rg: Cartesian distance between xi and gbest
rmf : Cartesian distance between male and

female mayflies
TC: Total operating cost
β: Fixed visibility coefficient
Λ: Price penalty factor
Λi: Price penalty factor of ith generator
Λ: Distribution factor
δ: Scaling factor
Γ(.): Gamma distribution function
σ: Standard deviation.
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Figure 16: Comparison of total generation cost for all cases using MA and IMA algorithm.
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Abbreviations

BSDE: Bernstein-search differential evolution
CEED: Combined economic emission dispatch
ChOA: Chimp optimization algorithm
CHP: Combined heat and power
CHPED: Combined heat and power economic dispatch
CNO: Collective neurodynamic optimization
DCHPED: Dynamic combined heat and power economic

emission dispatch
DDG: Dispatchable distributed generator
DE: Differential evolution
DEED: Dynamic economic emission dispatch
DSM: Demand side management
ECED: Environment constrained economic dispatch
EED: Economic environmental dispatch
ELD: Economic load dispatch
EMA: Exchange market algorithm
FC: Fuel cell
FCDED: Fuel constrained dynamic economic dispatch
FP: Fractional programming
GA: Genetic algorithm
GWO: Grey wolf optimizer
HFA/HS: Hybrid Firefly and Harmony Search
IGWO: Improved grey wolf optimizer
IMA: Improved mayfly algorithm
ISA: Interior search algorithm
LPSP: Loss of probability of power supply
MA: Mayfly algorithm
MAACPSO: Modified adaptive accelerated particle swarm

optimization
MBGSA: Memory-based gravitational search algorithm
MG: Microgrid
MILP: Mixed-integer linear programming
MOVCS: Multiobjective virus colony search
MT: Microturbine
PPF: Price penalty factor
PSO: Particle swarm optimization
PV: Photovoltaic
QPSO: Quantum particle swarm optimization
SFS: Stochastic fractal search algorithm
SGEO: Social group entropy optimization
SOS: Sequential optimization strategy
SSER: System surplus energy rates
WOA: Whale optimization algorithm
WT: Wind turbine.
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