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Abstract

Study Objectives: The measurable aspects of brain function (polysomnography, PSG) that are 

correlated with sleep satisfaction are poorly understood. Using recent developments in automated 

sleep scoring, which remove the within- and between-rater error associated with human scoring, 

we examine whether PSG measures are associated with sleep satisfaction.

Design and Setting: A single night of PSG data was compared to contemporaneously collected 

measures of sleep satisfaction with Random Forest regressions. Whole and partial night PSG data 

were scored using a novel machine learning algorithm.

Participants: Community-dwelling adults (N=3,165) who participated in the Sleep Heart Health 

Study.

Interventions: None

Measurements and Results: Models explained 30% of sleep depth and 27% of sleep 

restfulness, with a similar top four predictors: minutes of N2 sleep, sleep efficiency, age, and 

minutes of wake after sleep onset (WASO). With increasing self-reported sleep quality, there was 

a progressive increase in N2 and decrease in WASO of similar magnitude, without systematic 

changes in N1, N3 or REM sleep. In comparing those with the best and worst self-reported sleep 

satisfaction, there was a range of approximately 30 minutes more N2, 30 minutes less WASO, an 

improvement of sleep efficiency of 7-8%, and an age span of 3-5 years. Examination of sleep most 
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proximal to morning awakening revealed no greater explanatory power than the whole-night data 

set.

Conclusions: Higher N2 and concomitant lower wake is associated with improved sleep 

satisfaction. Interventions that specifically target these may be suitable for improving the self-

reported sleep experience.
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Introduction.

What is good sleep? To paraphrase U.S. Supreme Court Justice Potter Stewart, “I know 

it when I see it.” While this answer may be unsatisfying, it engenders an important 

question: what are the aspects of physiology that underlie our self-reported experience 

of sleep? Beyond an esoteric concept, the self-reported sleep experience is relevant for 

multiple health outcomes such as mortality (1), metabolic syndrome (2), diabetes (3), 

hypertension (4), coronary heart disease (5), schizophrenia (6), autism (7) and depression 

(8). An understanding of the physiologic underpinnings of self-reported sleep quality not 

only allow us to understand the mechanistic relationship between sleep and psychiatric 

disease, it could also facilitate treatments targeted to the specific aspects of sleep that are 

linked to an improved sleep experience.

One aspect of brain physiology that is frequently captured during studies of sleep is 

that of polysomnography, which is used to parse 30-second segments of brain wave 

(electroencephalography, EEG), muscle (electromyography, EMG) and eye movement 

(electro-oculography, EOG) data into ‘stages’ of sleep. These stages are divided into rapid 

eye movement (REM) and non-REM sleep (NREM), which is further divided into three 

separate categories (N1, N2, N3). Previous studies comparing PSG with self-reported sleep 

quality have identified each of the stages of NREM sleep (N1, N2, N3), wake after sleep 

onset (WASO), transitions between sleep and wake, and overall sleep efficiency (SE) (9–

16) as being important contributors to the subjective experience of sleep. Many of these 

studies, however, relied on small numbers of individuals who were either good sleepers 

or who were clinically diagnosed with insomnia. We have previously published on the 

association between self-reported sleep quality and polysomnography (PSG) measures of 

sleep in multiple, large, community-based cohorts of middle to older aged adults (17–19). 

While these studies indicated that SE, WASO, and total sleep time (TST) were important 

physiologic correlates of self-reported sleep quality, the models explained relatively little 

variance (≤15%).

Since these initial publications, advances in both sleep analyses and machine learning 

warrant revisiting the relationship between self-reported sleep quality and its physiologic 

correlates. Classification into sleep stages is typically done by experts trained to detect 

specific patterns in the EOG, EMG, and EEG signals and to match these patterns to 

manualized standards (20,21). In scoring the PSG, there are well-described, substantive 

interindividual differences among sleep experts, as well as intraindividual inconsistencies, 
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that can complicate analyses of cross-sectional studies (22,23). As such, there have been 

many efforts in recent years to use machine learning-based automated scoring techniques 

to, at the very least, eliminate both within- and between-scorer bias and, ideally, improve 

scoring accuracy. In one such iteration of this approach, labels (wake, N1, N2, N3, REM) are 

provided for each 15-s epoch of sleep, as well as the probability of each state within each 

15-s epoch (24,25). In other words, for each 15-s epoch, this approach assesses how closely 

EEG, EOG, and EMG signals match the idealized pattern for the state as determined by the 

model. Information on probability of state matching could be helpful in understanding the 

confidence of sleep staging, which could be secondary to temporal (multiple states occurring 

within the 15-s epoch) or spatial (multiple states occurring in cortical regions contiguous 

with the recording electrode) integration in the EEG signal (26).

Another possible reason why PSG variables in prior studies have not predicted self-reported 

sleep quality well is that these studies often relied on whole-night measures of sleep. It 

is possible that the self-reported experience of sleep quality is dependent on the sleep 

occurring more proximal to the final awakening. As such, the latter part of the PSG might 

be a better predictor of self-reported sleep quality. The goals of this study are to revisit the 

relationship between PSG variables and self-reported sleep quality and to determine whether 

this relationship changes based on the part of the night from which the data were obtained. 

To address these goals, data from the Sleep Heart Health Study were examined with machine 

learning regression models meant to reduce the chance of overfitting the predictive data.

Methods and Materials.

Original data were collected in the Sleep Heart Health Study, a multi-center clinical cohort 

originally designed to examine the cardiovascular consequences of disrupted breathing 

during sleep. Data were collected between November 1, 1995 and January 31, 1998. Of the 

6,441 participants in the Sleep Heart Health Study, 5,804 had overnight sleep data available 

for analysis. Data were excluded if either of the self-reported sleep quality assessments 

(explained below) were missing (n=376) or if there were issues with the quality (e.g., poor 

signal) or quantity (e.g., lack of a complete night) of the PSG (n=2,263), leaving a final 

sample of 3,165 individuals. Complete information about the original study methods and 

design is available elsewhere (27); information specific to these analyses is presented below. 

Data were accessed from the National Sleep Research Resource (www.sleepdata.org, v. 

0.15.0) (27,28). Participant consent was obtained by the individual institutions involved in 

the Sleep Heart Health Study.

Self-reported sleep quality assessment.

The primary outcome variables of interest in these analyses are ‘rest10’ and ‘Itdp10’. Both 

variables concern the self-reported quality of sleep and were asked in the morning survey 

immediately following an overnight PSG. The former (rest10) asks participants to self-rate 

the quality of their sleep based on the restfulness of their sleep; two anchors [restless (1), 

restful (5)] were used on a five-point Likert-like scale. The latter (Itdp10) asks participants 

to self-rate the quality of their sleep based on the depth of their sleep; two anchors [light (1), 

deep (5)] were used on a five-point Likert-like scale.
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Polysomnography.

PSG was recorded in the participant’s home using a PS-2 system (Compumedics, 

Abbotsford, Australia) (27). These data were downloaded as original, unscored PSG data 

(.edf files). We rescored these PSG data with a machine learning-based neural network 

algorithm (https://github.com/Stanford-STAGES/stanford-stages) on a high-performance 

computing cluster at Stanford University (Sherlock) (24). This algorithm was initially 

trained on PSG records from thousands of individuals with a variety of sleep pathologies 

(25). The algorithm scores data in 15-s epochs, rather than the typical 30-s epochs, and 

provides labels of N1, N2, N3, REM, and Wake for each 15-s epoch. In addition to the 

number of minutes spent in each stage, we also calculated the number of transitions between 

any sleep stage and wake, the number of transitions between N3 and either N1 or N2, sleep 

latency (time from lights out to sleep onset, defined as the first occurrence of N2 or three 

consecutive stages of N1), and sleep efficiency (total sleep time divided by time in bed). 

In addition to these traditional metrics, the algorithm also describes the relative probability 

of each stage (i.e., closeness of matching the pattern for that stage) for each epoch. For 

example, a given epoch scored as N3 might have N1=0.05, N2=0.03, N3=0.85, REM=0.04, 

Wake=0.03, indicating that the electrophysiologic pattern within that epoch very closely 

resembles that of N3 sleep, with very low matching patterns of N1, N2, REM, or Wake. 

From these data, we derived two additional novel measures, the average probability of each 

stage (e.g., for each epoch defined as N1, what is the average probability of N1 in these 

epochs) and the adjusted wake amount (i.e., average probability score of wake in epochs 

scored as wake, multiplied by the total amount of wake after sleep onset). For the purposes 

of this manuscript, these data are referred to as “auto-scored”.

To examine whether PSG data obtained closer to wake time held more relevance to self-

reported sleep scores, whole night auto-scored data were parsed into fragments based on 

time relative to wake. Data from 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, and 

240 minutes from wake time (e.g., 80 minutes would be the final 80 minutes of PSG data 

counting backwards from wake time) were derived and analyzed as described below. This 

sequential analysis was limited to the last 240 minutes (4 hours) of sleep as durations longer 

than this would have begun to exclude individuals who had shorter sleep durations.

To compare the results of the auto-scoring, we also examined the previously hand-scored 

PSG data. In the original Sleep Heart Health Study, expert polysomnographic technicians 

scored 30-s epochs of PSG data as stages of S1 (corresponding to a current designation 

of N1), S2 (corresponding to a current designation of N2), S3 and S4 (corresponding to 

a current designation of N3), REM, and wake. Determination of sleep stage was done 

according to standard Rechtschaffen and Kales criteria (29). Nightly amounts of each sleep 

stage (N1, N2, N3, REM, wake) were calculated. For the purposes of this manuscript, 

these data are referred to as “hand-scored”. From the PSG data, we also used the overall 

respiratory disturbance index (RDI), calculated as the count of all apneas plus hypopneas 

with at least a 4% oxygen desaturation, divided by hours of total sleep time. Auto-scored 

and hand-scored data were compared with paired t-tests and effect sizes were calculated by 

the Standardized Mean Difference (SMD). SMD values correspond to small (0.2), medium 

(0.5), and large (0.8) effect sizes (30).
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Other Predictor Variables.

In addition to the sleep data, a variety of other data potentially related to sleep quality were 

also included in the models. These include demographic variables [gender (male or female), 

race (Hispanic/Latino or non-Hispanic/Latino), age, ethnicity, education level (grouped as 

<10 years, 11–15 years, 16-20 years, >20 years), marital status (married, divorced/separated, 

widowed, never married, or unknown)], anthropometric variables [body mass index (kg/

m2), waist circumference (cm)], trait-like sleep measures [Epworth Sleepiness Scale (31), 

habitual sleep duration], variables that captured behavior during the four hours prior to the 

overnight sleep study [number of caffeinated drinks, number of alcoholic drinks, number of 

nicotine products], typical medication use [antidepressant or benzodiazepine use within two 

weeks of study and use of sleeping pills at least one day per week], self-rated health, overall 

cognitive health [Mental Component Scale standardized score from the SF-36, MCS (32)] 

physical health [Physical Component Scale standardized score from the SF-36, PCS (32)] 

and self-rated emotional status [feeling calm and peaceful during previous four weeks (rated 

as all, most, some, a little, or none of the time) and stressfulness of previous day (typical, 

less, or more)]. In this sample, 1.1% of the non-sleep data were missing, with the greatest 

amount (6.9%) being MCS and PCS scores. Missing data were imputed with AmeliaView 

1.7.3(33), using the fifth iteration and bounds where appropriate.

Machine learning.

To predict self-reported sleep quality, a Random Forest (RF) regression analysis 

(classification algorithm function, RandomForestRegressor in sklearn v. 0.24.1; run in 

Python v. 3.7.10) was used. RF is a machine learning algorithm that can be used for 

regression analysis particularly when overfitting is a concern (34). It deals well with 

non-linearity, is not heavily impacted by noise, and is robust to inclusion of both 

categorical and continuous variables (35). Data were randomly split into sets of 75% 

for training (developing the model) and 25% for testing the model. The Python function 

RandomizedSearchCV class (sklearn) was used to tune model hyperparameters: the number 

of estimators, maximum depth of a tree, and minimum samples required at leaf node. 

The function GridSearchCV was used to automatically determine the maximum features 

per split. Similar hyperparameters were determined for each of the models (complete data 

set and iterative fragments of the night). We therefore used a weighted average of all 

parameters, using the r2 of the test set model for weighting, for each of the models. Variables 

that contributed at least 5% of the explained variance were further examined for trend per 

self-reported sleep quality score, using a Cuzick trend test set for Wilcoxon rank (package 

“PMCMRplus” in R, version 1.4.1103). To test for monotonic increases or decreases, the 

‘is.unsorted’ function in R was used.

Results.

The sample (n=3,165) was about half female, mostly White, middle- and older aged adults 

(Table 1). Sleep variables were in the ranges to be expected in a community-based cohort 

(Table 1). Following the overnight PSG, most individuals rated their sleep as moderately 

deep and moderately restful (Table 1). These two aspects of self-reported sleep quality were 

correlated (Spearman rho=0.68, p<0.001) (Figure 1). When people reported having the most 
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restful sleep, they usually also reported having the deepest sleep, and vice versa (highest 

correspondence in the 1 and 5 categories). People reporting moderate depth or restfulness 

(categories 2-4) had greater divergence.

RF regressions were used to examine the relationship between PSG predictor variables 

(Table 1) and both self-reported sleep depth and restfulness. Hyperparameters tuning 

resulted in 2000 estimated trees, a maximum tree depth of 10, and a minimum of 2 

samples for each leaf node. The RF models for both outcomes explained similar amounts 

of variance (29.5% for self-reported depth, 26.8% for self-reported restfulness) and had a 

similar top four predictors: minutes of N2, sleep efficiency, age, and minutes of WASO 

(Figure 2). These top four predictors captured 28% and 26% of the relative model variance 

for self-reported restfulness and self-reported depth, respectively.

While the RF are useful for understanding the combined prediction of the input variables, 

we also used these models as feature selectors. To contextualize the contribution of the 

different PSG features selected by the RF models, the four variables (N2, WASO, SE, age) 

that contributed at least 5% of the explained variance were further examined in isolation 

(Figure 3). With each increase (improvement) in one unit of sleep depth, there was an 

increase in age of 0.79 years (Figure 3A; Cuzick trend test, z=4.22, p<0.0001) and with 

each increase (improvement) in one unit of sleep restfulness, there was an increase in 

age of 1.2 years (Figure 3B; z=7.12, p<0.0001). This leads to a relatively narrow span 

of 3.2 and 4.8 years for the range of subjective depth and restfulness scores, respectively. 

However, the change in age associated with sleep depth and restfulness did not follow 

a monotonic pattern. Each increase in one unit of sleep depth was associated with a 

monotonic increase in N2 by 7.6 minutes (Figure 3C; z=8.90, p<0.0001), a monotonic 

2.0% increase in sleep efficiency (Figure 3E; z=9.63, p<0.0001), and a monotonic decrease 

in WASO by 7.2 minutes (Figure 3G; z=−8.86, p<0.0001). With each increase in one unit 

of restfulness (improvement), there was a monotonic increase in N2 by 6.7 minutes (Figure 

3D; z=8.43, p<0.0001), a monotonic 1.7% increase in sleep efficiency (Figure 3F; z=8.36, 

p<0.0001), and a monotonic decrease in WASO by 6.2 minutes (Figure 3H; z=−8.04, 

p<0.0001). These translate to a range of sleep depth that spans a 30-minute difference in 

N2, 33-minute difference in WASO, and 8.0% difference in sleep efficiency and a range of 

sleep restfulness that spans a 27-minute difference in N2, 25-minute difference in WASO, 

and 6.8% difference in sleep efficiency.

These changes in N2 and WASO can also be visualized when examining the relative 

proportion of the night spent in different stages of sleep. With increasing self-reported sleep 

quality, there is a progressive increase in N2 and decrease in WASO of similar magnitude, 

without a corresponding systematic change in N1, N3 or REM for both self-reported sleep 

depth (Figure 4A) and restfulness (Figure 4B).

In considering the observed decrease in WASO with increase self-reported sleep quality, 

which is accompanied by an increase in N2 and corresponding improvement in SE, there are 

three ways in which the amount of wake could decrease: (1) a decrease in the number of 

wake episodes per night, (2) a decrease in the length of the individual wake episodes, (3) or 

a combination of the two. If there were a decrease in the number of wake episodes per night, 
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we would expect to observe a corresponding progressive decrease in the number of shifts 

between sleep and wake, which was not an important part of the model. Even though there is 

a difference in the number of wake episodes by both sleep depth (F(4,3160)=5.54, p=1.92e-4; 

ANOVA) and restfulness (F(4,3160))=2.93, p=0.0196; ANOVA), post hoc analyses indicate 

that the difference is not progressive. Those who scored a 2 on depth had more wake 

episodes than those who scored a 3, 4, or 5 (p’s<0.005, Tukey; individual test α=0.005), but 

the remaining scores did not differ from each other. Additionally, there were no significant 

post hoc differences between scores on the restfulness scale (p’s>.02, Tukey; individual test 

α =0.005). To explore whether there is a difference in the length of wake episodes, the 

duration of individual wake episodes was plotted as a cumulative probability plot (Figure 

5). Most of the wake episodes were brief, with 85.7% being 2 minutes or shorter. In the 

wake episodes that are longer than 2 minutes, however, there is a progressive shift such 

that worse self-reported sleep quality is associated more wake episodes of longer duration 

(rightward shift in the cumulative probability curves, for both degree of depth (Figure 5A) 

and restfulness (Figure 5B). The percent of wake episodes longer than 2 minutes is greater 

in those with worse self-reported sleep quality (p’s<0.0001, Kruskal-Wallis ANOVA) such 

that those with the worst sleep quality have a median of 3.4% (depth, Figure 5B) or 2.6% 

(restfulness, Figure 5A) more of their wake as these longer episodes.

To examine whether PSG data obtained closer to wake time held more relevance to self-

reported sleep satisfaction, whole night auto-scored data were parsed into fragments based 

on time relative to wake; individual RF models were fit to each fragment of the night. 

Examination of models derived from data fragments from 20, 40, 60, 80, 100, 120, 140, 

160, 180, 200, 220, and 240 minutes before wake time (e.g., 80 minutes would be the final 

80 minutes of PSG data counting backwards from wake time) indicated no significant or 

systematic changes in the amount of explained variance (from 18% to 22% for depth and 

16% to 22% for restfulness). While there were some changes in feature importance, there 

were no systematic changes and the top predictors remained similar in all models (Figure 6). 

Of the top predictor variables for the whole night, both age and SE were stable in the amount 

of variance explained in each of the models. N2 and WASO, however, were less important in 

the models including only the end of the night data, as compared to models including most 

or all of the night of data (Figure 6).

As the scoring of WASO and N2 appear to be important markers of self-reported sleep 

satisfaction, we compared how the auto-scoring and hand-scoring performed in identifying 

epochs as WASO and N2. Epoch-by-epoch comparisons were not possible as the two 

methods use different analysis windows (15 s vs. 30 s in auto- and hand-scoring, 

respectively), but we could compare whole-night summary statistics. The auto-scored data 

had more wake (86.8 ± 63.1 min) as compared to hand-scored (57.7 ± 40.9 min) (p<0.001, 

paired t-test; SMD=−0.53). The auto-scored data also had more N2 (227 ± 61.3 min) 

as compared to hand-scored (202 ± 53.4 min) (p<0.001, paired t-test; SMD=−0.43). We 

examined the stability of the auto-scoring by calculating the average probability of matching 

each state template within each epoch scored as either wake or N2. The 15-s epochs 

categorized as “wake” by the auto-scoring algorithm had an average probability of matching 

wake of 84%, with N1 (9%), N2 (4%), N3 (0%), and REM (2%) capturing the rest of the 

variance. The 15-s epochs categorized as “N2” by the auto-scoring algorithm had an average 
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probability of matching N2 of 84%, with wake (4%), N1 (7%), N3 (4%), and REM (1%), 

capturing the rest of the variance.

Discussion.

In a large data set of community-dwelling adults, the amount of wake, N2, overall sleep 

efficiency, and to a lesser extent, age, are important predictors of self-reported sleep quality 

on a given night. Specifically, an increase in N2 with a concomitant decrease in the duration 

of wake after sleep onset, possibly through a decrease in the length of longer wake episodes, 

is associated with better self-reported sleep depth and restfulness. These changes in sleep 

states are also reflected in the improved self-reported sleep quality associated with an 

increase in sleep efficiency. There is a range of approximately 30 minutes of extra N2, 30 

minutes less WASO, and an improvement of sleep efficiency of 7-8% in comparing those 

with the best and worst self-reported sleep quality.

Our data are consistent with the hypothesis that substituting N2 for wake results in higher 

self-reported sleep quality. Self-reported sleep quality had previously been associated with 

NREM sleep (N1, N2, N3), WASO, transitions between sleep and wake, and overall SE (9–

16). These earlier studies relied on fewer participants and results were not consistent among 

the studies, likely due to the relatively low power of a single objective variable to explain the 

variance in self-reported sleep quality. Our findings, which validate the previous association 

of N2 and wake, used Random Forest regression, which uses a bootstrap approach, reducing 

the likelihood of a spurious finding due to the nature of repeated sampling. This type 

of approach, however, also limits discovery of subgroups within the data set. Repeated 

sampling of the same individuals over multiples nights, as was done in some of the previous 

studies (9,11), will be important moving forward to determine if different individuals 

consistently respond to the same set of PSG characteristics. While a reduction in WASO 

being associated with better sleep quality has prima facie validity, a priori we would have 

expected N3, rather than N2, to be associated with better sleep quality. N3 is a deeper stage 

of NREM sleep (i.e., higher arousal thresholds than N1 or N2) and is often used colloquially 

in the literature as ‘sleep quality’. N3, however, was not a significant contributor in any of 

our models. In part, this might be explained by the scoring algorithm used (25), though we 

did not previously observe evidence of the involvement of N3 when using hand-scored data 

(17,18). It also may be that as the amount of N3 is driven by the duration of prior wake 

(36,37), a reduction in WASO cannot be offset by extra N3 sleep. In examining the WASO, 

it was not the number of episodes of WASO that was associated with subjective sleep 

quality, but rather the length of the WASO episodes. While not directly studied, this could be 

due to a quantal amount of time being necessary before being ‘awake’ has a negative impact 

on subjective sleep quality. Such an effect could be due to minimal recruitment of multiple 

brain regions into a state of wake or within a single region, but such hypotheses are beyond 

the scope of the current study.

As the sleep near the end of the night could have greater weight in determining self-reported 

sleep quality, we parsed the night into 20-minute segments, starting from a participant’s 

final awakening. We did not observe, however, increased explanatory power in the RF 

models in the data segments from the end of the night. Indeed, modelling data from these 
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segments offered less explanatory power than whole-night data sets. Specific variables that 

were important in the model that predicted self-reported sleep quality by the whole night 

of polysomnography, such as duration of N2, were less important in the models constructed 

on data from the end of the night. This is not unexpected given the reduced amounts of 

NREM and increased amounts of REM during this time frame of sleep. No specific variables 

appeared to have increased importance at the end of the night.

In the auto-scoring algorithm, each 15-s epoch received not only a label (Wake, N1, N2, 

N3, REM) but also the degree to which the epoch matched each of the five possible states 

(based on the initial training algorithm) (24). Thus, if the 15-s epoch contained simultaneous 

states, either due to temporally contiguous states within the scoring window (e.g., 5 s of 

N1 followed by 10 s of N2) or due to spatial bleeding (e.g., cortical region under C3 in 

N1, but nearby cortical regions in N2), the matching probability would be distributed among 

multiple states. We used this information in the RF models to determine whether the degree 

to which epochs were classified as singular states was of additional importance. We did not, 

however, find this to be the case. Rather, the absolute amount of a state (e.g., minutes of N2) 

was more informative for predicting self-reported sleep quality than how well, on average, a 

given epoch was representative of a specific state (e.g., probability of matching N2).

Our previous work with this same data (with the same exclusion criteria) set yielded 

substantially less robust results, with only 8-9% of the variance being explained in RF 

models, as compared to the 27-30% we observe in this study (18). The previous study had 

identified sleep efficiency, age, and WASO as top predictors, as does the current study, but 

also identified total sleep time as important, which was not a highly rated predictor in the 

current analysis. In our current analysis, N2 was an important predictor, while it was not in 

the previous study. The disparity between the studies is likely due to two issues. The first 

is that in this iteration, we tuned the hyperparameters of the models prior to fitting, which 

improved the fits. The second is that the previous study relied upon polysomnographic data 

that was scored by visual pattern matching (i.e., expert hand-scoring); note, the autoscoring 

had 11% more N2 and 34% more Wake than the hand scored. Our analysis did not 

determine which of the two methods was ‘correct’, but the use of auto-scoring removes 

the significant inter-rater variability in sleep scoring and yields more uniform results (22). It 

is possible, therefore, that are more consistent scoring of N2 allowed for the identification of 

this stage as important to self-reported sleep depth and restfulness.

One curious finding is that we observe a slight increase in sleep satisfaction with older 

age, rather than the typically reported decline in sleep quality with increasing age (38–44). 

The increase we observe, however, is both small and not monotonically associated with 

the increase in age. Some studies suggest that when overall physical health factors are 

considered, a decline in sleep satisfaction is not an inevitable consequence of aging (43). 

The population we examined was predominantly healthy (Table 1), making the lack of 

decline in sleep satisfaction not altogether unexpected. Further, we want to emphasize that 

the age range of the population studied here was relatively narrow (62.7 ± 11.3 years) and 

may not extrapolated to changes over the lifespan.

Lok et al. Page 9

Biol Psychol. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While our data indicated that nearly a third of the variation in self-reported sleep quality 

could be predicted with the included parameters, there are other parameters that could 

have been derived and may offer additional explanatory power (e.g., variation in power 

spectral content across the night). Furthermore, our data set consists of only a single night 

of polysomnography and accompanying sleep quality data. Repeated measures from the 

same individuals could have provided greater clarity in terms of whether different subsets 

of individuals consistently responded to different aspects of sleep. Increasing the breadth 

of questions about the subjective experience of sleep may have also provided more insight, 

though there are a limited number of validated questionnaires that assess short-term sleep 

quality perception (45). Future studies examining orthogonal constructs of the subjective 

sleep experience would aid in a better understanding of the contributions of objective 

measures of sleep and their relationship to this subjective experience. Future studies 

examining orthogonal constructs of the subjective sleep experience would aid in a better 

understanding of the contributions of objective measures of sleep and their relationship 

to this subjective experience. The cohort was mainly middle-aged and older adults who 

were White and married. Thus, the physiologic underpinnings of subjective sleep quality in 

children or young adults, or individuals from other ethnic backgrounds was not addressed. 

Additionally, a relatively large subset of the data had to be excluded due to insufficient 

data quality or quantity, though this appeared to occur randomly and without specific 

demographic or medical bias.

It will be important for future experiments to determine whether active manipulation of 

the specific aspects of sleep identified here (e.g., increasing N2 at the expense of wake) 

results in an improvement in self-reported sleep quality. It will be important as well to 

determine whether changing N2 and wake are sufficient to improve clinical symptomatology 

in patient populations (e.g., insomnia). For example, we found that modest decreases in 

WASO (30 minutes) and increases in sleep efficiency (7-8%) were associated with higher 

ratings of sleep quality. These improvements are consistent with meta-analyses showing 

improvements of similar magnitude following Cognitive Behavioral Therapy for Insomnia 

(46). As such, targeted behavioral, pharmacological, or device-based manipulation of sleep 

could yield improved self-reported sleep quality and address the question of whether sleep 

quality begets quality sleep.
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Highlights

• Polysomnographic sleep variables can explain 30% of the variance in 

subjective sleep satisfaction in middle and older aged adults.

• Sleep at the end of night is less informative about subjective sleep satisfaction 

than whole-night data.

• A decline in wakefulness coupled with a concomitant increase in N2 underlies 

a significant portion of our subjective sleep satisfaction.
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Figure 1. 
Comparison of two self-reported sleep quality questions. Data from two questions are 

plotted as a heat map of the percent of time when a value in light/dark matched a value in 

restless/restful. Data are color coded with red (100%) and blue (0%) gradation.
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Figure 2. 
Random Forest output for sleep depth (A) and restfulness (B). Data for individual predictors 

are plotted as variance explained relative to the total variance explained by the model (29.5% 

for depth, 26.8% for restfulness).
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Figure 3. 
Boxplots of age, minutes of N2, minutes of WASO, and SE for both sleep depth (left) 

and sleep restfulness (right). Progressive changes in each of these four variables is evident. 

Abbreviations: WASO (wake after sleep onset), SE (sleep efficiency).
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Figure 4. 
Relative percent of each sleep stage by self-reported depth (A) or restfulness (B). Percent 

of time in bed after sleep onset spent in N1 (black), N2 (red), N3 (blue), REM (green), 

and wake (magenta) is shown. As the self-reported quality of sleep improves, progressively 

greater proportions of the night are spent in N2 with concomitant reductions in wake. No 

consistent changes are observed in N1, N3, or REM. Data represent the total number of 

epochs for each group.
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Figure 5. 
The cumulative probability of wake epsiode lengths are plotted for self-reported sleep depth 

(A) and restfulness (B). Scores on these scales are color coded such that the darker red = 5 

and progressively pinker colors are lower.
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Figure 6. 
A heat map of the relative amount of variance explained by different predictor variables 

for self-reported sleep depth (A) and restedness (B) in independent Random Forest models. 

Percent of variance explained is color coded as indicated. Each horizontal line represents a 

different amount of data from the full night of data to sequential parsing of the data starting 

at wake time (WT) (e.g., WT-120 is based on data between wake time and 120 minutes 

before wake time). Abbreviations: WASO: wake after sleep onset; X.W: average probability 

of wake during scored wake epochs multipled by the total duration of wake epochs; pW: 

average probability of wake; pN1: average probability of N1; pN2: average probability 

of N2; pN3: average probability of N3; REM: rapid eye movement sleep; pR: average 

probability of REM; Latency: sleep onset latency; #S→W trans: number of transitions 

between sequential epochs scored as sleep and then wake; N3→N1/2 trans: number of 

transitions between sequential epochs scored as N3 and then either N1 or N2 sleep; RDI: 

respiratory distress index; SE: sleep efficiency; BMI: body mass index; PCS: Physical 

Component Scale; MCS: Mental Component Scale; Hab sleep: habitual sleep length.

Lok et al. Page 20

Biol Psychol. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lok et al. Page 21

Table 1:

Baseline characteristics of the subset of the Sleep Heart Health Study population. Values are shown as mean 

± SD, unless categorized by number and percentage. Abbreviations: SF-36 (36 item short form health survey), 

REM (rapid eye movement), WASO (wake after sleep onset), X probability (average matching probability of a 

state when the epoch is scored as that state). All parameters were included in random forest analysis.

Parameter Response Number

Gender Female 1638 (52%)

Male 1527 (48%)

Race White 2694 (85%)

Black 234 (7%)

Other 237 (7%)

Ethnicity Latinx 176 (6%)

Age (years) 62.7 ± 11.3

Marital status Married 2485 (79%)

Widowed 257 (8%)

Divorced/Separate 313 (10%)

Never Married 98 (3%)

Unknown 12 (0%)

Education level <10 years 241 (8%)

11-15 years 1622 (51%)

16-20 years 1163 (37%)

>20 years 139 (4%)

Waist circumference (cm) 96.2 ± 13.6

Body Mass Index (BMI, kg/m2) 27.9 ± 4.98

Physical Component Scale (PCS, SF-36) 47.9 ± 9.58

Mental Component Scale (MCS, SF-36) 53.3 ± 8.18

My health is excellent Definitely true 685 (22%)

Mostly true 1620 (51%)

Not sure 394 (12%)

Mostly false 283 (9%)

Definitely false 183 (6%)

During the past 4 weeks, how much of the time have you felt calm and peaceful? All of the time 267 (8%)

Most of the time 1404 (44%)

A good bit of the time 620 (20%)

Some of the time 550 (17%)

A little of the time 238 (8%)
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Parameter Response Number

None of the time 86 (3%)

Regular use of sleeping pills? Yes 192 (6%)

Regular use of antidepressants? Yes 218 (7%)

Use of benzodiazepines within 2 weeks of PSG? Yes 182 (6%)

Epworth Sleepiness Scale 7.70 ± 4.34

Habitual sleep duration (hours) 7.13 ± 1.15

How stressful a day today? A typical day 2122 (67%)

Less stressful than usual 568 (18%)

More stressful than usual 475 (15%)

Nicotine before bed (# products) 0.359 ± 1.36

Alcohol before bed (# drinks) 0.217 ± 0.689

Caffeine before bed (# drinks) 0.280 ± 0.654

N1 (minutes) 34.3 ± 22.5

N1 probability 53.1%

N1 (%) 8.3% ± 5.2%

N2 (minutes) 227. ± 61.3

N2 probability 84.0%

N2 (%) 55% ± 13%

N3 (minutes) 14.3 ± 21.9

N3 probability 64.9%

N3 (%) 3.5% ± 5.4%

REM (minutes) 50.1 ± 36.3

REM probability 75.4%

REM (%) 12% ± 8.5%

WASO (minutes) 86.8 ± 63.1

W probability 84.1%

WASO (%) 21% ± 15%

Sleep → Wake shifts (#) 6.5 ± 3.1

N3 → N1 or N2 shifts (#) 1.2 ± 1.4
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Parameter Response Number

Sleep latency (minutes) 24.1 ± 23.2

Sleep efficiency (%) 74.7 ± 15.4

Respiratory Disturbance Index 8.26 ± 12.0

Self-reported sleep quality: Light (1) vs. Deep (5) 1 272 (9%)

2 572 (18%)

3 1290 (41%)

4 740 (23%)

5 291 (9%)

Self-reported sleep quality: Restless (1) vs. Restful (5) 1 361 (11%)

2 727 (23%)

3 997 (32%)

4 749 (24%)

5 331 (10%)
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