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Abstract

Purpose: To develop deep learning models to perform automated diagnosis and quantitative 

classification of age-related cataract from anterior segment photographs.

Design: DeepLensNet was trained by applying deep learning models to the Age-Related Eye 

Disease Study (AREDS) dataset.

Participants: A total of 18 999 photographs (6333 triplets) from longitudinal follow-up of 1137 

eyes (576 AREDS participants).

Methods: Deep learning models were trained to detect and quantify nuclear sclerosis (NS; scale 

0.9–7.1) from 45-degree slit-lamp photographs and cortical lens opacity (CLO; scale 0%–100%) 

and posterior subcapsular cataract (PSC; scale 0%–100%) from retroillumination photographs. 

DeepLensNet performance was compared with that of 14 ophthalmologists and 24 medical 

students.

Main Outcome Measures: Mean squared error (MSE).

Results: On the full test set, mean MSE for DeepLensNet was 0.23 (standard deviation [SD], 

0.01) for NS, 13.1 (SD, 1.6) for CLO, and 16.6 (SD, 2.4) for PSC. On a subset of the test set 

(substantially enriched for positive cases of CLO and PSC), for NS, mean MSE for DeepLensNet 

was 0.23 (SD, 0.02), compared with 0.98 (SD, 0.24; P = 0.000001) for the ophthalmologists and 
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1.24 (SD, 0.34; P = 0.000005) for the medical students. For CLO, mean MSE was 53.5 (SD, 14.8), 

compared with 134.9 (SD, 89.9; P = 0.003) for the ophthalmologists and 433.6 (SD, 962.1; P = 

0.0007) for the medical students. For PSC, mean MSE was 171.9 (SD, 38.9), compared with 176.8 

(SD, 98.0; P = 0.67) for the ophthalmologists and 398.2 (SD, 645.4; P = 0.18) for the medical 

students. In external validation on the Singapore Malay Eye Study (sampled to reflect the cataract 

severity distribution in AREDS), the MSE for DeepSeeNet was 1.27 for NS and 25.5 for PSC.

Conclusions: DeepLensNet performed automated and quantitative classification of cataract 

severity for all 3 types of age-related cataract. For the 2 most common types (NS and CLO), the 

accuracy was significantly superior to that of ophthalmologists; for the least common type (PSC), 

it was similar. DeepLensNet may have wide potential applications in both clinical and research 

domains. In the future, such approaches may increase the accessibility of cataract assessment 

globally. The code and models are available at https://github.com/ncbi/deeplensnet.

Keywords

Artificial intelligence; Automated diagnosis; Cataract; Cortical cataract; Deep learning; Nuclear 
sclerosis; Posterior subcapsular cataract; Severity classification; Telemedicine; Teleophthalmology

Cataract is the leading cause of legal blindness worldwide.1,2 Its prevalence is predicted to 

increase further in the coming decades because of aging population demographics in many 

countries.3-5 In its more advanced forms, cataract causes severe and typically bilateral visual 

impairment and requires surgical extraction and intraocular lens implantation.1,6 Three main 

types of age-related cataract exist, related to the anatomic part of the crystalline lens affected 

by opacification: nuclear, cortical, and posterior subcapsular. Although the prevalence of all 

3 types increases with age, each has partially distinct risk factors, visual symptoms, and rates 

of progression.1,6,7

The diagnosis and severity classification of cataract typically require in-person evaluation by 

an ophthalmologist.1,6 This may limit the accessibility of cataract assessment, particularly 

for individuals living in remote areas or in countries with few ophthalmologists.8-10 

Even with cataract assessment by human experts in a research context, the accuracy and 

consistency of diagnosis and severity classification are known to be suboptimal11-13; this 

phenomenon is likely to be more marked in routine clinical practice. In the research 

domain, this makes it more difficult to quantify cataract progression accurately over time in 

interventional clinical trials and natural history studies and to compare consistently between 

studies. In the clinical domain, this inconsistency between (and even within) clinicians is 

typically accompanied by the use of less granular grading scales. Thus, detecting cataract 

progression and correctly attributing symptoms and acuity changes to cataract versus 

coexisting pathology may be less precise.

In this context, automated approaches to cataract diagnosis and classification have 

important potential advantages, including speed and accessibility, as well as accuracy and 

consistency.11 They also lend themselves well to teleophthalmology approaches, where 

images can be obtained in a place and way that is safe and convenient for patients, 

with automated algorithms applied to these images.14 In particular, deep learning has 

demonstrated high levels of performance in diagnosis and classification tasks in medicine, 
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including in ophthalmology, where diagnosis is often based on grading of anatomic 

features.14-17

The Age-Related Eye Disease Study (AREDS) was a multicenter, prospective study of the 

clinical course of age-related cataract and age-related macular degeneration (AMD).18,19 

The primary aim of the current study was to use the AREDS dataset to train and test 

deep learning models to perform diagnosis and severity classification of age-related cataract 

(including all 3 anatomic types) in a quantitative way that closely resembles human expert 

diagnosis and classification. An additional objective was to characterize human performance 

at 2 levels of experience to compare automated and human performance levels.

Methods

Dataset

The dataset used for deep learning model training and validation was the dataset of images, 

labels, and accompanying clinical information from the AREDS. The AREDS was a 

multicenter, prospective study to assess the clinical course, prognosis, and risk factors of 

age-related cataract and AMD, as well as a phase III randomized clinical trial designed 

to assess the effects of nutritional supplements on cataract and AMD progression.18,19 For 

cataract, its primary outcome was the occurrence in at least 1 eye of progression in 1 or 

more of the 3 cataract types or cataract surgery.19 Institutional review board approval was 

obtained at each clinical site, and written informed consent for the research was obtained 

from all study participants. The research was conducted under the tenets of the Declaration 

of Helsinki.

The AREDS study design has been described previously.18,19 In short, at baseline and 

annual study visits, comprehensive eye examinations were performed by certified study 

personnel using a standardized protocol. The study visits included the capture of 3 types 

of anterior segment photograph for each eye, according to a standardized imaging protocol 

(Fig 1): (1) a slit-lamp photograph with the beam at an angle of 45° (width 0.3 mm and 

height 9.0 mm), bisecting the central lens, and focused near the center of the lens sulcus 

(Topcon SL-6E Photo Slit-Lamp Camera, Topcon Corporation); (2) a retroillumination 

photograph focused on the iris at the pupillary margin (Neitz Retroillumination Camera, 

Neitz Instruments Company, Ltd); and (3) a second retroillumination photograph focused on 

posterior subcapsular opacities (if present) or 3 to 5 mm posterior to the plane of the anterior 

photograph (if absent).

The dataset consisted of all AREDS anterior segment images where digitized images 

were available: 18999 images (consisting of 6333 image triplets, i.e., slit-lamp, anterior 

retroillumination, and posterior retroillumination photographs) from 1137 eyes of 576 

participants. The dataset was split randomly into 3 sets, with the division made at the 

participant level (such that all images from a single participant were present in 1 of the 3 

sets only): 70% for training, 10% for validation, and 20% for testing of the models. The 

characteristics of the participants and images used for training and testing are shown in 

Table 1 and Figure 2.
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Ground Truth Labels

The ground truth labels used for model training and testing were the grades previously 

assigned to the images by expert human graders at the Wisconsin Reading Center 

(University of Wisconsin). The protocol and definitions used for cataract grading have 

been described previously.20 In brief, the 45-degree slit-lamp photographs were used 

to grade nuclear cataract by comparison with 7 standard photographs of lenses with 

increasingly severe nuclear cataract (Fig 1A). A decimal grade ranging from 0.9 (less 

severe than Standard 1) to 7.1 (more severe than Standard 7) was assigned. The anterior 

retroillumination photographs were used to grade cortical cataract (Fig 1B), and the 

posterior retroillumination photographs were used to grade posterior subcapsular cataract 

(PSC) (Fig 1C) in terms of percentage area involvement. In both cases, any lens area 

that was definitely darkened (defined as a definite darkly shaded interruption of the reddish-

orange fundus reflex) was considered involved, regardless of the density of the opacity. 

Percentage area involvement was calculated as follows: a grid, consisting of 2 concentric 

circles (with diameters 2 mm and 5 mm), was used to divide the photograph into 9 

subfields. For both cortical cataract and PSC, considered separately, the main variable was 

the percentage area involvement of the 5-mm diameter circle occupied by definite opacity 

(calculated by combining the subfield percentages, weighted according to the size of each 

subfield). In addition, the percentage area involvement of the central 2-mm diameter circle 

was recorded as a separate variable because visual symptoms and acuity are expected to 

be affected particularly by cataract with central involvement. Intergrader and intragrader 

agreement rates were high, as described previously.20

Overall, 5 variables were considered in this study. The 3 main variables were nuclear 

cataract (nuclear sclerosis [NS]) (0.9–7.1), cortical lens opacity (CLO) (0.0%–100.0%), and 

PSC (0.0%–100.0%). The 2 secondary variables were central cortical cataract (CLO-center) 

(0.0%–100.0%) and central PSC (PSC-center) (0.0%–100.0%).

Deep Learning Framework

The proposed deep learning framework consists of 5 deep learning models, 1 for each of 

the 5 cataract classification variables. The NS model takes a 45-degree slit-lamp photograph 

as its input and predicts the NS variable. From an anterior retroillumination photograph 

as input, the CLO model predicts the CLO variable, and the CLO-center model predicts 

the CLO-center variable. Likewise, from a posterior retroillumination photograph, the 

PSC model predicts the PSC variable, and the PSC-center model predicts the PSC-center 

variable.

For all 5 tasks, a convolutional neural network (CNN)-based regression model was used. 

Given an input image, we first used a CNN (e.g., InceptionV3 or DenseNet) as a backbone 

to extract image features. The image features were further processed by an average 

pooling layer, fully connected layers, and a prediction layer to provide the quantitative 

output for severity classification. The CNN backbone was pretrained on ImageNet (an 

image database of >14 million natural images with corresponding labels, using methods 

described previously21) and then fine-tuned on the training set. We comparatively analyzed 

InceptionV3, ResNet, and DenseNet as the CNN backbone. These CNN models (e.g., 
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number of layers and parameters) have been described in detail previously.22 For the current 

work, InceptionV3 achieved the highest performance and was used as the backbone. The 

hyperparameter values used during the training process are summarized in Table 2. Each 

input image was resized from the original size (4008 × 2672 pixels) to 501 × 334 pixels. 

The model parameters were updated using the Adam optimizer (learning rate of 0.0001) for 

every minibatch of 16 images. An early stop procedure was applied to avoid overfitting: 

the training was stopped if the loss on the validation set no longer decreased for 5 epochs. 

In addition, image augmentation procedures were used, as follows, to increase the dataset 

size and strengthen model generalizability: (1) rotation (clockwise by 0° – 180°, selected 

randomly); (2) horizontal flip; and (3) vertical flip.

For each of the 5 tasks, we trained a deep learning model 10 times (with different random 

seeds each time) using the same training, validation, and test split shown in Table 1 to 

create 10 individual models (i.e., 50 models in total). The models were implemented using 

TensorFlow.23 All experiments were conducted on a server with 48 Intel Xeon central 

processing units, using 3 NVIDIA Tesla V100 graphics processing units for training and 

testing, with 512 GB available in random access memory.

Evaluation of the Deep Learning Models

For each of the 5 variables, the models were evaluated against the gold standard reading 

center grades on the full test set of images. The primary performance metric calculated 

for each model was the mean squared error (MSE), given the quantitative nature of the 

task.24 The MSE is calculated as the average of the squares of the errors, where the errors 

are the differences between the estimated values and the ground truth values from reading 

center grading. Because the errors are squared, the MSE is always positive, and much higher 

penalties are awarded for large errors (which corresponds well to a desired performance 

metric in a clinical setting). Thus, a lower MSE (close to zero) indicates better agreement 

with the ground truth values, and a higher MSE indicates worse agreement.

Evaluation of the Deep Learning Models in Comparison with Human Grading

For each of the 5 variables, the performance of the deep learning models was compared 

with the performance of 38 humans who manually graded the same images (when viewed on 

a computer screen at full image resolution), independently of each other. The 38 humans 

comprised 2 levels of specialization: 14 ophthalmologists (specifically 10 at attending 

level and 4 at fellowship level) and 24 medical students, where the ophthalmologists had 

experience in cataract grading in routine clinical practice and the medical students did not. 

Before grading, all of the human graders were provided with the same cataract grading 

definitions as those used by the reading center graders (i.e., as described previously).

For this evaluation, the test set of images was a subset of the full test set and comprised 

100 45-degree slit-lamp images (for grading of NS), 100 anterior retroillumination images 

(for grading of CLO and CLO-center), and 100 posterior retroillumination images (for 

grading of PSC and PSC-center), all considered at the image level rather than the participant 

level (i.e., rather than requiring all 3 image types for any participant to be present). The 

45-degree slit-lamp images were a random subset of the full test set. The anterior and 
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posterior retroillumination images were deliberately enriched for more severe cases, as the 

distributions of CLO severity and PSC severity in the full test set were both highly skewed 

toward negative cases. Specifically, the 100 anterior retroillumination images were selected 

as follows: 33 images with CLO 0.0%, 33 images with CLO 0.1% to 10.0%, and 34 images 

with CLO 10.1% to 100.0% (selected randomly in each of the 3 groups). The 100 posterior 

retroillumination images were selected using the same approach applied to PSC.

For each of the 5 variables, the human graders were evaluated against the gold standard 

reading center grades. Again, the primary performance metric was the MSE.24 For 

each variable, the Mann–Whitney U (Wilcoxon rank-sum) test (2-tailed; 99% confidence 

intervals) was used to compare the performance of the (1) deep learning models, (2) 

ophthalmologists, and (3) medical students.

In post hoc analyses, the performance of both the models and the human graders was 

calculated according to pupil diameter (which had been measured by reading center 

graders). Pupil diameter was considered in the following categories: diameter <5 mm, 5 to 7 

mm, and >7 mm. The threshold of 5 mm was chosen because the reading center gradings of 

CLO and PSC were performed on the 5-mm diameter circle, as described earlier.

Attention Maps

Attention maps were generated to investigate the image locations that contributed most to 

the decision making by the deep learning models. This was done by back-projecting the last 

convolutional layer of the neural network. The keras-vis package was used to generate the 

attention maps.25 This was done for a sample of 40 images for each of the 3 cataract types 

(i.e., 120 images in total) from the full test set. The samples were selected as follows to 

obtain a representative sample of both positive and negative cases for each cataract type: for 

cortical cataract, a random sample of 20 positive images (CLO >0%, according to reading 

center grading) and 20 negative images (CLO = 0%); for PSC, a random sample of 20 

positive images (PSC >0%) and 20 negative images (PSC = 0%); for nuclear cataract, 

a random sample of 20 images (any severity) and 20 images with more severe cataract 

(selected randomly from the 100 images with the highest NS gradings).

External Validation

The dataset used for external validation of the deep learning models was the Singapore 

Malay Eye Study (SiMES). This study has been described previously.26 In brief, it was 

a cross-sectional population-based study of eye disease in adult individuals (aged 40–80 

years) of Malay ethnicity in Singapore. Participants underwent standardized assessment 

that included digital lens imaging; 45-degree slit-lamp images were obtained using the 

Topcon DC-1 camera, and black-and-white retroillumination images were obtained using 

the Nidek EAS-1000 camera. These images were graded for NS (following the Wisconsin 

Cataract Grading System, range 1–527) and for cortical cataract and PSC (each following 

the Wisconsin Cataract Grading System, range 0%–100%). The prevalence of age-related 

cataract in this dataset, overall and by subtype, has been reported previously.28

For NS, of the 4669 45-degree slit-lamp images with grades available, a subset of 

200 images was selected randomly to correspond to the NS severity distribution in the 
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AREDS dataset for meaningful comparison of the results. Likewise, for PSC, of the 

2266 retroillumination images with grades available, a subset of 200 images was selected 

randomly to correspond to the PSC severity distribution in the AREDS dataset for the same 

reason. For cortical cataract, the image type was not compatible with that used from AREDS 

to train the models.

The external validation performance of the models was evaluated against the gold standard 

grades from the SiMES dataset. For NS, the SiMES gold standard grades were first 

converted from the Wisconsin 1 to 5 scale to the AREDS 1 to 7 scale based on 3 of the 

standard photographs being shared between the 2 scales.20,27 No conversion was required 

for the posterior subcapsular grades because the same 0% to 100% grading scale was used 

for both. The same performance metric was used as that for internal testing, that is, MSE.

Results

Automated Classification of Cataract Severity by Deep Learning

For the automated classification of cataract severity by the deep learning models, the results 

on the full test set are shown in Table 3. For NS, with NS grading considered on the 0.9 to 

7.1 scale, the mean MSE for the 10 deep learning models was 0.23 (standard deviation [SD], 

0.01). For CLO, with CLO grading considered as percentages, the mean MSE was 13.1 (SD, 

1.6). For PSC, with PSC grading considered as percentages, the mean MSE was 16.6 (SD, 

2.4). The small SDs suggested a high level of consistency between the 10 models trained for 

each task. For cortical and PSC, the 2 secondary variables (COL-center and PSC-center) had 

a mean MSE of 53.7 (SD, 4.9) and 51.9 (SD, 6.5), respectively.

Performance of Deep Learning Models in Comparison with Human Graders

For the classification of cataract severity by the deep learning models versus the human 

graders, the results on the subset of the test set are shown in Figure 3 and Table 4. For 

NS and CLO, the performance of the deep learning models was significantly superior 

to that of the 14 ophthalmologists. Likewise, it was significantly superior to that of the 

24 medical students. For NS, the mean MSE for the 10 deep learning models was 0.23 

(SD, 0.02), compared with 0.98 (SD, 0.24; P = 0.000001) for the ophthalmologists and 

1.24 (SD, 0.34; P = 0.000005) for the medical students. For CLO, the mean MSE for 

the models was 53.5 (SD, 14.8), compared with 134.9 (SD, 89.9; P = 0.003) for the 

ophthalmologists and 433.6 (SD, 962.1; P = 0.0007) for the medical students. For PSC, 

the performance of the deep learning models was similar to that of the ophthalmologists 

and numerically but not significantly superior to that of the medical students. Specifically, 

the mean MSE for the models was 171.9 (SD, 38.9), compared with 176.8 (SD, 98.0; P = 

0.67) for the ophthalmologists and 398.2 (SD, 645.4; P = 0.18) for the medical students. For 

CLO-center and PSC-center, the performance of the deep learning models was numerically 

slightly inferior to that of the ophthalmologists and numerically superior to that of the 

medical students; however, it was not significantly different from either (P = 0.31 and 0.56, 

respectively, for CLO-center, and P = 0.23 and 0.87, respectively, for PSC-center).
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Performance of Deep Learning Models According to Pupil Diameter

The results of the performance of the deep learning models on the full test set, according to 

pupil diameter, are shown in Table S1 (available at www.aaojournal.org), and the results of 

the performance of the deep learning models and the human graders on the subset of the test 

set, according to pupil diameter, are shown in Table S2 (available at www.aaojournal.org). 

On the full test set, for all 5 cataract variables, the performance of the deep learning models 

was relatively similar for eyes with smaller (5–7 mm) versus larger (>7 mm) pupil diameter. 

For NS, mean MSE was extremely similar; for CLO, it was numerically slightly worse in 

cases with smaller pupil diameter; for PSC, it was numerically better. On the subset of the 

test set, for NS, mean MSE was again extremely similar; for CLO, it was numerically better 

in cases with smaller pupil diameter, and for PSC, it was numerically worse, although the 

numbers with smaller pupils were low. For the 14 ophthalmologists, for NS and CLO, mean 

MSE was numerically worse in cases with smaller pupil diameter (particularly for NS), and 

for PSC, it was similar.

Attention Maps

Attention maps were generated and superimposed on the images. For each image, these 

demonstrate quantitatively the relative contributions made by each pixel to the grading 

prediction. Representative examples of these attention maps are shown for each of the 

3 cataract types in Figure 4. The full set of 120 attention maps is available at https://

github.com/ncbi/deeplensnet. For positive cases of CLO or PSC, the areas of high signal 

(that contributed most to the grading prediction) seemed to correspond closely to the 

location of the relevant opacity, as observable to human graders. This is despite the fact 

that the algorithms were not subject to any supervision or spatial guidance. By contrast, for 

the negative cases, no areas of high signal were observed in the distribution of the lens. In 

addition, the shape and extent of the areas of high signal seemed to correspond well with 

those of the opacities; for example, they differed in images with a single plaque of opacity 

versus widespread opacity in a particular distribution (Fig 4). This is consistent with the 

ability of the algorithms to perform quantitative grading. Similar findings were observed for 

nuclear cataract. In general, for moderate and severe cases, a single area of high signal was 

located at the lens nucleus; for absent or mild cases, no areas of high signal were observed 

there. Thus, through these attention maps, the outputs of the deep learning models seem to 

display a degree of face validity and interpretability for the detection and classification of 

cataract.

External Validation on the SiMES Dataset

For NS, with grading considered on the 0.9 to 7.1 scale (after conversion of the gold 

standard grades from the Wisconsin scale to the AREDS scale), the MSE for the NS deep 

learning model was 1.27. For PSC, with grading considered as percentages, the MSE for the 

PSC deep learning model was 25.5.
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Discussion

Main Findings and Interpretation

The deep learning framework achieved automated and quantitative classification of cataract 

severity with a high level of accuracy for all 3 types of age-related cataract. On the full 

test set, the MSE was very low for each of the 3 types. A subset of the full test set was 

designed as a very challenging test set by deliberately enriching for positive cases of cortical 

and PSC. On this, performance remained high for the 2 most common types of age-related 

cataract (nuclear and cortical) and remained moderately high for the other type (posterior 

subcapsular). The latter result likely relates to the lower number of positive cases of PSC in 

the training set, which reflects the lower prevalence in the population. The performance of 

the deep learning framework was significantly superior to that of ophthalmologists for the 2 

most common types of cataract (nuclear and cortical). For the least common type (posterior 

subcapsular), the accuracy was similar to that of ophthalmologists and numerically superior 

to that of medical students. The performance was not markedly lower in eyes with smaller 

pupils. For NS grading, accurate grading seemed possible irrespective of pupil size. This 

differed from the situation with human grading of NS, as ophthalmologist performance 

seemed to be worse in eyes with smaller pupils.

The subset of the full test set demonstrated validity in its discriminative power in that a 

substantial difference in classification performance was observed between human graders 

with and without ophthalmology experience. Interestingly, this difference was particularly 

apparent for cortical and PSC and less marked for nuclear cataract. This may relate to the 

former 2 being more difficult tasks for inexperienced graders. In the former 2 cases, both 

based on retroillumination photographs, the grader must decide on the presence of opacities 

in the image (passing the threshold of definitely darkened), distinguish between cortical and 

posterior subcapsular opacity, and add up the affected areas to derive the final percentage. 

By comparison, the grading of nuclear cataract may be easier for inexperienced graders; the 

task is simpler in that grading involves only 1 step and is performed by direct comparison 

with 7 standard photographs.

For cortical and PSC, the 2 secondary variables (COL-center and PSC-center) had lower 

performance metrics. This is likely related to both the higher difficulty level of these 

tasks and the lower number of positive instances in the training dataset. Deep learning 

performance was numerically superior to that of the medical students but numerically 

slightly inferior to that of the ophthalmologists.

Clinical Importance and Implications

The ability of a deep learning framework to perform automated cataract diagnosis on an 

ordinal scale, with high accuracy, consistency, and throughput, means that it may have 

broad applications, particularly in the research domain. The highly quantitative grading 

(separately by cataract subtype) may be valuable for applications where granular and 

accurate grading is required, for example, interventional clinical trials, natural history 

studies, and epidemiological studies. Likewise, the objectivity and consistency may be 

helpful in scenarios where these are important, for example, for consistency between 
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different studies; however, this quantitative grading also can be easily converted into one 

of multiple other grading systems, depending on the particular application, including less 

granular scales (e.g., NS 0–4+) often used in routine clinical practice.

In the research domain, potential applications may include (1) cross-sectional 

epidemiological studies of cataract prevalence and risk factors, (2) longitudinal natural 

history studies and risk factors for progression, and (3) interventional clinical trials. For the 

former, a previous study showed that even with the technology available in 1999, a digital 

cataract grading system seemed to be more cost-effective than human grading for a large 

epidemiological study, as well as more accurate and consistent.29 For the latter, the high 

accuracy and consistency of the quantitative grading mean that clinical trials could remain 

highly powered despite smaller size and shorter duration.

In the clinical domain, potential applications in the future could include (1) cataract 

screening in primary care; (2) cataract screening alongside diabetic retinopathy screening; 

(3) more objective and quantitative diagnosis and grading in secondary/tertiary care; and 

(4) utility in surgical decision making, planning, case allocation, and risk stratification/

prediction.

For the latter, if validated, such algorithms could assist ophthalmologists and patients 

in decisions around the risk/benefit balance of pursuing surgery or in surgical planning 

(e.g., more accurate assessments of what phacoemulsification power may be required 

for a particular case). A previous study of the Lens Opacities Classification System III 

demonstrated an exponential increase in phacoemulsification energy as nuclear cataract 

grades increased.30 As argued previously, grading systems like this can be useful tools 

in creating operative plans, improving the allocation of appropriate cases to surgeons 

with the appropriate experience, and providing more accurate predictions of surgical risks 

and visual outcomes for patients and physicians.11 Implementing cataract surgery risk 

stratification systems is thought to decrease complication rates, and nuclear cataract density 

is a key factor in all risk stratification systems.31,32 Therefore, improving the accuracy and 

consistency of density assessments should lead to improved accuracy of risk stratification.

In the future, deep learning models are likely to be able to detect other important risk factors, 

such as pseudoexfoliation or zonular dehiscence, small pupils, and corneal endothelial 

disease.33 Together with quantitative cataract grading, these outputs could be combined 

to generate more accurate surgical risk calculators (e.g., for posterior capsule rupture,34 

corneal decompensation,35,36 and cystoid macular edema) that assist with tasks including 

risk/benefit decisions, case allocation, and operative planning. Overall, more accurate, 

consistent, and granular cataract grading should improve the performance of these tasks and 

make them more evidence-based and comparable between centers, even if they are currently 

performed by many experienced surgeons in an ad hoc way.

Deep learning frameworks like this may also have potential applications in global 

ophthalmology, although several steps may be required for implementation in this setting. 

Cataract remains the leading cause of blindness worldwide, particularly in low- and middle-

income countries, despite the fact that it is a reversible cause of vision loss and cataract 
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surgery is considered highly cost-effective.1,2,30,31 Two main barriers to restoring vision 

exist in these cases: awareness of diagnosis and access to surgery.37,38 Traditionally, 

both have required in-person access to an ophthalmologist, which can be problematic for 

individuals living in areas that are remote or have few ophthalmologists or for where 

evaluation is expensive.

The development of automated approaches that can diagnose cataract from images carries 

advantages. In the wider context of telemedicine and teleophthalmology, these potential 

benefits have been described in detail.39,40 Images may be obtained in a place and way that 

is safe, convenient, and less expensive for patients, without the need for an ophthalmologist. 

For example, recent studies have demonstrated the utility of smartphone-based portable 

slit-lamp devices.41-43 In this way, patients with cataract may be diagnosed accurately 

and rapidly, with potentially decreased travel and expenditure. Thus, approaches like this 

could substantially increase the accessibility of cataract diagnosis without compromising 

on accuracy. Clearly, symptomatic patients diagnosed with cataract would still require 

access to ophthalmologists for surgical treatment; however, a recent study in a low-/middle-

income country has shown that teleophthalmology approaches can substantially increase the 

subsequent attendance of patients with confirmed eye conditions at ophthalmic hospitals.44

A technician would still be required to administer the dilating drops and take the 

photographs. A camera whose image output had been validated against the deep learning 

framework would also be needed. Thus, in the future, external validation using a low-cost 

camera in a global setting will be important. This is another important reason why the 

trained models and code are being made freely available, that is, to expedite and spread 

these efforts as widely as possible. It also means that other groups can use these models 

and code as a starting place to train and test their own deep learning models for a particular 

camera or image type or for a specific application or setting, even with smaller image 

datasets (by fine-tuning training). Automated cameras are now available that can take 

illuminated anterior segment photographs, that is, with automated alignment, focus, and 

image acquisition.45 The combination of an automated camera and automated cataract 

grading would work particularly well in decreasing dependence on trained technicians or 

photographers; however, the cost of such devices means that they are likely not appropriate 

for use in low-income countries at present. Finally, in low-income countries, detection of 

severe cataract is already possible using visual acuity measurement and a penlight; however, 

approaches like this are likely to be poorly accurate in moderate cases or in cases where 

visual acuity may be decreased partly through separate pathology.

External Validation

External validation was possible for 2 of the main types of age-related cataract, NS and PSC, 

despite the almost complete absence of publicly available datasets, through international 

collaboration. Finding a dataset of cortical cataract images compatible with the image type 

used in the current study has not been possible yet but remains an area of active research. 

The dataset used for external validation was from a different ethnic origin (specifically 

adults of Malay ethnicity in Singapore), which represents a higher bar to pass than external 

validation on an ethnically similar population. Other important considerations include the 
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following: for both NS and PSC, the camera models used differed between the AREDS 

training images and the SiMES testing images; for PSC, the SiMES images were black and 

white, and the AREDS training images were color; no image preprocessing was conducted 

to account for these differences; no algorithm fine-tuning or retraining, even on a small 

sample of images, was performed before external validation; the gold standard SiMES 

grades were from a single human grader, whereas the AREDS gold standard grades were 

from reading center grading, and interpretation of the images and grading scales may 

differ partially between the 2; in particular, SiMES NS severity was graded following the 

Wisconsin 1 to 5 scale, whereas AREDS NS severity was graded on the AREDS 1 to 7 

scale, so conversion of the gold standard labels was required; although 3 of the standard 

photographs are shared between the 2 scales,20,27 the correspondence between the scales 

at other points is more uncertain, which makes exact conversion impossible and tends to 

penalize the deep learning models.

Despite these difficulties, on an external dataset designed to reflect the cataract severity 

distribution in AREDS (for more meaningful comparison of results), performance was 

respectable. In future research, we plan to investigate the potential for further improvements 

on the basis of fine-tuning training (i.e., on a small number of images of the external dataset 

of interest). Given our commitment to make the code and models publicly available, the 

same method could be used by other groups on any existing and future datasets obtained 

by different cameras in different settings. Using methods such as federated learning, 

training models on multiple datasets from different institutions without sharing images 

will be possible in the future; a global deep learning model with high performance and 

generalizability can be created by combining many locally trained models.46

Comparison with Literature

Relatively few previous studies have used artificial intelligence methods to perform 

automated grading of cataract from anterior segment images. These studies have been 

examined in several review articles.47-49 Indeed, previous authors have noted recently that, 

compared with other common major age-related eye diseases, “AI [artificial intelligence] 

development in the domain of cataract is still relatively underexplored.”48 This may 

be particularly surprising because cataract seems to lend itself very well to automated 

approaches. Unlike with some other age-related eye diseases, the spectrum of phenotypic 

expression in cataract is relatively narrow. Cataract appears in a similar way at the same 

anatomic locations, irrespective of ethnicity or other demographic differences, such that 

issues around generalizability to other populations may be easier to overcome. In addition, 

cataract can be diagnosed and classified purely on the anatomic appearance, without 

additional information (e.g., age or history of diabetes mellitus). Finally, it can be diagnosed 

on simple imaging modalities (e.g., not requiring complex 3-dimensional modalities like 

OCT, as with many retinal diseases). Thus, the small number of previous studies may 

relate more to the relative paucity of large datasets of anterior segment images with high-

quality grading. In a recent global review of all publicly available datasets of ophthalmic 

imaging, the proportion related to cataract was only 4%; only 1 dataset contained slit-lamp 

photographs of eyes with cataract, and this contained just 60 images.50
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Of the previous reports of artificial intelligence approaches to cataract diagnosis that do 

exist,51-55 the majority51-53 used traditional machine learning rather than the deep learning 

approaches that have been associated with improved performance. As expected, therefore, 

the performance in these reports was relatively modest. In addition, the majority performed 

grading of nuclear cataract only.52-54 Indeed, previous authors have argued that most 

artificial intelligence approaches have “focused on a single specific cataract subtype, which 

can severely limit [their] application in real-world health-care settings.”49 For example, 

Cheung et al52 reported an intraclass correlation coefficient of 0.81 for agreement between 

their automated approach and manual grading on the Wisconsin grading scale (0.1–5.0) for 

grading of nuclear cataract; however, the approach was only semiautomated because the 

segmentation failed and required manual correction in 5% of cases. Xu et al53 reported 

agreement of 0.85 (for agreement within 0.5 of a grade) in the grading of nuclear cataract.

To our knowledge, the largest previous study was conducted in China.55 It was based 

on 38 000 anterior segment images, although these were a mixture of transverse slit 

beam and diffuse illumination images (i.e., not by retroillumination) and of mydriatic 

and nonmydriatic images. Of note, the algorithm did not attempt to perform severity 

classification separately for the 3 types of cataract. In a staged approach, the first algorithm 

performed binary classification of cataract presence or absence, with an area under the 

receiver operating characteristic curve of 0.999. For images with cataract, the second 

algorithm performed binary classification of nuclear cataract only (based on grades I–II 

vs. III–IV on the Lens Opacities Classification System II), with an area under the receiver 

operating characteristic curve of 0.992 for mydriatic transverse slit-beam images. For images 

with grades I and II nuclear cataract, the third algorithm performed binary classification 

of other cataracts (presumably cortical or posterior subcapsular), with an area under the 

receiver operating characteristic curve of 0.949 on unspecified image types. Thus, the 

approach was still based principally on nuclear cataract and was essentially binary rather 

than quantitative in nature. Given these differences, no direct comparison can easily be 

made with the results in the current study. Finally, none of these previous studies compared 

performance of the automated approach with that of ophthalmologists.

Strengths, Limitations, and Future Work

The strengths of this study include analysis of all 3 types of age-related cataract. Regarding 

the ground truth labels, the study benefitted from centralized grading of all images by expert 

graders at a single reading center with standardized grading definitions; previous reports 

have validated this reading center grading, with high rates of intergrader agreement.20 The 

quantitative nature of the grading achieved has advantages over binary assessments. The 

dataset for training and testing comprised a wide breadth of data because the images were 

drawn from many different clinics across the United States. This increased the likelihood 

of generalizability; in external validation on a dataset from a different ethnicity and study 

setting, this was reflected in respectable performance for grading of NS and PSC. Additional 

strengths include comparison with human performance (which has not been assessed in 

previous studies), using a large number of ophthalmologists.
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The limitations include the number of images available for training because only a 

subset of all AREDS anterior segment photographs have been digitized. This is more 

relevant for cortical and PSC because of the lower number of positive cases. Although 

the performance of the PSC model was not as high as the other 2, it was still similar 

to that of ophthalmologists. The level of performance observed in this study may relate 

partly to the use of trained photographers with specific camera types in a clinical trial 

setting. This is partially addressed by the external validation, which was conducted using 

images from different camera types and a different population. In future work, we aim 

to move from external validation of the models to additional training on datasets from 

multiple institutions, ethnicities, and camera types; ideally, this could even include those 

obtained by smartphone-based portable slit-lamps, which can take transverse beam and 

retroillumination photographs41-43; however, performance might be lower with images 

acquired by technicians with a lower level of training in a routine clinical setting or a global 

ophthalmology setting. Ideally, each setting and use case would require separate testing in 

prospective studies.

In conclusion, we developed a deep learning framework, DeepLensNet, for the detailed 

assessment of age-related cataract. DeepLensNet was able to perform automated, accurate, 

and quantitative classification of cataract severity for all 3 types of age-related cataract. For 

nuclear and cortical cataract, the 2 most common types, the accuracy was significantly 

superior to that of ophthalmologists; for PSC, the least common type, the accuracy 

was similar. External validation on a dataset from a population of different ethnicity 

demonstrated acceptable performance for NS and PSC, despite differences in study setting 

and camera models. We are making the code and pretrained models available, for research 

use only, at https://github.com/ncbi/deeplensnet. In this way, we aim to maximize the 

transparency and reproducibility of this study and to provide a benchmark method for the 

further refinement and development of methodologies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Appendix

AREDS Deep Learning Research Group:

Priscilla Ajilore, Alex Akman, Nadim S. Azar, William S. Azar, Bryan Chan, Victor Cox, 

Amisha D. Dave, Rachna Dhanjal, Mary Donovan, Maureen Farrell, Francisca Finkel, 

Timothy Goblirsch, Wesley Ha, Christine Hill, Aman Kumar, Kristen Kent, Arielle Lee, 

Pujan Patel, David Peprah, Emma Piliponis, Evan Selzer, Benjamin Swaby, Stephen Tenney, 

and Alexander Zeleny.

Abbreviations and Acronyms:

AMD age-related macular degeneration

AREDS Age-Related Eye Disease Study
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CLO cortical lens opacity

CNN convolutional neural network

MSE mean squared error

NS nuclear sclerosis

PSC posterior subcapsular cataract

SD standard deviation

SiMES Singapore Malay Eye Study
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Figure 1. Reading center grading system for age-related cataract.
A-G, Nuclear cataract grading by comparison of 45-degree slit-lamp photograph with 7 

standard photographs: 1 (no opacity) to 7 (extremely severe opacity). A—G, Standard 

photographs 1 through 7. H, Cortical cataract grading by percentage area involvement of the 

central 2 circles of the grid (5-mm diameter circular area) on retroillumination photograph. 

Left: Retroillumination photograph of cortical opacity. Right: Retroillumination photograph 

of cortical opacity with overlying grid. The cortical opacity occupies 22% of the central 2 

circles of the grid. I, Posterior subcapsular cataract grading by percentage area involvement 

of the central 2 circles of the grid (5-mm diameter circular area) on retroillumination 

photograph. Left: Retroillumination photograph of posterior subcapsular opacity. Right: 

Retroillumination photograph of posterior subcapsular opacity with overlying grid. The 

posterior subcapsular opacity occupies 15% of the central 2 circles of the grid.
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Figure 2. 
Distributions of the cataract variables in the study population. The x-axis shows the grading 

scales, and the y-axis shows the associated frequencies on a logarithmic scale. CLO = 

cortical cataract; NS = nuclear sclerosis; PSC = posterior subcapsular cataract; Std = 

standard deviation.
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Figure 3. 
Box plots showing the mean squared error (MSE) results on a logarithmic scale for the 

10 deep learning models, the 14 ophthalmologists, and the 24 medical students for the 3 

primary grading variables (NS, 0.9–7.1; CLO, 0%–100%; PSC, 0%–100%). The vertical 

line of the boxes represents the median MSE score, and the boxes represent the first and 

third quartiles. The whiskers represent quartile 1 – (1.5 × interquartile range) and quartile 3 

+ (1.5 × interquartile range). The dots represent the individual MSE result for each model 

or human grader. ****P ≤ 0.0001; ***P ≤ 0.001; **P ≤ 0.01; ns, P > 0.05 (Mann–Whitney 

U test). CLO = cortical lens opacity; NS = nuclear sclerosis; PSC = posterior subcapsular 

cataract.
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Figure 4. 
Deep learning attention maps (right) overlaid on representative retroillumination images 

and 45-degree slit-lamp images (left). For each of the 3 cataract types (nuclear, cortical, 

and posterior subcapsular), 1 positive example (above) and 1 negative example (below) are 

shown (or more severe and less severe for nuclear cataract). For each image, the attention 

map demonstrates quantitatively the relative contributions made by each pixel to the grading 

prediction. The heatmap scale for the attention maps is also shown: signal range from −1.00 

(purple) to +1.00 (brown). In the positive case of cortical cataract, the areas of high signal 

corresponded closely to the location and extent of the opacity. In the negative case, no areas 

of high signal were observed in the lens distribution. In the positive case of PSC, the area of 

high signal corresponded closely to the location and shape of the opacity (a single vertically 

elongated plaque). In the negative case, no areas of high signal were observed in the lens 

distribution. In the severe case of nuclear cataract, the area of high signal corresponded to 

the location of the lens nucleus. In the mild case, no areas of high signal were observed in 

the distribution of the lens nucleus. Nuclear sclerosis severe case: reading center grading of 

5.3, automated prediction of 5.2. Nuclear sclerosis mild case: reading center grading of 2.5, 

automated prediction of 2.6. Cortical lens opacity positive case: reading center grading of 

41.6%, automated prediction of 43.6%. Cortical lens opacity negative case: reading center 

grading of 0%, automated prediction of 0%. Posterior subcapsular cataract positive case: 
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reading center grading of 19.8%, automated prediction of 18.6%. Posterior subcapsular 

cataract negative case: reading center grading of 0%, automated prediction of 0%. CLO = 

cortical lens opacity; NS = nuclear sclerosis; PSC = posterior subcapsular cataract.
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Table 1.

Characteristics of the Study Population

Training
Set

Validation
Set

Test
Set Total

Participants (eyes) 403 (794) 57 (112) 116 (231) 576 (1137)

Female (%) 54.6 61.4 50.0 54.3

Mean age (yrs) 68.6 69.6 68.0 68.6

Image triplets 4425 598 1310 6333
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Table 2.

Hyperparameter Values Used for Model Training

Hyperparameter Value

Image size 501 × 334 pixels

Fully connected layers 1024, 128

Dropout ratio 0.5

Learning rate 0.0001

Batch size 16

Loss function MSE

MSE = mean squared error.
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