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Abstract

The lead optimization phase of drug discovery refines an initial hit molecule for desired properties, 

especially potency. Synthesis and experimental testing of the small perturbations during this 

refinement can be quite costly and time consuming. Relative binding free energy (RBFE, also 

referred to as ΔΔG) methods allow the estimation of binding free energy changes after small 

changes to a ligand scaffold. Here we propose and evaluate a Convolutional Neural Network 

(CNN) Siamese network for the prediction of RBFE between two bound ligands. We show that 

our multi-task loss is able to improve on a previous state-of-the-art Siamese network for RBFE 

prediction via increased regularization of the latent space. The Siamese network architecture is 

well suited to the prediction of RBFE in comparison to a standard CNN trained on the same 

data (Pearson’s R of 0.553 and 0.5, respectively). When evaluated on a left-out protein family, 

our CNN Siamese network shows variability in its RBFE predictive performance depending on 

the protein family being evaluated (Pearson’s R ranging from −0.44 to 0.97). RBFE prediction 

performance can be improved during generalization by injecting only a few examples (few-shot 

learning) from the evaluation dataset during model training.

Graphical Abstract

Introduction

Lead optimization is an early phase of the drug discovery process that simultaneously 

optimizes a hit molecule for potency, solubility, and other toxicological and pharmaceutical 

properties. Small modifications are made to the chemical scaffold of the hit molecule and 
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tested for their effect on the properties of interest. A collection of such molecules, along 

with the initial hit molecule, is termed a congeneric series. Congeneric series developed 

within a drug discovery campaign can contain tens to hundreds of compounds,1,2 with the 

synthesis and testing of each chemical modification taking considerable amounts of time and 

money. Relative binding free energy (RBFE, also called ΔΔG) methods provide an in silico 
alternative to the labor intensive synthesis and experimental testing of each compound in a 

congeneric series.

RBFE methods strike a balance between accuracy and throughput. Typical methods for 

RBFE determination utilize either molecular dynamics with alchemical perturbations or 

thorough sampling of the endpoints of the transformation. Alchemical methods, also 

called pathway methods, perturb the bound molecule from one ligand into another using 

chemical or alchemical means;3 Free Energy Perturbation4 (FEP) is one of the most popular 

alchemical methods. FEP utilizes explicitly solvated molecular dynamics or Monte Carlo 

simulations in which one ligand is alchemically transformed into another ligand. Recent 

advances in molecular mechanics force fields, sampling, and reductions in computational 

cost have encouraged the adoption of the FEP approach for the prediction of RBFE in 

both academia and industry. These advances have allowed for very high accuracy of 

FEP approaches, within about one kcal per mol. However, the current implementations 

only allow for the calculation of about four ligand perturbations per day with commonly 

available computing resources.5 FEP is somewhat limited to a maximum number of changes 

between ligands, about 10 heavy atoms, due to the high amount of sampling required for 

each change of a ligand. However, with careful consideration, more heavy atoms can be 

changed between the ligands while still achieving low errors in predictions.6,7 Endpoint 

sampling methods reduce the required amount of molecular dynamics needed to determine 

the free energy of the system.8 The most popular methods for determining RBFE with 

endpoint sampling are molecular mechanics Poisson-Boltzmann Surface Area (MMPBSA) 

and molecular mechanics generalized Borne surface area (MMGBSA). MMBPSA and 

MMGBSA, developed by Kollman et al.,9,10 evaluate the free energy through molecular 

dynamics simulations of the unbound ligands and the bound complexes. RBFE is computed 

via a simple difference of the energetics in each of the ligand binding modes.11 While these 

methods have reduced computational requirements in comparison to FEP, their free energy 

predictions are not as rigorous. This limited throughput of molecules and low allowance 

for changes between molecules can prevent medicinal chemists from fully exploring the 

optimization space of a lead molecule.

A number of scoring functions have been developed to simultaneously provide low error and 

high throughput for absolute binding affinity predictions.12–17 These are able to replace the 

more thorough and compute intensive simulation based methods for measuring the energy of 

the absolute binding affinity. More recently, these scoring functions utilize deep learning to 

infer absolute binding affinity directly from the bound protein-ligand complex.13–16 Using 

these deep learning absolute binding affinity methods as inspiration, Jiménez-Luna et al.18 

utilize a Siamese Convolutional Neural Network (CNN) architecture to directly determine 

the RBFE between two bound protein-ligand complexes. This architecture removes the 

compounding error of determining the RBFE with the difference in absolute binding free 

energies of the two ligands. They showed the potential of their trained neural network in 
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retrospective lead optimization campaigns with only a small amount of retraining required. 

Here we present further expansion on their Siamese network by introducing novel loss 

function components. We evaluate the impact of our loss components as well as the Siamese 

architecture on the predictive performance of our models. Generalizability of the RBFE 

predictions are examined through both external datasets and clustered protein family cross 

validation.

Methods

We describe the filtering and usage of the training and evaluation datasets for our RBFE 

models. The architecture and training hyperparameters of our CNN Siamese network 

are explained. Our CNN Siamese network is compared to state of the art methods for 

RBFE prediction on a retrospective lead optimization task and several benchmark datasets. 

Next, we investigate the relative importance of the components of our model on a small 

retrospective lead optimization task. Finally, we evaluate our model on novel protein 

families utilizing a leave-one-family-out cross validation to elucidate the generalizability 

of our model.

Data

Proper training of a deep learning model for RBFE in a lead optimization setting 

requires that we utilize congeneric series with experimentally validated binding affinity 

measurements. We therefore utilize the BindingDB 3D Structure Series dataset.19 This 

dataset was created by combing the literature for experimental binding affinities of many 

ligands bound to the same receptor and finding the crystal structure of at least one of 

those ligands bound to the same receptor. The ligands with no known bound structure were 

computationally docked to the protein using the Surflex docking software20 for template 

docking with the crystal ligand. The full dataset encompases 1038 unique receptor structures 

with an average of 9.61 ligands bound to each receptor structure. We filter the dataset 

to ensure the binding affinity measurements are high quality and to enforce comparisons 

between ligands with identical measures of potency: IC50, Kd, or Ki. First the dataset 

is split into three different groups, one for each of the measures of potency. A ligand 

can be in multiple groups if it has binding affinity measurements for multiple measures 

of potency. For each split, we strip any greater than (>) or less than (<) symbols from 

the binding affinity measurements of every ligand and use the remaining string as the 

exact binding affinity value. If a ligand has multiple measurements for a given measure 

of potency, we delete the ligand from that measure of potency split if the range of the 

measurements is greater than one order of magnitude. Otherwise we take the median of the 

multiple measurements. After this filtering, we remove any ligands that have binding affinity 

information for a PDBID that has no other ligands with binding affinity measurements. 

We then construct congeneric series by creating ordered pairs of ligands that have the 

same receptor structure and the same measure of potency (IC50, Kd,Ki). We utilize the 

log-converted measurements (− log10(value)), referred to as “pK”, for each measure of 

potency. We next define a reference ligand. The reference ligand is assigned as the ligand 

with the highest Tanimoto similarity (using the RDKFingerprint from RDKit21) to the ligand 

used for the template docking, usually the ligand in the crystal that was used for template 
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docking. Our final filtered BindingDB dataset has 1082 congeneric series, encompassing 

943 unique receptor structures with an average of 7.995 ligands per congeneric series. The 

average pK range of each congeneric series is 2.023 pK. Histograms of the number of 

ligands and the affinity ranges per congeneric series are shown in Figure S1.

We utilize the datasets provided by Mobley et al.,22 Wang et al.7, and Schindler et al.2 in 

order to evaluate the generalization performance of our model. Mobley et al.22 provide a 

series of benchmarks datasets for binding free energy prediction. One of their benchmark 

sets has experimentally determined ΔG values for a congeneric series of 8 ligands binding 

to the first bromodomain of the BRD4 protein. Wang et al.7 provides 8 congeneric 

series on different proteins with experimentally validated ΔG values for benchmarking 

RBFE predictions. They also released the evaluation statistics of FEP calculations when 

applied to each of the congeneric series. Schindler et al.2 provide 8 congeneric series with 

pharmaceutically relevant targets, all with experimentally measured binding affinities. The 

congeneric series in this set contain changes in net charge and the charge distribution of 

molecules as well as ring openings and core hopping; all of these are ligand changes that the 

Wang et al.7 dataset avoids.

The ligands in both the Mobley et al.22 and Wang et al.7 benchmark datasets are given 

experimental ΔG, so we must convert them to pK for proper evaluation with our model. We 

assume that the ligands bind in a non-competitive manner, generating the following equation 

for conversion:

pK = − log10 eΔG/(RT )

where we set R = 1.98720425864083 × 10−3 kcal
K ⋅ mol  and T = 297 K following the values 

utilized in Wang et al.7. The ligands in the Schindler et al.2 benchmark dataset are given 

associated IC50 values, so we simply log convert the values (− log10(value)) as we did for 

the BindingDB dataset.

The evaluation datasets are constructed from all possible pairs of ligands for each receptor.

Model Architecture

Similar to Jiménez-Luna et al.18 we utilize a Siamese network23 (Figure 1). Siamese 

networks utilize two arms that share weights and take in two inputs for determining 

distances between the inputs, often utilized in object matching or object tracking.24–26 

Our network takes as input the bound structures of two ligands bound to the same protein, 

with each arm getting a different protein-ligand complex. We use CNNs as the arms of 

our Siamese network to learn directly from the 3D information of the bound protein-ligand 

structure. The bound protein-ligand 3D structures are voxelized utilizing the libmolgrid 

python library,27 using the default channels provided by the library. The inputs are then 

passed through the main convolutional architectures employed by GNINA, 28 Default2018 or 

Dense, as defined in Francoeur et al.13. The Default2018 convolutional architecture uses 

a series of convolutions and average pooling operations to discern information directly 

from bound protein-ligand complexes while minimizing computational cost. The Dense 
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convolutional architecture uses a series of densely connected convolutional blocks 29 to 

enhance the propagation of information at the cost of increased computation. Both of these 

convolutional architectures demonstrate an ability to learn absolute binding affinity directly 

from the 3D bound structure of the protein-ligand complex. We remove the final linear 

layers from both architectures in order to access the final latent vector of the networks. The 

difference of the latent vectors of the two protein-ligand complexes is used to learn a linear 

mapping to the RBFE (ΔΔG) of the two inputs. We also utilize the latent vectors of each 

input before taking the difference to determine the absolute binding affinity of each input 

using a fully connected layer.

We train our model using a linear combination of loss components (Figure 1):

ℒTotal = αℒΔΔG + βℒΔG + γℒrotation + δℒconsistency (1)

where α, β, γ, δ ∈ ℝ+. During the training of our model we set α = 10 and β, γ, δ = 1. ℒΔΔG
is the mean square error (MSE) of the RBFE prediction. ℒΔG is the MSE of the absolute 

binding affinity prediction for both inputs. ℒrotation is the MSE of the latent vectors of two 

randomly rotated versions of each protein-ligand pair. This component encourages the latent 

space representation to ignore the rotation of the protein-ligand complex. ℒconsistency is the 

MSE of the difference between the predicted absolute binding affinities and the predieted 

RBFE, to ensure that the model is providing consistent predictions. The Default2018 

architecture’s weights are initialized with the Xavier uniform method30 and the biases are 

initialized to zero. The Dense model is initialized with weights and biases learned from its 

training described in Francoeur et al.13. All models are trained using the Adam stochastic 

gradient descent optimizer31 with the default parameters (β1 = 0.9, β2 = 0.999, ϵ = 1 × 

10−8). Models are trained for 1000 epochs with a learning rate of 0.000367 and a scheduler 

that reduces the learning rate by a factor of 0.7 whenever the loss plateaus for more than 20 

epochs. Data augmentation is achieved by randomly rotating and translating the inputs with 

a maximum translation of 2 Å from the center of mass of the ligand.

Retrospective lead optimization evaluation

In order to directly compare our trained model to the model developed by Jiménez-Luna 

et al.18, we utilize the additional ligands training set as described in their manuscript. We 

train our models on the reference ligand, as described in Data, and a given number of 

additional ligands. In the one additional ligands training set, we train on the two ordered 

pairs of the reference ligand and one additional ligand. Then, testing is carried out on the 

two-permutations between the ligands in the training set and ligands that the model has not 

seen, see Figure 2. We construct 25 versions of the training and testing datasets for each 

number of additional ligands to allow us to gather statistics about each number of additional 

ligands. In the case of the Dense convolutional architecture, we only use five versions of the 

training and testing datasets due to the architecture’s heavy computational cost. Each version 

of the dataset uses the same reference ligands and randomly chooses additional ligands to 

add to the training set for each congeneric series.
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External Datasets Evaluation

We evaluate the generalizability of our model when applied to unseen data by training 

our Siamese CNN on all of the data available from the BindingDB Docked Congeneric 

Series dataset and evaluating on the datasets provided by Mobley et al.,22 Wang et al.7 and 

Schindler et al.2. Using the model trained on all of the BindingDB data, we can evaluate 

both the no-shot and few-shot performance of our model (Figure 2). No-shot performance 

refers to evaluations carried out on out-of-distribution examples with no prior knowledge 

about them, while the few-shot performance evaluates on out-of-distribution examples with 

a small amount of prior knowledge provided to the model about the evaluation distribution. 

The no-shot performance of our model is evaluated by training on the entire BindingDB 

dataset and predicting on the external test sets with no information about the test sets 

included during training. No-shot evaluation emulates the start of lead optimization for 

a given target, where no binding information is known about ligands in the congeneric 

series besides the lead molecule. The few-shot performance is evaluated utilizing increasing 

amounts of data from the test set during the training of the model. Few-shot evaluations 

show us how the model would perform later in lead optimization, when we have binding 

information for several ligands in our congeneric series. For all few-shot evaluations, the 

same model from the no-shot evaluation is used and finetuned. The smallest few-shot 

evaluation includes one ligand pair from the external test set included during the training 

of the model. We finetune our models by training for three epochs on the combined data 

of the BindingDB dataset and the included external test set examples with a learning rate 

of 0.000367. The data is stratified during training such that each batch contains equal 

amounts of data from the BindingDB set and the external dataset to most closely match the 

finetuning carried out in Jiménez-Luna et al.18. We evaluate performance when including the 

two-permutations of up to seven ligands from the external dataset in the finetuning dataset, 

see Figure 2. Identical test sets are used for both no-shot and few-shot learning for each 

congeneric series. The test set only includes pairs of ligands where at least one ligand in the 

pair was not utilized for the seven external ligands finetuning. We train and evaluate on both 

orderings of pairs of ligands.

Ablation Study

We probe the performance of our model in relation to the components of the loss function 

as well as the architecture of our model. Using the one additional ligand training and 

testing sets, we investigate the average performance of 25 models as we disable aspects of 

the model. Since our model utilizes a linear combination of several loss components we 

can investigate how each component contributes to test performance. During training, we 

evaluate RBFE performance when one of the loss hyperparameters (α, β, γ, and δ) is set 

to zero, keeping all other aspects of training the same. In order to accurately investigate the 

performance of the model when only trained for absolute binding free energy prediction, 

we set both α and δ to zero during training to disrupt the effects of the consistency loss 

encouraging the RBFE prediction to be the difference between the absolute binding free 

energies.

The contributions of the architecture to the performance of the model are also explored. The 

RBFE is dependent on the ordering of the ligands; if the ordering is swapped then the RBFE 
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is multiplied by −1. Jiménez-Luna et al.18 claim that the latent space subtraction embeds 

this symmetry into the network architecture. We evaluate the utility of the latent space 

subtraction by concatenating rather than subtracting the latent spaces of the convolutional 

arms of the network. This requires that the fully connected layer of the network that predicts 

the RBFE doubles its input size. We further evaluate the importance of the Siamese network 

by instead training a CNN that takes in one protein-ligand pair and predicts the absolute 

binding free energy. RBFE is computed by subtracting the predicted absolute binding free 

energies of two ligands. When utilizing this architecture, we no longer enforce the LΔΔG and 

Lconsistency loss components. All other aspects of training are kept the same for all ablation 

studies.

We calculate the significance of the changes in Pearson’s R, RMSE, and MAE for both ΔΔG 
and ΔG values in relation to our default Siamese network via a two sided T-test. We account 

for multiple hypothesis testing by utilizing a p-value of 0.005 for all of our T-tests.

Protein Family Generalization Evaluation

Lead optimization requires precise predictions of the RBFE for all possible proteins and 

ligands. However, there is often very little experimental measurements of the protein of 

interest at the start of lead optimization. The worst case scenario is where there is no 

experimental measurements of the protein family of interest to train our RBFE prediction 

model. We perform a leave-one-family-out cross validation where we cluster by protein 

family to evaluate the model’s performance in the most challenging scenario on an entirely 

novel protein target. The Pfam database32 contains protein family annotations of all of 

the PDB accessible structures. The protein family annotations are used to label all of the 

proteins in the BindingDB dataset, where each protein can have more than one associated 

protein family. This provides us with 72 different protein families. Any protein family with 

fewer than seven ligands across all of the congeneric series is removed. This leaves us with 

60 protein families. We create a test set for each of the protein families and its associated 

training set is the entire BindingDB dataset without that protein family. We evaluate the 

impact of including information about the left-out protein family by adding left-out ligand 

comparisons to the training data. The smallest finetuning includes two ligands from the 

left-out protein family; we continue adding two ligands to the training set and stop when six 

ligands from the left-out protein family have been added. Models are evaluated on the same 

test set regardless of how many ligands were included in training from the left-out protein 

family. Evaluations are carried out on all of the remaining ligands when we remove the six 

ligands used for the finetuning. Utilizing the trained model, we train for three epochs on the 

concatenation of the leave-one-out protein family training split and the added ligands from 

the left-out protein family, see Figure 2. No data stratification is used during training of the 

cross validation models as we determined that stratification hindered finetuning performance 

during our experiments. Only our Default2018 architecture is used for this cross validation 

evaluation due to computational constraints.
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Results

Our convolutional Siamese network shows improved performance over the model developed 

by Jiménez-Luna et al.18 on the retrospective lead optimization dataset. However, we do 

not show the same increased performance over Jiménez-Luna et al.18 when evaluating on 

external datasets. Most of our loss components enhance the performance of our models 

for RBFE prediction, especially the Lconsistency component. Our models show reduced 

performance when evaluated on protein families that have never been seen in comparison to 

our retrospective lead optimization evaluation.

Enhanced Performance on Retrospective Lead Optimization

Both of our models predictions show higher correlation with the experimental RBFE (ΔΔG) 

and lower root mean square error (RMSE) on the RBFE predictions in comparison to the 

model developed by Jiménez-Luna et al.18 (Figure 3). The mean absolute error (MAE) of 

our models’ predictions show the same trend as the RMSE (Figure S2). Additionally, our 

models demonstrate a decreased variance across the 25 versions of the training and test 

splits. The models demonstrate a continual increase in performance as they are given more 

training information about the congeneric series. We find that the high parameter Dense 

model does better with lower amounts of congeneric series comparisons than the lower 

parameter, Default2018, model. The difference between the performance of the two CNN 

architectures decreases as more information is added to the training set of the models.

External Datasets Evaluation

The RBFE prediction of the model varies widely across the different test sets when no 

finetuning is performed. However, with increasing amounts of finetuning we see that the 

correlation with experimental affinity increases and the error decreases (Figure 4, S3, 

S4,5, S5, S6, S7, S8). Some congeneric series, especially those in the Schindler et al.2 

dataset, show almost no improvement when adding more finetuning information. CDK2 

shows nearly perfect correlation and zero error with no finetuning performed, likely due to 

the high ligand similarity to the BindingDB dataset (Table S3). A number of congeneric 

series (TYK2, PFKB3, SYK, and TNKS2) do not show monotonically increasing RBFE 

performance as more data is added to the finetuning dataset. Finetuning does not provide the 

same amount of RBFE prediction boost as demonstrated in Jiménez-Luna et al.18 on both 

the Mobley et al.22 and Wang et al.7 datasets (Figure 4).

Ablation Study

Removing LΔΔG does not significantly decrease the performance of the RBFE predictions 

(Table 1), but increases the correlation and reduces the error of the absolute affinity 

prediction (Table S1). However, removing LΔG or Lconsistency drops the performance of 

the RBFE predictions by a considerable margin. The removal of Lrotation has little effect on 

the performance of the network, indicating that data augmentation may be all that is required 

to provide the necessary rotational invariance. When we remove LΔΔG and Lconsistency, the 

Siamese network no longer provides predictions that are correlated with the experimental 

affinity values, however, the errors of the predictions are only slightly increased from the 

baseline.
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Altering the Siamese network architecture does not affect performance as much as removing 

components of the loss function. If we exchange the latent space subtraction of the Siamese 

network for a concatenation, we do not see any change in performance of the model for 

RBFE prediction. However, we find that when training the Siamese network with latent 

space subtraction on only one ordering of each ligand pair, the network is better able to 

comprehend the negation of the ΔΔG when the ligand ordering is reversed (Table S2). 

This demonstrates that the latent space subtraction better embeds the symmetry of the 

ΔΔG prediction problem in comparison to latent space concatenation. We train a single-arm 

convolutional architecture to predict the absolute affinity values using the same training 

set (No Siamese Network in Table 1). The single-arm convolutional architecture’s absolute 

affinity predictions are subtracted for pairs of ligands to produce RBFE predictions. The 

single-arm convolutional architecture is worse than the CNN Siamese network at both 

absolute and relative binding affinity prediction.

Generalization to new Protein Families

When the Default2018 Siamese network is trained on all of the BindingDB dataset, 

excluding the left out protein family, and evaluated on the left out protein family, we find 

that the average RBFE prediction correlation across all of the protein families is nearly zero. 

(Figure 6). The variance across protein families is quite large, with some protein families 

having near perfect predictions and other protein families having extremely poor predictive 

performance.

Adding information to the training set about the left out protein family tends to increase the 

average correlation and decrease the average error across protein families, (Figure 6 and S9). 

However, only adding one pair of ligands from the left out protein family does not seem to 

help the performance of the model. We need at least 4 ligands from the protein family that 

we are evaluating on to see an increase in our RBFE prediction performance. Adding ligands 

from the left out protein family to our training data seems to have a greater impact on the 

correlation of the RBFE predictions rather than the error.

Discussion

Our models show higher correlation with experimental RBFE and lower errors of prediction 

than the model developed by Jiménez-Luna et al.18 when evaluated on the additional ligands 

dataset. We see an increase in model performance as the amount of information about 

each congeneric series is increased. Our models do not show diminishing returns as more 

ligands are added to the training set, unlike the model developed by Jiménez-Luna et 

al.18. Our highest parameter CNN architecture, Dense, was able to outperform the lower 

parameter Default2018 architecture on the smallest training set. However, the Dense model 

is initialized with weights from an absolute binding affinity prediction task that provide 

the model with much greater initial knowledge of the problem than a randomly initialized 

network. When using the Dense architecture with random initialization, the model had lower 

RBFE prediction performance than the randomly initialized Default2018 model (results not 

shown). The Dense model was unable to train effectively without L2 regularization (weight 
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decay), likely due to the small amount of data and the large amount of parameters in the 

model.

Only some components of the loss function are contributing to the models RBFE prediction 

performance. The removal of LΔΔG does not have a large impact on model performance 

indicating LΔG and Lconsistency contribute significantly to the RBFE prediction performance. 

However, it is important to note the Lconsistency encourages the model to make the 

ΔΔG prediction identical to the differences in absolute binding affinity predictions which 

will provide some notion of ΔΔG loss. The removal of the Lrotation component did not 

significantly change the performance of the model, which may indicate some isotropic 

properties of the network architecture. The latent space structure imposed by the subtraction 

operation did not result in improved performance when using both ligand orderings for 

training. However, training on only one ordering of ligand pairs demonstrates that latent 

space subtraction is able to embed the RBFE ligand ordering symmetry. This symmetry 

embedding can be learned by a network using latent space concatenation when using 

the freely available other orderings during training. The Siamese architecture enables 

understanding of ordering within congeneric series, which is ignored when only training 

for absolute affinity prediction. Without the Siamese architecture, the performance of the 

model suffers on both relative and absolute binding affinity prediction. This may be due to 

both the symmetry embedding of the network architecture and the increased regularization 

of the latent space that the Siamese architecture imposes.

The RBFE model has difficulty generalizing to new datasets. We find that our model 

does not perform as well as the Siamese network proposed by Jiménez-Luna et al.18 

when evaluated on the external datasets from Mobley et al.22 and Wang et al.7, in most 

cases. We find high protein and ligand similarity between the BindingDB Congeneric 

Series set and the external datasets from Mobley et al.22 and Wang et al.7. We provide 

the minimum protein distance, determined via a global alignment with no parameters 

and no gap penalties (Biopython.align.globalxx), and highest ligand similarity, determined 

with RDKit’s FingerprintSimilarity function in Table S3. BACE has the minimum protein 

distance with a protein in the BindingDB dataset and both CDK2 and PTP1B have greater 

than 95% of their ligands in the BindingDB dataset. This is likely why the correlation and 

error on CDK2 are nearly perfect with no finetuning. We would expect similar results for 

PTP1B since it shares a nearly identical minimum protein distance and similar percentage of 

ligands found in the BindingDB set, but PTP1B has lower correlation and higher error than 

CDK2 in the no-shot evaluation. Our models do not show the same level of RBFE prediction 

correlation as Jiménez-Luna et al.18, however, the RMSE of the predictions is about the 

same or less. Correlation is a poor predictor of relative binding affinity performance, due 

to the low range of affinities in a congeneric series.7,33 If, for instance, each ligand in 

a congeneric series has an identical affinity value, then there is no way to measure a 

predictive Pearson’s R correlation. Therefore, it is difficult to determine if the model built 

by Jiménez-Luna et al.18 demonstrates more generalizability than our models. When we 

evaluate our Siamese network on the more difficult Schindler et al.2 dataset, we again see 

much variability in our models performance across the different targets. Our model is unable 

to match the performance of the FEP+ model in correlation of prediction (Figure 5, S5, and 

S6) without using the largest amount of finetuning we explored. Examining the RMSE of 
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the RBFE predictions shows the Siamese network outperforming the FEP+ method on all of 

the targets, when all of the finetuning data is introduced. The lower correlation and lower 

error are due to our Siamese network predicting values around the mean of the data. FEP 

predictions are not dependent on the labels of the data, since there is no training necessary, 

and therefore would eliminate these sort of predictions.

Despite good intra-congeneric series performance, our Siamese network does not generalize 

well to new protein families suggesting the approach is best used later in the lead 

optimization process. We do show that adding information on the left out protein family 

to the training set improves the performance of the RBFE predictions. However, noticeable 

improvements would require the experimental binding affinity determination of at least four 

ligands for the new protein family.

Work still needs to be done on both absolute and relative binding affinity predictors to 

ensure that they are learning robust models of the intermolecular interactions. Future work 

should focus on including additional symmetries involved in RBFE in the predictive models, 

such as cycle closure.34,35 Including the Lconsistency term, focused on the symmetry of the 

relative and absolute binding affinity prediction, was able to increase the performance of 

our RBFE predictions, therefore including higher order symmetries of the RBFE problem 

may enhance the performance of future models. Rotational symmetries of the inputs can 

be addressed with SE(3)-equivariant convolutions,36 rather than a rotational loss. Adding 

uncertainty quantification37–39 to the predictive model could enable large performance 

improvements with fewer ligands during finetuning by focusing on the ligands with the 

greatest uncertainty according to the RBFE model.

Conclusion

Convolutional Siamese networks are capable of RBFE prediction (Figure 3). We find 

that higher capacity CNN models used in the arms of the Siamese network increases the 

predictive performance of the model. Our multitask loss is able to boost the performance 

of the RBFE prediction in comparison to only calculating a loss on the RBFE (Table 

1). This indicates that RBFE prediction is aided by increased regularization of the CNN 

latent space. The latent space subtraction of the Siamese network is able to implicitly 

embed the reverse symmetry of the RBFE prediction. However, the reverse symmetry 

is learnable without the latent space subtraction when the model is trained on both 

orderings of ligands for RBFE prediction. We note that our convolutional Siamese network’s 

performance is less consistent when applied to out of distribution examples (Figures 4, 

5, 6). The Siamese network can adapt to out of distribution examples via injection of 

training examples from the new distribution through either finetuning or baseline training. 

Our model can make RBFE predictions in significantly less time than FEP methods, but 

requires experimentally determined free energies of several ligands in a congeneric series 

to outperform the RBFE predictions of FEP methods. The convolutional Siamese network 

provides a faster alternative to more expensive FEP methods later in lead optimization when 

affinity information has been experimentally determined for more ligands in the congeneric 

series. Improvements to the RBFE prediction may be found by exploiting other symmetries 
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of RBFE, like cycle consistency. We provide the source code and data for use at our github 

repo: www.github.com/drewnutt/DDG/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Siamese network simultaneously predicts both ΔΔG and ΔG using the latent vectors of each 

input as determined by the shared convolutional architecture. xiRotated is a rotated view of the 

same protein-ligand complex as xi.
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Figure 2: 
The Siamese network model is evaluated in a number of different manners to allow us 

to compare to similar methods and investigate the generalizability of our predictions. The 

“Retrospective Lead Optimization” follows the evaluation described in Jiménez-Luna et 

al.18, where we incrementally add ligands from each congeneric series to the training set 

(filled in shapes) and test on ligand pairs that include one ligand in the training set. The 

“External Datasets Evaluation” utilizes a model trained on the entire BindingDB congeneric 

series dataset and evaluated on 17 congeneric series from our external datasets in both a 

no-shot and few-shot (3 epoch finetuning) manner. The “Leave One Protein Family Out CV” 

trains 60 different models, each with different training and testing datasets based on the left 

out protein family, in both a no-shot and few-shot manner, where ligand pairs from the left 

out protein family are added to the training set.
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Figure 3: 
Comparison of our models to Jiménez-Luna et al.18 on the additional ligands dataset. Error 

bars indicate ±1 standard deviation of 25 individual models (only 5 for Dense).
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Figure 4: 
Pearson’s R on both the Mobley et al.22 (BRD4) and Wang et al.7 external datasets. We 

evaluate with and without finetuning (0). FEP performance as reported in Jiménez-Luna et 

al.18.
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Figure 5: 
Pearson’s R on the Schindler et al.2 external dataset. We evaluate with and without 

finetuning (0). FEP+ performance given by Schindler et al.2. Max is the maximum possible 

correlation given the error in the experimental assay.
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Figure 6: 
Average performance on left out protein family for the protein families in the BindingDB 

dataset. The predictive power of the model increases as we include information from the left 

out test set.
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Table 1:

RBFE performance after ablating different components of the network on the 1 additional ligand set to 

determine their utility in the full network. Parentheses indicate the ±1 standard deviation of the 25 train/test 

versions. Bold indicates that it is not significantly different from the Standard model (p > 0.005).

Ablation Pearson’s R RMSE (pK) MAE (pK)

Standard 0.553(±0.0233) 1.11(±0.0309) 0.82(±0.0187)

No LΔΔG 0.551(±0.0202) 1.12(±0.0248) 0.829(±0.0179)

No LΔG 0.459(±0.0238) 1.27(±0.0289) 0.945(±0.0182)

No LRotation 0.556(±0.0188) 1.11(±0.0233) 0.819(±0.0162)

No LConsistency 0.536(±0.021) 1.14(±0.0356) 0.842(±0.0186)

No LΔΔG, LConsistency −0.0576(±0.136) 1.24(±0.0143) 0.908(±0.0144)

No LΔG, LConsistency 0.456(±0.0231) 1.28(±0.0319) 0.95(±0.0233)

Concatenation 0.554(±0.0134) 1.11(±0.0223) 0.821(±0.0174)

No Siamese Network 0.5(±0.0347) 1.15(±0.0362) 0.854(±0.021)

Subtraction, Single-order 0.512(±0.0213) 1.17(±0.0213) 0.877(±0.0151)

Concatentation, Single-order 0.476(±0.023) 1.21(±0.0253) 0.907(±0.0182)
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