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Abstract

Graph neural networks (GNNs)-based deep learning models (DL) have been widely implemented 

to predict experimental aqueous solvation free energy, while its prediction accuracy has reached a 

plateau partly due to the scarcity of available experimental data. In order to tackle this challenge, 

we first build a large and diverse calculated dataset Frag20-Aqsol-100K of aqueous solvation free 

energy with reasonable computational cost and accuracy via electronic structure calculations with 

continuum solvent models. Then we develop a novel 3D atomic feature-based GNN model with 

the Principal Neighborhood Aggregation (PNAConv), and demonstrate that 3D atomic features 

obtained from molecular mechanics optimized geometries can significantly improve the learning 

power of GNN models in predicting calculated solvation free energies. Finally, we employ a 

transfer learning strategy by pre-training our deep learning model on Frag20-Aqsol-100K and 

fine-tuning it on the small experimental dataset, and the fine-tuned model A3D-PNAConv-FT 

achieves the state-of-the-art prediction on the FreeSolv dataset with a root-mean-squared error 

of 0.719 kcal/mol and a mean-absolute error of 0.417 kcal/mol using random data splits. These 

results indicate that integrating molecular modeling and deep learning would be a promising 

strategy to develop robust prediction models in molecular science. The source code and data are 

accessible at: https://yzhang.hpc.nyu.edu/IMA.
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Introduction

Solvation free energy is defined as the energy change associated with the transfer of a 

molecule between gas and solvent at a certain condition1. It is closely related to many 

physicochemical properties including solubility and octanol-water partition coefficient, 

which means it can affect the pharmacokinetic parameters such as absorption, distribution, 

metabolism, and excretion (usually known as ADME) in human bodies2-7. It also has tight 

connection with biomolecular recognition and drug discovery8-11. Despite the importance 

of the solvation free energies, experimental data are relatively sparse because accurate 

measurements have been very difficult and expensive1,12. Meanwhile, although significant 

progresses have been made to develop physics based theoretical methods to model solvation, 

including implicit and explicit solvent models13-20, those relatively rigorous approaches, 

such as high level electronic structure methods with explicit solvent and extensive sampling, 

are still computationally too expensive. Thus, there is of great interest to develop efficient 

computational models to predict solvation free energies accurately.

In the last few years, the applications of machine learning/deep learning tools in 

the prediction of solvation free energy prediction have attracted great attention21-34. 

Weinreich et al. employed the Kernel Ridge Regression method to predict solvation 

free energy for FreeSolv based on the representations of compounds computed from an 

ensemble of conformers generated through short MD sampling21. Chen et al. proposed 

an algebraic graph-assisted bidirectional transformer (AGBT) framework to construct 

molecular representations by 3D element-specific weighted colored algebraic graphs 

and deep bidirectional transformers, which gives rise to some of the best predictions 

of molecular properties using machine learning algorithms32. Meanwhile, graph neural 

network-based deep learning models have been successfully implemented to predict 

physicochemical properties such as aqueous solubilities or hydration free energies for small 

molecules22-29. Graph neural network (GNN) models take chemical information encoded 

by molecular graphs as the input and learn more complex knowledge hidden in raw 

chemical dataset and generate powerful molecular representations for different prediction 

tasks. As for the solvation free energy prediction, Wu et al applied a graph neural network 
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named message passing neural network (MPNN) to predict experimental solvation free 

energy for FreeSolv dataset23. Yang et al developed a new D-MPNN model to predict 

experimental solvation free energy by combining learned molecular representation with 

molecular features26. Pathak el al. proposed a graph interaction neural network by modeling 

both the solute and solvent and the interaction between solute and solvent to predict 

solvation free energy28. All these GNN models performed quite similarly with the reported 

RMSE of around 1.0kcal/mol or larger for the FreeSolv data set. We hypothesize that such a 

performance plateau for GNN models to predict aqueous solvation free energies may come 

from several aspects, including: 1. These GNN models all rely on the atom features such 

as atom type and hybridization type to initialize the features for the molecular graphs35, 

which sometimes makes the models hard to distinguish simple molecular graph structures 

and thus lose some expressivity36-37; 2. When doing the message passing, the message 

aggregation is often simply chosen to be the summation or average over all neighboring 

node representations, which may lead to the information loss; 3. The aqueous solvation free 

energy dataset FreeSolv consists of 642 molecules, which is orders of magnitude smaller 

than many other datasets used in deep learning. As DL models greatly depend on the 

size and quality of the training data, they can be easily overfitting on the small solvation 

free energy dataset, resulting in indistinguishable prediction accuracy despite their different 

learning powers38.

In this work, in order to address data scarcity of experimental aqueous solvation free 

energies, we first build a large and diverse calculated dataset Frag20-Aqsol-100K of aqueous 

solvation free energy with reasonable computational cost and accuracy via electronic 

structure calculations with continuum solvent models. Then we develop a novel DL model 

architecture based on graph neural network (GNN) and atomic 3D features (A3D). Based on 

molecular mechanics optimized geometries, A3D features were calculated by atom-centered 

symmetry functions (ACSF)39 that are sets of many-body interaction functions encoding 

atomic environments in 3D structures. PNAConv as the GNN encoder combined with 

A3D features clearly demonstrate its superb learning power on the Frag20-Aqsol-100K. 

PNAConv is an advanced architecture combining multiple message aggregators with 

degree-scalers, which was originally proposed by Corso et al36. Here we pre-trained the 

model on the Frag20-Aqsol-100K and employed the transfer learning strategy40-42 on 

the experimental FreeSolv dataset. The fine-tuning performance by A3D-PNAConv-FT on 

FreeSolv achieved RMSE of 0.719 kcal/mol and a mean-absolute error (MAE) of 0.417 

kcal/mol using multiple random data splits, which reaches the experimental uncertainty of 

0.60 kcal/mol for MAE21. Moreover, our proposed model architecture with transfer learning 

strategy can make better predictions when given a training set with very small data size.

Datasets

For the experimental aqueous solvation free energy dataset, FreeSolv has been widely 

employed and benchmarked by various machine learning and deep learning models1,14,21-34. 

FreeSolv consists of 642 neutral compounds, each of which is identified by the SMILES, 

IUPAC names along with the experimental values1,14. The average and standard deviation of 

the experimental values are −3.82 kcal/mol and 4.84 kcal/mol, respectively.
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Since the data size of FreeSolv is very small, we build a large and diverse calculated 

dataset Frag20-Aqsol-100K for pre-training by employing a computation protocol as shown 

in Figure 1, which has achieved reasonable accuracy and computational cost. It should be 

noted that only a single conformer is used in this SMD-B3LYP computational protocol 

to calculate the solvation free energy, which can be further improved by considering 

an ensemble of conformation states. This SMD_B3LYP protocol yields an MAE of 

1.28 kcal/mol in comparison with corresponding experimental aqueous solvation free 

energies for compounds in FreeSolv and this accuracy is comparable to other modeling 

studies14,18. Frag20-Aqsol-100K contains 100K diverse compounds sampled from Frag20 

and CSD2042, which consists of both molecular mechanics and B3LYP(6-31G*) optimized 

3D geometries for molecules composed of H, B, C, O, N, F, P, S, Cl, and Br with 

no larger than 20 heavy atoms. The 3D geometry of each molecule in Frag20 was 

generated with RDKit43(ETDKG44) from Simplified Molecular-Input Line-Entry System 

(SMILES) representation and optimized by Merck Molecular Force Field45 (MMFF) and 

then optimized and property-calculated using Density Functional Theory (DFT) method 

at B3LYP/6-31G* level. While for CSD20, the MMFF optimizations on the crystal 

structures were carried out, which was followed by DFT optimization, and molecular energy 

calculation.

Methods

Model architecture

The general model architecture of A3D-PNAConv is shown in Figure 2. It basically has 

three principal components: molecule featurization, representation learning, and prediction 

blocks. The molecular featurization takes SMILES as inputs to generate both 3D structures 

and 2D graphs with explicit hydrogen atoms that are used to subsequently generate feature 

vectors for atoms and bonds. The encoder layers, which are used for atom embedding 

learning, mainly depend on the GNNs. Meanwhile, the skip-connection is applied on each 

GNN module and subsequently BatchNorm and activation function are applied on it as 

well. The atomic readout layers consist of multiple linear layers that supports the atom-level 

properties read-out from atom embeddings. Lastly, the atom-wise summation on the atom-

level properties is used as the final predicted molecule-level properties such as solvation free 

energy in this work.

Initial featurization

In the A3D-PNAConv model, 3D atomic features (A3D) are calculated by atomic-centered 

symmetry functions (ACSFs) based on molecular mechanics optimized geometries. ACSFs 

are sets of many-body functions that encode atomic environments within a molecule39 and 

have been used to predict molecular energy by Schutt et al48. Liu et al. also used ACSF 

descriptors as the auxiliary prediction targets when predicting quantum properties in QM9 

dataset49. The three different two-body symmetry functions we used here are Gi
1, Z1, Gi

2, Z1, 

and Gi
4, Z1, Z2, as shown below. The radial functions Gi

2, Z1 operate on the pairwise distances 

between atoms and can be formulated as sum of Gaussian functions multiplied by cutoff 
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functions fc, and the angular functions Gi
4, Z1, Z2 incorporate angles between combinations 

of three atoms and can be formulated as sum of cosine functions of the angle θijk = (Rij · 

Rik/∣Rij∣·∣Rik∣) centered at atom i multiplied by Gaussian functions and cutoff functions fc. 

All the summations on j for Gi
1, Z1, Gi

2, Z1 and on j, k for Gi
4, Z1, Z2 run over all atoms with 

specific atomic number.

Gi
1, Z1 = ∑j

Z1fc(Rij)

Gi
2, Z1 = ∑j

Z1e−η(Rij − Rs)2 ⋅ fc(Rij)

Gi
4, Z1, Z2 = 21 − ζ∑j ≠ i

Z1 ∑k ≠ i
Z2 (1 + λcosθijk)ζ ⋅ e−η Rij2 + Rik

2 + Rjk
2

⋅ fc(Rij) ⋅ fc(Rik) ⋅ fc(Rjk)

fc(Rij) = 0.5 ⋅ cos
πRij
Rc

+ 1

0

For radial function, Rij represents the distance between i and j, Rs is center of the Gaussian 

functions, η is the width of the Gaussian. For angular function, λ can have the values with 

+1 or −1, high values of ζ yield a narrower range, and η is used to control the radial 

distributions. The cutoff function ensures interactions decay to zero outside the cutoff Rc. 

Herein, the Rc value we adopted was always equal to 6.0. For 2D featurization on each bond, 

the bond attributes and the corresponding encoding methods are listed in Table S1.

Message Passing Neural Network (MPNN) and PNAConv

MPNN model works on undirected graphs G, which can be described by node attributes xv 

and edge attributes evw. MPNN contains two phases: a message passing phase and a readout 

phase. The message passing phase incorporates information across the graphs to build a 

neural representation of the graphs, and the readout phase utilizes the final representation of 

the graphs to make predictions about the graph-level or node-level properties of interest50.

To be specific, the message passing phase runs for T steps. At each step t, the message 

function Mt generates messages mvt + 1 for next iteration associated with each node, and the 

node update function Ut uses the messages to update the hidden state ℎv
t  at each node in the 

graphs. The message function and node update function are shown below and in Figure 3:

mvt + 1 = ∑w ∈ N(v)Mt(ℎvt , ℎwt , evw)
ℎvt + 1 = Ut(ℎvt , mvt + 1)

where N(v) means the set of neighbors of v in graph G, and the initial hidden state ℎv
0 is 

same with the initial node features xv. The message function and updating functions for 

selected GNN modules that we applied are shown in Table S1. Typically, different GNN 
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modules use slightly different MPNN mechanism to update node embeddings. Herein as 

for PNAConv36, to construct the message function, it first applied node degree to construct 

a scaler that was multiplied by a combination of four aggregation methods (mean, max, 

min, standard deviation) to obtain the Principal Neighborhood Aggregation (PNA). The 

PNA works on the summation of the neighboring nodes’ embeddings, connected bonds’ 

embeddings and its own embeddings to generate the messages that are subsequently 

concatenated with the nodes themselves to update the node embedding. Specifically, the 

message function for PNAConv is:

mvt + 1 = Mt(ℎvt , ℎwt , evw) = ⊕ (ℎvt + ℎwt + evw)

⊕ represents PNA and is formulated as: ⊕ =
I

S(d, α = 1)
S(d, α = − 1)

⊗

μ
σ

min
max

where S(d, α) = ((log(d + 1)/δ)α, d > 0, −1 ≤ α ≤ 1.δ is the normalization parameter and d is 

the node degree. The updating function for PNA is:

ℎvt + 1 = Ut(ℎvt , mvt + 1) = concat(ℎvt , mvt + 1)

where concat means the concatenation.

Implementation and Training Details

In this work, we compared 2D to 3D featurization on the atoms under six different 

GNN modules and showed their performance’s difference on the calculated data. For 2D 

featurization on atoms, the attributes and the corresponding encoding methods are listed 

Table S3. All 2D features for atoms and bonds are generated by RDKit43, and 3D atomic 

features are generated from either MMFF-optimized or DFT-optimized 3D structures by 

Dscribe51 with the ACSF calculations, where g2_params were set to [[1,1], [1,2], [1,3]] for 

[η, Rs] in Gi
2, Z1 function and g4_params were set to [[1, 1, 1], [1, 2, 1], [1, 1, −1], [1, 2, −1]] 

for [η, ζ, λ] in Gi
4, Z1, Z2 function. The initial feature sizes for 2D atoms, 2D bonds and 3D 

atoms are 50, 7, and 260, respectively.

We first pre-trained our models on the larger calculated dataset Frag20-Aqsol-100K such 

that we determined the best featurization method and GNN module. Then we fine-tuned 

the model on downstream experimental dataset FreeSolv. When fine-tuning the models, we 

initialized the models’ GNN parameters from the pre-trained models and retained the whole 

network. All trainings were implemented by Torch-Geometric framework52 and performed 

on RTX8000 GPU. All models were trained until it reaches 1000 epoch without early 

stopping, and were selected based on the smallest root-mean-squared error (RMSE) for the 

validation set. Hyper parameters for the model building and training are presented in Table 

S4. To be noted, except for the default internal hyper parameters of each GNN, we adopted 
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same values for all other hyper parameters such as number of encoder layers, hidden size, 

loss function, etc.

Results and Discussion

In order to compare different GNNs’ ability to learn molecular representation for solvation 

free energy prediction, we first built our models based on different GNN modules and 

trained them on Frag20-Aqsol-100K dataset, which was split into fixed train/validation/test 

sets with data size of 80K/10K/10K. The data distributions are shown in Figure S1 in the 

supporting information. The performances on the test set are shown below in Figure 4 and 

the statistical significance test is shown in Table S5.

The results in Figure 4 and Table S5 clearly indicate that 3D atomic features obtained from 

molecular mechanics-optimized or DFT-optimized geometries can significantly improve the 

learning power of GNN based models in predicting calculated solvation free energies over 

2D features. For all six GNN models that employ different message functions, including 

PNAConv36, D-MPNN26, GIN35, GINE53, NNConv50, and superGAT54 (see details in Table 

S2), they roughly showed a very similar performance of around 1.2 kcal/mol of RMSE using 

2D atomic features as input, ranging from 1.168 kcal/mol for PNAConv to 1.208 kcal/mol 

for GINConv. As for DNN-based models, on the one hand, it is not surprising that using 

2D atomic features with DNN alone would yield the worse result (RMSE = 2.805 kcal/mol) 

meaning that the 2D atomic feature itself encodes very little molecular information. On 

the other hand, using A3D features with DNN alone but without any message passing 

achieves a much better performance (0.944 kcal/mol for A3DMM and 0.707 kcal/mol for 

A3DQM), which clearly demonstrates that 3D atomic features encoded by atomic-centered 

symmetry functions (ACSFs) are excellent representations of atomic environments within 

a molecule. Our new finding here is that 3D atomic features obtained from molecular 

mechanics-optimized or DFT-optimized geometries can significantly improve the learning 

power of GNN models in predicting calculated solvation free energies, resulting in the 

performances of 0.674 kcal/mol for A3DMM-PNAConv and 0.432 kcal/mol for A3DQM-

PNAConv. This is probably because energy related prediction tasks are highly dependent 

on the 3D structures of the molecules48,55. The 2D features can only locally depicts the 

molecular topology rather than the complex inter-atomic relationship. Although A3DQM-

based models outperformed A3DMM-based models because the calculated solvation free 

energies are based on the DFT-optimized geometries, the computational cost to obtaining 

DFT-optimized geometries is considerably expensive, which limits its applications in many 

scenarios. By comparing A3D and 2D features, it can be concluded that A3D can better 

help our model learn to predict aqueous solvation free energy by adequately describing the 

atomic environment in terms of many-body functions. Meanwhile, by using A3D features, 

all six GNN models achieve significant better results than A3D with DNN alone. These 

results indicates that message passing and edge information also play important roles in the 

atom embedding updating, which can further improve molecule representation learning for 

aqueous solvation free energy prediction. In the following parts, we use A3D for A3DMM, 

unless indicated otherwise.
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Considering that either using 2D features or A3D features, PNAConv has achieved slightly 

better performance than the other five GNN modules, we have used both 2D-PNAConv 

and A3D-PNAConv to test the transfer learning strategy for the experimental aqueous 

solvation free energy prediction. Here we first built our models based on PNAConv under 

2D and A3D with the calculated dataset Frag20-Aqsol-100K and subsequently fine-tuned 

on the experimental dataset FreeSolv. We denoted the fine-tuned models 2D-PNAConv-FT 

and A3D-PNAConv-FT as the ones that were pre-trained on the calculated dataset Frag20-

Aqsol-100K under 3D and 2D featurization, respectively. Based on the same data split 

(sizes for train/validation/test sets: 513/64/65) from the MoleculeNet23, we removed 11 

compounds in the training and 1 compound in the validation set that contain element iodine, 

and then used the rest 502/63/65 for our models’ training/validation/evaluation. We used the 

same data sets to train both 2D-PNAConv and A3D-PNAConv as well as two cited models 

D-MPNN (from ChemProp) and MPNN (from MoleculeNet), and the results are shown in 

Figure 5. The data distributions are available in Figure S2 in the supporting information.

As we can see from Figure 5, the fine-tuned models 2D-PNAConv-FT and A3D-PNAConv-

FT outperformed other train-from-scratch (TS) models, which indicates that the pre-training 

on a large, calculated data can improve the fine-tuning performance on the small, 

experimental data. Considering that A3D-PNAConv-FT achieved the best performance 

(Figure 5 & S3), we carried out the ablation studies on the selections of atomic featurization 

methods (2D vs A3D), GNN modules (PNAConv vs DMPNN) and training strategies 

(TS vs FT), as shown in Figure 6 and Table S6. We can see that the improvement of 

A3D-PNAConv-FT against the baseline model 2D-DMPNN-TS for FreeSolv is not due to 

one factor alone but is a combination of three factors. The transfer learning (fine tuning from 

the previously trained models on the calculate data set) looks to contribute more than the 

change of the other two factors.

Considering that FreeSolv is a very small dataset with experimental aqueous solvation free 

energy, we further tested A3D-PNAConv-FT using random data splits with ratio of 8/1/1 

(data size: 504/63/63) and compared results with other reported models and frameworks in 

Table 1. We can see that A3D-PNAConv-FT achieved the state-of-the-art performance in 

terms of 10-fold cross-validation (CV) results on the test set of FreeSolv, with RMSE of 

0.719 kcal/mol and MAE of 0.417 kcal/mol.

Lastly, to further examine the applicability of transfer learning strategy towards training 

data with even smaller size, we trained a series of fine-tuned models (A3D-PNAConv-FT) 

by changing the train size of FreeSolv and compared their 10-fold CV performance on the 

test set (63 samples) of FreeSolv using random data split of ratio 8/1/1 with corresponding 

training-from-scratch models (A3D-PNAConv-TS). As shown in Figure 7, when given a 

training set of very limited data size, A3D-PNAConv-FT can yield quite good performances. 

The results indicate that the fine-tuned models outperformed the train-from-scratch models 

on the experimental dataset with a very small data size, which points a promising direction 

for dealing with small experimental dataset in the future.
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Conclusion

At the early stages of drug discovery pipeline, data scarcity is the most common issue 

in the prediction of experimental physicochemical properties by deep learning models. 

As for experimental aqueous solvation free energy, very limited data could be used to 

train on to obtain a robust and reliable deep learning model. To tackle this problem, in 

this study we first built a calculated dataset of aqueous solvation free energy for 100K 

diverse compounds based on SMD calculations with reasonable accuracy and computation 

cost. Then we developed a novel deep learning model that was based on PNAConv and 

ACSF featurization of atoms to learn atom embeddings and generate powerful molecular 

representations for the solvation free energies. The developed A3D-PNAConv-FT model, 

which is pre-trained on the calculated dataset Frag20-Aqsol-100K achieving state-of-the-art 

performance on the FreeSolv (RMSE of 0.719 kcal/mol and MAE of 0.417 kcal/mol using 

random data splits with ratio of 8/1/1). In addition, with our developed model combined 

with the transfer learning strategy, it clearly demonstrated that the fine-tuned models 

outperformed the train-from-scratch models on the experimental dataset especially with 

very small data size, which points a promising direction for dealing with small experimental 

dataset in the future. However, it should be noted that the transfer learning approach applied 

here requires the development of a large, computed data set with reasonable accuracy, which 

is still an ongoing research topic and has not been achieved for many other molecular 

property prediction tasks.

Data and Software Availability

The calculated dataset Frag20-Aqsol-100K and the train/validation/test sets of FreeSolv 

are available in https://yzhang.hpc.nyu.edu/IMA. The data processing, model building 

and training have been implemented in a python package named EzChem, and are also 

accessible through: https://yzhang.hpc.nyu.edu/IMA. RDKit 2020.09 version, DScribe 1.2.0 

version, PyTorch 1.7.1 version and PyTorch Geometrics are used to calculate initial 2D 

atom/bond features, 3D atom features and model building/training, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Computation protocol: SMD_B3LYP. Starting from the SMILE of a compound, a maximum 

of 300 conformers are generated by RDKit43 using ETKDG44 and optimized with 

MMFF94 force field45(Step 1). The conformer i with the lowest MMFF energy is 

selected (Step 2). This conformer undergoes gas-phase optimization with B3LYP(6-31G*)46 

using Gaussian1647 (Step 3). With the optimized geometry, the SMD15 calculation with 

B3LYP(6-31G*) in implicit water was carried out to calculate its aqueous solvation free 

energy (Step 4).

Zhang et al. Page 13

J Chem Inf Model. Author manuscript; available in PMC 2023 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
A3D-PNAConv model architecture for predicting solvation free energy.

Zhang et al. Page 14

J Chem Inf Model. Author manuscript; available in PMC 2023 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Node updating in MPNN. At t = 0, all nodes are assigned with initial features. Then at t = 

1, the node v’s feature gets updated by incorporating information from its neighboring nodes 

w. This updating is repeated several times.
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Figure 4. 
Performance on the test set of Frag20-Aqsol-100K by different GNN modules and DNN 

under A3D and 2D featurization methods. A3DQM and A3DMM are the A3D features 

that are calculated from DFT-optimized geometries and MMFF-optimized geometries, 

respectively. The value in red atop each bar are the mean RMSE on the test set by 5 runs 

with random weights initialization.
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Figure 5. 
Performance on the fixed FreeSolv test set by different models. The values atop each bar 

are the mean RMSE on the test set by 5 runs with different initial weights. The error bars 

are the standard deviation of the mean across 5 runs. 2D-PNAConv-TS and A3D-PNAConv-

TS means we trained PNAConv-based model from scratch using 2D and A3D features, 

respectively.
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Figure 6. 
The ablation studies on the selections of atomic featurization methods (2D vs A3D), 

GNN modules (PNAConv vs DMPNN) and training strategies (TS vs FT). Starting from 

2D-DMPNN-TS (baseline), we first changed one of the three factors (that said, atomic 

featurization methods, GNN modules and training strategies) and kept the other two factors 

constant. Then we changed two of the three factors and kept the left one constant. Lastly, we 

changed all the three factors. The dash cyan line shows the Baseline model’s RMSE.
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Figure 7. 
Change of model performance on FreeSolv by A3D-PNAConv-TS and A3D-PNAConv-FT 

with different sizes of training set. The size of validation set was kept at 63. Each data point 

is the mean of 10-fold CV performance on the test set, and error bar represents its standard 

deviations.
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Table 1.

Performance of A3D-PNAConv-FT on the test set of FreeSolv with multiple random data splits in comparison 

with previously published models/frameworks.

Method/Framework RMSE, kcal/mol MAE, kcal/mol References Key notes

A3D-PNAConv-FT 0.719±0.168 0.417±0.066 This work

3DGCN 0.824±0.140 0.575±0.053 27 Feature matrix + inter-atomic position matrix
a

AGBT 0.994±0.217 0.594±0.090 32 SMILES + structures
b

D-MPNN 1.075±0.054 - 26 2D features + molecular features, ChemProp

GraphConv 1.150±0.262 - 32, 56 Universal graph convolutional networks

AttentiveFP 1.091±0.191 - 25, 56 Graph attention + GRU

Weave 1.220±0.280 - 57, 23 GCN + Atom-pair features

FML - 0.570 21 MD sampling + Kernel Ridge Regression

a
The relative position matrix is designed to have the inter-atomic positions, rather than individual positions, that ensure translational invariance.

b
For a given molecular structure and its SMILES strings, AG-FPs are generated from element-specific algebraic subgraphs module and BT-FPs are 

generated from a deep bidirectional transformer module, and then the random forest algorithm is used to fuse, rank, and select optimal fingerprints 
(AGBT-FPs) for machine learning.
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