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SUMMARY

Background—Amyotrophic lateral sclerosis (ALS) is known to represent a collection of 

overlapping syndromes. A better understanding of this heterogeneity and the ability to distinguish 

ALS subtypes would improve clinical care and enhance our understanding of the disease. Various 

classification systems have been proposed based on empirical observations, but it is unclear to 

what extent they reflect ALS population substructure.

Methods—We hypothesized that machine learning techniques could identify the number and 

nature of ALS subtypes. We applied unsupervised (Uniform Manifold Approximation and 

Projection, UMAP), semi-supervised (neural network-UMAP), and supervised (ensemble based 

on LightGBM) modeling to a population-based cohort of 2,858 Italian ALS patients for whom 

detailed phenotype data were available. We replicated our findings in an independent population-

based cohort of 1,097 Italian ALS patients.

Findings—We found that semi-supervised machine learning based on UMAP applied to the 

output of a multi-layered perceptron neural network produced the optimum clustering of the 

ALS patients. These clusters roughly corresponded to the six clinical subtypes defined by the 

Chiò classification system (bulbar, respiratory, flail arm, classical, pyramidal, and flail leg ALS). 

The same clusters were identified in the replication cohort. In contrast, other ALS classification 

schema, such as the El Escorial categories, Milano-Torino clinical Staging (MiToS), and King’s 

clinical stages, did not adequately label the clusters. Ensemble learning identified twelve clinical 

parameters that predicted ALS clinical subtype with high accuracy (area under the curve = 0·982, 

95% confidence interval = 0·980–0·983).

Interpretation—Our data-driven study provides insight into the ALS population’s substructure 

and demonstrates that the Chiò classification system robustly identifies ALS subtypes. We provide 

an interactive website (https://share.streamlit.io/anant-dadu/machinelearningforals/main) so that 

researchers can predict the clinical subtype of an ALS patient based on a small number of clinical 

parameters.

Funding—National Institute on Aging and the Italian Ministry of Health.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is one of the most common forms of neurodegeneration 

in the population, accounting for approximately 6,000 deaths in the United States and 

11,000 deaths in Europe annually.1 Characterized by progressive paralysis of limb and 
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bulbar musculature, it typically leads to death within three to five years of symptom onset. 

Medications only minimally slow the rate of progression, and, as a consequence, treatment 

focuses on symptomatic management.

Genetic advancements have shown that ALS is not a single entity but consists of a collection 

of syndromes in which the motor neurons degenerate. Alongside these multiple genetic 

etiologies, there is a broad variability in the disease’s clinical manifestations in terms of 

the age of symptom onset, site of onset, rate and pattern of progression, and cognitive 

involvement. This clinical heterogeneity has hampered efforts to understand the cellular 

mechanisms underlying this fatal neurodegenerative syndrome and has hindered efforts to 

find effective therapies.

Given the importance of clinical heterogeneity within ALS, it is not surprising that there 

has been considerable effort to develop classification systems for patients over the years. 

Examples include grouping based on family status2, clinical milestones3, neurophysiological 

measurements4, and diagnostic certainty.5 Though useful, it is unclear if any of these 

classification systems identify meaningful subgroups within the ALS population or merely 

represent human constructs based on empirical observations. Determining the correct 

number and nature of subgroups within the ALS population would be a significant step 

toward understanding the disease. By extension, a reliable method to predict an individual 

patient’s subgroup using data collected at the beginning of their illness would be helpful for 

clinical care and clinical trial design.

Here, we explored the clinical patterns of ALS by applying unsupervised and semi-

supervised machine learning to deeply-phenotyped, population-based collections of patients 

(see Figure 1 for the analysis workflow). Our goal was to determine the disease subtypes 

existing within this patient population. The advantage of machine learning approaches is 

their ability to identify complex relationships in a data-driven manner. After successfully 

identifying the ALS subtypes, we used supervised machine learning to build predictor 

models that accurately classify individual patients and deployed this as a simple-to-use 

website that clinicians can access.

METHODS

Study participants

The discovery cohort consisted of 2,858 incident cases who had been diagnosed with ALS 

and were resident in the Piedmont and Valle d’Aosta regions of Italy between January 1, 

1995, and December 31, 2015.6 This population-based registry, known as the Piedmont 

and Valle d’Aosta Registry for ALS (PARALS), was established in 1995. The registry has 

near-complete case ascertainment within its catchment population of nearly 4·5 million 

inhabitants (see appendix p 1).6

The replication cohort consisted of 1,097 incident cases who had been diagnosed with ALS 

and were resident in the Emilia Romagna region of Italy between January 1, 2009, and 

March 1, 2018.7 This population-based registry, known as the Emilia Romagna Region 

registry for ALS (ERRALS), was established in 2008, and its catchment area of 4·4 million 
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includes the cities of Modena and Bologna.7 None of the ALS patients enrolled in ERRALS 

were enrolled in PARALS, and there were no exclusion criteria for the registries. We used 

the discovery (PARALS) and the replication (ERRALS) cohorts as the training and testing 

datasets, respectively, in our machine learning analyses.

A vital feature of these studies is their real-time collection of detailed data on patients 

throughout their illness by experienced ALS neurologists.6,7 The collection methods were 

standardized across the registries to facilitate comparisons. Each patient was evaluated 

according to published classification schema that included: (1) the El Escorial classification 

system5, (2) family status2, (3) Milano-Torino clinical Staging (MiToS)8, and (4) the King’s 

clinical stages.3 Patients were given a revised ALS Functional Rating Score (ALSFRS-R)9 

and were dichotomized according to their C9orf72 genetic carrier status. The PARALS and 

ERRALS studies were approved by the local ethics committees (appendix p 2).

Pre-processing of clinical data

The clinical data were filtered before analysis. Features with non-random missingness (e.g., 

cancer type), high sampling bias (e.g., place of birth), and features that could introduce data 

leakage (e.g., tracheostomy, initial diagnosis was primary lateral sclerosis) were omitted 

from the analyses (appendix p 10–11). For unsupervised and semi-supervised subtype 

identification, samples with missing values in the ALSFRS-R9 feature were also excluded (n 

= 497 in the discovery cohort, n = 108 in the replication cohort). In contrast, samples with 

missing ALSFRS-R data were included in the supervised analysis as the ensemble learning 

methods used in this section can handle missingness. Thus, the prediction modeling used 

2,858 cases in the discovery cohort and 1,097 in the replication cohort. Categorical features 

were encoded to numerical using the one-hot encoding method. Min-max normalization was 

applied to numeric features to preserve the distribution’s shape and ensure a zero-to-one 

range.

Data imputation

After filtering and pre-processing, the following features had residual missingness that was 

distributed randomly across the patients at a rate of 15–20%: (i) forced vital capacity (FVC) 

percent at diagnosis, (ii) body mass index (BMI) at two years before illness, (iii) rate of 

decline of BMI per month, (iv) weight two years before illness, (v) BMI at diagnosis, (vi) 

height, and (vii) weight at diagnosis. We used the k-Nearest Neighbor (kNN) imputation 

method with k = 5 neighbors to preserve the clusters.10 The discovery and replication 

cohorts were imputed independently.

Unsupervised machine learning

We hypothesized that machine learning techniques could identify the number and nature of 

ALS subtypes when applied to a large, well-characterized population cohort. The primary 

outcome measure of our analyses was a comparison of the subtype clusters defined by the 

machine learning approaches to the six clinical subtypes (bulbar ALS, respiratory ALS, 

flail arm ALS, classical ALS, pyramidal ALS, and flail leg ALS) assigned manually by 

neurologists according to the Chiò classification system.11 The clinical subtypes assigned by 
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the Chiò classification system were not entered into the unsupervised algorithms and were 

not used to construct the patient clusters.

First, we used an unsupervised clustering approach to identify ALS subtypes by applying 

Uniform Manifold Approximation and Projection (UMAP) to the processed data. UMAP 

is used for nonlinear dimension reduction to produce a low dimensional projection of 

the data with the closest possible equivalent fuzzy topological structure.12 This approach 

preserves the local and global structures existing within the data, along with reproducible 

and meaningful clusters. As a comparison, we applied dimension reduction methods such 

as principal component analysis (PCA), independent component analysis (ICA), and non-

negative matrix factorization (NMF) to the data.

Semi-supervised machine learning

To further refine the clusters identified by UMAP alone, we processed the data using a 

multilayer perceptron neural network consisting of five hidden layers with 200, 100, 50, 25, 

and 3 neurons (appendix p 3).13 The network was trained with the ‘clinical type at one-year’ 
outcome labels using a Softmax classifier. After training the network with ten-times cross-

validation, we extracted the activations of the last hidden layer and used them as the input 

for the UMAP algorithm.12 This approach reduced the dataset dimensions from 72 to 3.

Supervised subtype prediction

For supervised machine learning, we used GenoML, an open-source automated machine 

learning package developed by the authors (https://genoml.com/, accessed 21st July 2021).14 

Within this package, ensemble learning was used to develop predictive models forecasting 

the ALS clinical subtype of a patient based solely on the clinical data obtained at their first 

neurology visit. The stacking ensembles of three supervised machine learning algorithms 

(Random forest15, LightGBM16, and XGBoost17) were evaluated, and the best performing 

ensemble model was selected (see appendix p 4–5 for model selection and hyperparameter 

tuning). Feature reduction was performed using recursive elimination that did not sacrifice 

accuracy. Internal and external validation was used to assess performance and determine the 

best algorithms and parameters to use in the model (appendix p 2).

We used the Shapley additive explanations (SHAP) approach to evaluate each feature’s 

influence in ensemble learning. This approach is used in game theory and assigns an 

importance (Shapley) value to each feature to determine a player’s contribution to success.18 

Shapley explanations enhance understanding by creating accurate explanations for each 

observation in a dataset. They bolster trust when the critical variables for specific records 

conform to human domain knowledge and reasonable expectations. The interactive website 

(https://share.streamlit.io/anant-dadu/machinelearningforals/main, accessed 5th July 2021) 

was developed as an open-access and cloud-based platform.

Computational tools and code availability

The data analysis pipeline for this work was performed in Python 3.6 using open-source 

libraries (numpy, pandas, matplotlib, seaborn, plotly, scikit-learn, umap, xgboost, lightgbm, 

genoml, and tensorflow). We made our code publicly available at https://github.com/
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ffaghri1/ALS-ML (accessed 5th July 2021) to facilitate replication and future expansion 

of our work. Manuscript visualizations were created with tidyverse (version 1.3), ggplot2 

(version 3.3.2), and plotly (version 4.9.2.2) implemented in R (version 4.0.3). The reporting 

guideline checklists are provided in the appendix (p 26–31).

Role of the funding source

The study sponsor had no role in study design, data collection, data analysis, data 

interpretation, writing of the report, or the decision to submit. The corresponding author 

had full access to all the data in the study, and all of the authors had final responsibility for 

the decision to submit for publication.

RESULTS

We aimed to identify the clinical subtypes that exist within the ALS patient population in 

a data-driven manner. To do this, we applied unsupervised and semi-supervised machine 

learning approaches to a cohort consisting of 2,858 patients diagnosed with ALS and 

enrolled in the PARALS registry over twenty-five years. The clinical and demographic 

details of the discovery cohort are given in the appendix (p 12–15). The sixty-six clinical 

features collected for each case are listed in the appendix (p 10–11), and an exploratory data 

analysis describing the content of each feature is provided.

After filtering, data for forty-two clinical features across 2,361 patients were available in 

the PARALS discovery cohort for analysis. Both the unsupervised and semi-supervised 

approaches identified multiple clusters of patients, representing distinct subtypes of ALS 

(see appendix p 6 for the results of the UMAP alone and Figure 2A for the neural 

network-UMAP). Color-coding the ALS patients according to the clinical subtype assigned 

by the neurologist showed that the clusters roughly corresponded to the six clinical 

subtypes previously defined by the Chiò classification system (primary outcome). Visually 

investigating these three-dimensional projections, the optimum separation of the ALS 

patients into their clinical subtypes was obtained using the semi-supervised machine 

learning approach. There was excellent discrimination of the bulbar ALS, respiratory ALS, 

flail arm ALS, and classical ALS subtypes. In contrast, the pyramidal ALS and flail leg 

ALS overlapped significantly, though the flail leg ALS variant did form a distinct tail that 

did not overlap with the other subtypes. Overall, we found that 787 (99·7%) of the bulbar 

ALS cases, 42 (100%) of the respiratory cases, 150 (92%) of the flail arm cases, and 663 

(93%) of the classical cases were assigned to the same subtype by the clinician and the 

semi-supervised algorithm.

To validate our results, we replicated the ALS subtype identification in an independent 

cohort consisting of 1,097 incident ALS cases gathered over nine years by a second 

population-based ALS registry based in the Emilia Romagna Region (ERRALS). After 

filtering, data for forty-two clinical features across 989 ALS cases were available for 

analysis. Figure 2B shows the subtypes and clusters identified in the independent replication 

cohort. The cluster pattern is similar to that observed in the discovery cohort, confirming 

the reproducibility of our data-driven approach. Interactive three-dimensional graphs are 
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available on https://share.streamlit.io/anant-dadu/machinelearningforals/main (see “Explore 

the ALS subtype topological space”).

Our semi-supervised machine learning algorithm was more accurate than the other 

dimension reduction approaches such as principal component analysis (PCA) and 

independent component analysis (ICA, appendix p 7). Furthermore, other ALS classification 

schema, such as the El Escorial categories5, family status2, the presence or absence of the 

pathogenic C9orf72 repeat expansion, Milano-Torino clinical Staging (MiToS)8, ALSFRS-R 

score9, and King’s clinical stages3, did not label the clusters in a meaningful, clinically-

useful manner (Figure 3).

Next, we applied a supervised learning approach called ensemble learning to develop 

predictive models forecasting the ALS clinical subtype of a patient based solely on the 

clinical data obtained at the first neurology visit. Ensemble learning combines multiple 

learning algorithms to generate a better predictive model than a single learning algorithm.19 

When all available features (n = 66) were included in the model, the clinical subtype of a 

patient was predicted with high accuracy (internal validation area under the curve (AUC) = 

0·982, 95% confidence interval (CI) = 0·979–0·984, and external validation AUC = 0·954, 

95% CI = 0·950–0·958, and see appendix p 8, 16–20).

To increase this approach’s clinical utility, we decreased the number of parameters 

included in the model without sacrificing accuracy. The predictor model built with the top 

eleven factors was equally robust compared to the all-inclusive model (internal validation 

AUC = 0·982, 95% CI = 0·980–0·983 and external validation AUC = 0·954, 95% CI 

= 0·950–0·958, Figure 4 and appendix p 9). Table 1 and Figure 5 lists the eleven 

parameters selected for the final model and their relative contributions to the model’s 

precision. Finally, we implemented an interactive website (https://share.streamlit.io/anant-

dadu/machinelearningforals/main, see “Predict Patient ALS Subtype”) that allows clinical 

researchers to determine an ALS patient’s future clinical subtype based on these eleven 

parameters available in the early stages of the disease. We have also developed a “what-if 

analysis” functionality to explore how feature changes influence subgroup designation.

DISCUSSION

Researchers and clinicians have long sought a reliable method to identify the subgroups 

existing within the ALS population. Knowledge of the ALS substructure would improve 

our understanding of the clinical heterogeneity associated with this fatal neurodegenerative 

disease. By extension, it would enhance patient care and provide insights into the underlying 

pathological mechanisms.20–28 Here, we used a machine learning approach to identify such 

subtypes within a large cohort of ALS patients and replicated our findings in an independent 

cohort. This data-driven approach confirmed the existence of subtypes within the ALS 

disease spectrum. Interestingly, these subtypes roughly corresponded to those previously 

defined by the Chiò classification system11, demonstrating the schema’s utility. Unlike other 

subtyping approaches, the Chiò classification system relies on the patient’s clinical data 

collected during the first year of illness.11 This one-year observation period allows the 

disease’s symptoms to manifest more clearly and the clinician to assess the progression rate 
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more accurately. Though progression is a fundamental feature of ALS, it is not typically 

employed in determining the disease subtype.

The primary obstacles to deciphering the clinical heterogeneity observed among ALS 

patients have been the lack of a sufficiently large dataset and the inability to analyze multi-

dimensional relationships. We used data from two large, population-based registries that had 

enrolled ALS patients over several decades to address these issues. These registries collected 

data throughout the patient’s illness, and overall, they contained nearly 300,000 pieces of 

information that we used for our categorization efforts. Our results highlight the value of 

disease registries that capture deep phenotypes across an entire catchment area. Previous 

efforts to catalog the various subgroups of ALS hinged on a small number of clinical 

features, such as family history or site of symptom onset.2–5 Although clinically useful, 

these univariate or oligovariate classification systems do not capture the complicated clinical 

patterns existing within the ALS population. In contrast, the machine learning algorithms we 

applied are adept at deciphering complex and multi-faceted relationships. Indeed, the eleven 

features selected by the supervised model have not been previously combined to predict 

ALS subtypes.

Remarkedly, our unsupervised and semi-supervised machine learning algorithms defined 

the same subgroups outlined by Chiò and colleagues in their 2011 classification system.11 

This may not be completely surprising in the context of our semi-supervised approach as 

the “clinical type at one year” patient labels were used to assist the neural network-UMAP 

clustering. We do not maintain that our machine learning approach is better at identifying 

categories than experienced ALS neurologists. Instead, we validated the Chiò classification 

system using a data-driven approach and provided prima facie evidence that this schema 

captures the ALS population’s substructure. Classification based on other schemes, such as 

the El Escorial, MiToS, and King’s systems, did not help assign patients to a disease subtype 

(see Figure 3).

Nevertheless, our machine learning algorithm provides opportunities to improve and refine 

the Chiò classification system, especially as the pyramidal and the flail leg subtypes may 

not be as distinct from each other as other subtypes. This finding was unexpected as 

these patients are easily distinguished from each other in the clinic, highlighting machine 

learning’s ability to provide new and essential insights into a complex disease. It also offers 

a novel starting point for exploring the neurobiology underlying the pyramidal and flail leg 

ALS variants.

Having established that the six subtypes outlined by the Chiò classification reflect the 

correct substructure of ALS, we next considered how clinicians and researchers could use 

this information. The ability to assign patients to subgroups at an early disease stage helps 

unravel the disease’s clinical heterogeneity and aids in discussions with newly diagnosed 

individuals about likely disease course and prognosis. For example, patients with the 

respiratory subtype of ALS had a faster rate of progression. They were more likely to require 

non-invasive positive pressure ventilation (NIPPV) and gastrostomy feeding at an earlier 

stage than ALS cases with the upper motor predominant form of the disease. Outcome data 

from negative clinical trials can be reanalyzed for a therapeutic effect limited to one or 
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two subgroups. A similar approach has been successful in Parkinson’s disease.29 Genetic 

heterogeneity also handicaps our ability to implicate new loci in the disease’s pathogenesis 

using genome-wide association analysis. Including the subgroup as a covariate or restricting 

the search to a single subtype may resolve this issue by focusing gene finding efforts within 

a more homogeneous patient population.

It has not escaped our attention that the topology representation of the ALS subtypes 

produced by the machine learning algorithm resembles the central nervous system (CNS). 

We observed this pattern most clearly in Figure 2. The bulbar subtype delineates the 

cerebrum, and the spinal cord is represented by a long tail running successively from flail 

arm, pyramidal, classical, to flail leg subtypes. We speculate that this arrangement hints 

at a broader anatomical organization within the ALS spectrum, perhaps reflecting subtle 

differences of the motor neuron subtypes within each segment of the CNS and differing 

susceptibilities to pathogenic mechanisms of neurodegeneration.

Our study has several limitations. First, machine learning algorithms can identify patterns 

within a dataset even when no such pattern exists. Such ‘overfitting of the model’ is an 

inherent problem with this statistical methodology, and the most legitimate remedy is to 

attempt replication in an independent dataset. To that end, we replicated our findings in an 

independent, population-based cohort yielded remarkably similar outcomes to the discovery 

cohort, demonstrating the robustness of our approach. Second, the handling of missing 

data is increasingly recognized as a critical constraint of machine learning. Our data was 

remarkably complete, as shown in the exploratory data analysis notebooks. Nonetheless, as 

with any real-life clinical dataset, information was missing for some parameters, and we 

aimed to be transparent and cautious in handling these issues.

Third, our modeling may have a bias as we used the same set of patients used by Chiò 

and colleagues to define their subtypes in their 2011 study.11 However, it is unlikely 

that the use of this case series led to sampling bias as the clinical information used to 

create the models is standard across the ALS field. Furthermore, population-based registries 

decrease the possibility of sampling bias as they capture every case within a catchment 

area. We also replicated our initial findings in an independent cohort that was not used in 

the 2011 study, confirming that the clusters identified by the data-driven approach did not 

arise from spurious within-patient associations between variables in the discovery cohort. 

Nevertheless, both our discovery and replication data originated from the Northern Italian 

population. Additional studies in other countries are required to rule out the possibility of 

population bias and to test our approach’s generalizability. These data will have to be freshly 

collected, as there is insufficient information to determine the Chiò classification of samples 

in retrospective data repositories such as the Pooled Resource Open-Access ALS Clinical 

Trials Database (https://nctu.partners.org/proact, accessed 5th July 2021).30

Like other statistical systems, machine learning algorithms are only practical if they can 

be applied broadly. To facilitate this, we have established a website where a physician can 

enter a patient’s characteristics to predict their subtype membership. We have made our 

programming code publicly available (https://github.com/ffaghri1/ALS-ML) so that other 

researchers can apply it and modify it as our understanding of ALS and machine learning 
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approaches evolve. Though our current categorization approach is robust, we anticipate that 

it will improve over time to the point that it will become a valuable tool for clinicians 

dealing with ALS patients. Here, we provide an early demonstration of machine learning’s 

ability to unravel highly complex and interrelated disease systems such as ALS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

Evidence before this study

We searched PubMed for articles published in English from database inception until 

January 5, 2021, about the use of machine learning and the identification of clinical 

subtypes within the amyotrophic lateral sclerosis (ALS) population, using the search 

terms “machine learning”, AND “classification ”, AND “amyotrophic lateral sclerosis”. 

This inquiry identified twenty-nine studies. Most previous studies used machine learning 

to diagnose ALS (based on gait, imaging, electromyography, gene expression, proteomic, 

and metabolomic data) or improve brain-computer interfaces. One study used machine 

learning algorithms to stratify ALS postmortem cortex samples into molecular subtypes 

based on transcriptome data. Kueffner and colleagues crowdsourced the development of 

machine learning algorithms to approximately thirty teams to obtain a consensus in an 

attempt to identify ALS patient subpopulations. In addition to clinical trial information 

in the PRO-ACT database (www.ALSdatabase.org, accessed July 5, 2021), this effort 

used data from the Piedmont and Valle d’Aosta Registry for ALS (PARALS). Four 

ALS patient categories were identified: slow progressing, fast progressing, early stage, 

and late stage. This approach’s clinical relevance was unclear, as all ALS patients will 

necessarily pass through an early and late stage of the disease. Furthermore, no attempt 

was made to discern which of the existing clinical classification systems, such as the El 

Escorial criteria, the Chiò classification system, and the King’s clinical staging system, 

can identify ALS subtypes.

ALS subtype identification has previously been explored using t-SNE (Tang, 2019), and 

UMAP has also been used in the context of ALS patient stratification in two recently 

published papers (Grollemund, 2020; Westeneng, 2018). Prognosis outcome and patient 

stratification have been modeled in a classification context by Westeneng and Pfohl using 

real-life data and by Ong and Beaulieu-Jones using PRO-ACT data. The PARALS data 

were also previously used for ALS patient stratification by Elamin and colleagues. Our 

semi-supervised approach based on a neural network and UMAP is similar to work 

published by Sainburg and colleagues.

We concluded that there remained an unmet need to identify the ALS population’s 

substructure in a data-driven, non-empirical manner. Building on this, there was a need 

for a tool that reliably predicts the clinical subtype of an ALS patient. This knowledge 

would improve our understanding of the clinical heterogeneity associated with this fatal 

neurodegenerative disease.

Added value of this study

This study developed a machine learning algorithm to detect ALS patients’ clinical 

subtypes using clinical data collected from the 2,858 Italian ALS patients in PARALS. 

Ascertainment of these patients within the catchment area was near complete, meaning 

that the dataset truly represented the ALS population. We replicated our approach using 

clinical data obtained from an independent cohort of 1,097 Italian ALS patients that 

had also been collected in a populationbased, longitudinal manner. Semi-supervised 

learning based on Uniform Manifold Approximation and Projection (UMAP) applied to 
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a multilayer perceptron neural network provided the optimum results based on visual 

inspection. The observed clusters equated to the six clinical subtypes previously defined 

by the Chiò classification system (bulbar ALS, respiratory ALS, flail arm ALS, classical 

ALS, pyramidal ALS, and flail leg ALS). Using a small number of clinical parameters, 

an ensemble learning approach could predict the ALS clinical subtype with high accuracy 

(area under the curve = 0·94).

Implications of all available evidence

Additional validation is required to determine these algorithms’ accuracy and clinical 

utility in assigning clinical subtypes. Nevertheless, our algorithms offer a broad insight 

into the clinical heterogeneity of ALS and help to determine the actual subtypes 

of disease that exist within this fatal neurodegenerative syndrome. The systematic 

identification of ALS subtypes will improve clinical care and clinical trial design.
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Figure 1. Workflow followed in this study.
Unsupervised and semi-supervised machine learning was applied to clinical data collected 

from two population-based ALS registries (n = 2,858 cases and 1,097 cases) to identify 

clinical subtypes. Supervised machine learning was used to predict subtypes based on 

clinical parameters, and a web-based tool was built for clinical researchers to apply to their 

own data.
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Figure 2. The ALS subtypes identified by machine learning in the discovery and replication 
cohorts.
The top row (A) shows the three-dimensional projections of the discovery cohort (n = 

2,361) defined by the semi-supervised machine learning algorithm consisting of a UMAP 

algorithm applied to the output of a five-layer neural network. The same three-dimensional 

projections (left panel = 100 degrees azimuthal rotation, center panel = 135 degrees, and 

right panel = 170 degrees) of the replication cohort (n = 989) are shown in the bottom row 

(B). The projections are symbolic representations of ALS subtypes. Each patient (dot) was 

color-coded after machine learning cluster generation according to the Chiò classification 

system. Interactive three-dimensional graphs are available on https://share.streamlit.io/anant-

dadu/machinelearningforals/main.
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Figure 3. Different classification schema applied to the semi-supervised 3D projection of the ALS 
discovery cohort (n = 2,361).
(A) The El Escorial classification system assigns patients to definite (def.), probable 

(prob.), probable - laboratory supported (prob. - lab.), possible (poss.), and suspected (susp.) 

categories based on their disability. (B) Patients with a family history of ALS are represented 

by red dots, and blue dots show patients with sporadic disease. (C) Patients carrying the 

pathogenic repeat expansion are represented by red dots. (D) The MITOS classification 

system assigns patients to clinical stages 0 to 4 based on their disability. (E) The ALSFRS-R 

score rates the severity of disability ranging from 0 to 48 (no disability). (F) The King’s 

clinical staging system classifies patients into four stages according to their disability level.
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Figure 4. Clinical parameters used in the supervised machine learning model to predict ALS 
clinical subtype.
(A) Graphical representation of the overlap between the eleven parameters with the most 

significant impact on the classification model. The dark circles in the dot plot indicate the 

parameters that are part of an intersection, and the vertical bar plot reports the number 

of patients with that parameter combination. The horizontal bar plot reports the set sizes. 

Analysis was confined to 699 ALS patients with no missing data. (B) Distribution of the 

parameters in each patient. On average, a patient had five of these clinical features. (C - E) 

The distribution of the age at onset, weight at diagnosis, and forced vital capacity percent at 

diagnosis in the analyzed patients.
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Figure 5. The eleven features used in the supervised machine learning model to predict ALS 
clinical subtype.
(A) Distribution of the Shap values for the eleven features with the most significant impact 

on the classification model. Each point represents a subject and may have a positive or 

negative impact depending on its SHAP value. For instance, high values of the rate of 

BMI decline in red contribute strongly to the positive class, while low values in blue 

contribute to a lesser extent to the negative class. (B & C) The aggregate of the Shap 

values is shown for the top eleven features (ranked from most to least important). (D) 

Model output trajectory for a single subject with the bulbar subtype of ALS. The predicted 

probability that the patient had the bulbar subtype of ALS was 0.91, predominantly 

driven by the patient’s bulbar site of symptom onset and only minorly driven by their 

smoking status and El Escorial category at diagnosis. See https://share.streamlit.io/anant-

dadu/machinelearningforals/main for more examples.
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Table 1.

Clinical features selected for the final model with their relative contributions to the model’s precision.

Model precision

Relative Importance Standard Deviation of Relative 
Importance

Anatomical level at onset 1·000 0·078

Site of symptom onset 0·460 0·021

Onset side 0·132 0·023

Weight at diagnosis (kg) 0·042 4.548×10−4

El Escorial category at diagnosis 0·033 0·003

ALSFRS-R part 1 score 0·027 8.967×10−4

Time of first ALSFRS-R measurement (days from symptom onset) 0·020 0·000

Smoking status 0·019 1.980×10−4

Age at symptom onset 0·015 0·000

Rate of BMI decline (per month) 0·014 0·000

FVC% at diagnosis 0·013 0·000

ALSFRS-R part 1 score refers to the first question in the ALS Functional Rating Scale – Revised rating scale concerning speech.
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