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In the past decade, studies on the mammalian gut microbiome have revealed that different animal species have distinct

gut microbial compositions. The functional ramifications of this variation in microbial composition remain unclear: do these
taxonomic differences indicate microbial adaptations to host-specific functionality, or are these diverse microbial communities
essentially functionally redundant, as has been indicated by previous metagenomics studies? Here, we examine the metabolic
content of mammalian gut microbiomes as a direct window into ecosystem function, using an untargeted metabolomics platform
to analyze 101 fecal samples from a range of 25 exotic mammalian species in collaboration with a zoological center. We find
that mammalian metabolomes are chemically diverse and strongly linked to microbiome composition, and that metabolome
composition is further correlated to the phylogeny of the mammalian host. Specific metabolites enriched in different animal species
included modified and degraded host and dietary compounds such as bile acids and triterpenoids, as well as fermentation products
such as lactate and short-chain fatty acids. Our results suggest that differences in microbial taxonomic composition are indeed
translated to host-specific metabolism, indicating that taxonomically distant microbiomes are more functionally diverse than

redundant.
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INTRODUCTION

The variation between human gut microbiomes pales in comparison
to the vast diversity of gut microbial communities found across
mammalian species [1, 2]. Microbial diversity in mammalian
microbiomes has been linked to a variety of traits related to host
phylogeny, including host physiology, gut morphology, and in the
majority of cases the diet, which is considered a cardinal factor in
determining microbiome composition [2-6]. However, in cases of
drastic historical dietary transitions, the microbiome does not always
follow suit: for example, the giant panda has retained a carnivore-like
microbiome more similar to other bear species than to other
herbivores [5]. Overall, relationships between mammalian micro-
biomes tend to closely recapitulate the phylogenetic tree of their
mammalian hosts, a phenomenon termed phylosymbiosis [7, 8].
Phylosymbiosis has been observed even within groups of closely
related species, such as primates [9-11] and mice [12], with the
notable exceptions of bats [2, 4], and ant- and termite-eating
specialists such as anteaters and aardvarks [13].

However, little is known about the functional ramifications of
the immense microbial taxonomic diversity across individuals and
mammalian species, and whether it translates to host specificity
for metabolic pathways. The most comprehensive metagenomics
study of mammalian gut microbiomes to date found a large

shared core of functional annotations across host species,
indicating that despite drastic differences in microbial composi-
tion, these communities have similar metabolic potential [14].
Indeed, functional redundancy at the metagenome level has been
found in a range of microbial environments, including host-
associated environments such as the human gut microbiome
[15, 16] and the rumen [17], as well as in environmental samples
from the ocean [18] and soil [19]. These findings call into question
basic assumptions about the relevance of taxonomic differences
to ecosystem function [20, 211.

An alternate approach to understanding microbial communities is
through their metabolites, which represent the downstream readout
of gene expression. Metabolite secretion, uptake, and interactions
with proteins and membranes shape the microbial environment and
provide a medium through which microbes interact with one another
and the host [22]. Therefore, metabolomics analysis can provide
unique insights into microbial community function and functional
redundancy [23, 24]. While the interpretation of metabolomics data
remains more challenging than other omics disciplines, as the
structures of metabolites span a large and diverse chemical space that
cannot easily be analyzed modularly, recent advances such as
molecular networking have gone a long way towards bridging
this gap [25]. In this study, we examine the connection between
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Table 1. Summary of animals sampled.

Order
Primates

Gut morphology  Diet type Species

Simple gut Omnivores  Red ruffed lemur

Black-and-white
ruffed lemur
Mandrill
Chimpanzee
Gibbon
Capuchin
Herbivores  Gorilla

Artiodactyla Foregut Herbivores  Sheep
Goat
Black bear

Brown bear

Carnivora Simple gut Omnivores

Coati

Carnivores  African wild dog
Arabian wolf
Tiger

Leopard

Lion

Jungle cat

Sand cat

Hyena

Rhinoceros
Zebra
Donkey

Perissodactyla  Hindgut Herbivores

Proboscidea Hindgut Herbivores  African elephant

Asian elephant

taxonomic diversity and metabolic output in mammalian gut
microbiomes by analyzing 101 fecal samples from a range of
mammalian species, using an untargeted metabolomics platform
together with 16S rRNA gene amplicon sequencing. We find that
animals’ gut microbiomes and metabolomes are strongly correlated,
especially for specialized metabolites. Our results indicate that
differences in microbial taxonomic composition are indeed translated
to host-specific microbial metabolism, suggesting that taxonomically
distant microbiomes are not functionally redundant.

MATERIALS AND METHODS

Study design

We collected a total of 101 fecal samples from 25 mammalian species from
The Zoological Center Tel Aviv-Ramat Gan, Israel (Table 1 and Supple-
mentary Table S1). The animals were classified taxonomically on the order
level (Carnivora, Artiodactyla, Perissodactyla, Proboscidea, and Primates)
[26], by dietary group (carnivores, herbivores, and omnivores), and by gut
morphology (foregut fermenters a.k.a. ruminants, monogastric hindgut
fermenters, and monogastric simple gut morphologies). While the gut
morphologies align with the mammalian phylogeny, this dataset contains
two instances of dietary divergence within orders: the splitting of
Carnivora into carnivores and omnivores, and the herbivorous gorillas as
opposed to the other omnivorous primates species. Notably, while in this
study the omnivorous Carnivora species (bears and coatis) did consume
meat as well as fruit and vegetables, all the primates species consumed
only fruits and vegetables (Table 1 and Supplementary Table S1). Multiple
individuals per species were sampled whenever possible.
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Samples Taxonomy Diet description
1 Varecia variegata Seasonal fruits and vegetables
rubra
1 Varecia variegata
8 Mandrillus sphinx
10 Pan troglodytes
3 Hylobates lar
1 Cebus olivaceus
6 Gorilla gorilla
5 Ovis aries Alfalfa straw and herbivore pellets
1 Capra hircus
2 Ursus thibetanus Seasonal fruits and vegetables,
5 s @S Elrbf?slf]’ twice a week chicken
7 Nasua nasua Seasonal fruits and vegetables,
kibble, mice

1 Lycaon pictus Chicken and red meat

1 Canis lupus arabs

2 Panthera tigris

2 Panthera pardus

3 Panthera leo

2 Felis chaus

1 Felis margarita Mice

1 Hyaena hyaena Red meat, occasional hardboiled
egg or fruit

13 Ceratotherium simum Oat straw and vicia straw,

16 Equus burchelli boehmi occasional fruit and vegetables
1 Equus asinus Alfalfa straw and herbivore pellets
3 Loxodonta africana Wheat straw and herbivore
5 Elephas maximus pellets, occasional fruits and

vegetables

Sample collection

Fecal samples were collected over the course of a 6-month period (September
2016-March 2017), and food samples were collected in March 2018. To ensure
non-redundant sampling of individuals, animals were monitored by direct
observation or by cameras, or were temporarily separated from others in a
separate habitation compartment, with the exception of the zebras
(Supplementary Table S1). Metadata was recorded including the diet, age,
sex, and medical treatment of the individuals. The fecal samples were collected
fresh, generally within 2 h post-voiding for daytime samples or up to 14 h for
overnight samples, depending on the species and circumstances of collection.
No systematic effect of sample collection time was observed for host species
with multiple individuals sampled within different time frames (Supplementary
Fig. S1). To ensure anaerobic conditions were maintained within the sample,
only relatively high-moisture samples were collected. Samples were first
transferred temporarily into a 50 mL tube pre-flushed with CO,, and kept on
ice for up to 2h until being processed on-site. Then, 10% w/v feces was
dissolved in anaerobic sterile phosphate-buffered saline-10% glycerol solution
with a total volume of 50 mL. The mixture was then flushed with CO, via a gas
line, divided into aliquots, and snap-frozen in liquid nitrogen immediately. The
frozen samples were stored temporarily at —20 °C on-site, then transferred on
ice in a cooler box to the laboratory and stored at —80 °C until analysis.

Analytical procedures

Samples underwent three parallel analyses: (1) amplicon sequencing of 16S
rRNA genes, to characterize the microbial community; (2) liquid chromato-
graphy tandem-mass spectrometry (LC-MS/MS), to characterize a wide range
of semi-polar metabolites and lipids; and (3) gas chromatography-mass
spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-
FID), to characterize small, polar metabolites.
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Amplicon sequencing analysis. Detailed protocols for the DNA extraction
are provided in the Supplementary Information. In brief, prior to DNA
extraction, samples were treated with a washing protocol adapted from
Jami et al. [27] to separate adherent bacteria from fecal material, in order
to reduce bias stemming from the low DNA extraction efficiency of
particle-associated bacteria. The DNA extraction was performed as
previously described by Stevenson et al. [28], with minor modifications
as detailed in the Supplementary Information. Then, the V4 region of the
16S rRNA gene was amplified for the extracted DNA in each sample
separately, using barcoded primers 515F 5-GTGCCAGCMGCCGCGGTAA-3/
and 806R 5-GGACTACHVGGGTWTCTAAT-3' as described in Caporaso et al.
[29]. The libraries were pooled and sequenced on a MiSeq platform
(llumina, San Diego, CA, USA) with 151 cycles from each end. The
sequencing data was analyzed using the DADA2 pipeline v1.6.0 in R [30].
Separate sequencing runs were analyzed separately and subsequently
merged. The median number of reads per sample was approx. 21,000, and
rarefaction curves were calculated for the overall dataset as well as per
sample, showing that these curves reached saturation (Supplementary
Fig. S2). The number of amplicon sequencing variants (ASVs) detected per
sample averaged approx. 200-300, depending on the host species
(Supplementary Fig. S3). Taxonomy was assigned using the SILVA database
v132 [31]. Predicted functional profiles were generated using PICRUSt2
v2.1.4, using the default settings [32].

In vitro digestion of dietary samples. Food samples from the animals’ diets
were collected and analyzed in order to identify dietary metabolites.
Samples were collected from 34 foods on-site in consultation with the
zoological center’s animal nutritionist. Samples were crushed in a mortar
and pestle, and 0.5 g was weighed into a 15 mL tube and frozen at —20 °C.
Prior to analysis, in order to simulate initial host digestion of the dietary
samples, a 2-stage in vitro digestion protocol was performed based on
Gawlik-Dziki et al. [33]. In brief, samples were treated with 5 mL of an acidic
pepsin solution and shaken for 2 h at 37 °C, followed by pH adjustment to
approx. 6, the addition of 5mL of simulated intestinal juice containing
pancreatin and bile salts and 5mL of potassium and sodium chloride
solution, pH adjustment to approx. 7, and shaking for an additional 60 min
at 37 °C. Samples were stored at —20 °C until analysis.

Metabolomics analysis. Detailed protocols and instrument settings for all
metabolomics methods are provided in the Supplementary Information. In
brief, for the LC-MS/MS analysis, samples were extracted overnight in 50%
methanol using a protocol modified from Melnik et al. [34]. Samples were
analyzed on an Acquity UPLC I-Class System (Waters Corporation, Milford,
MA, USA) coupled to a gExactive hybrid quadrupole-Orbitrap mass
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). For the
GC-MS analysis, samples were extracted in a modified Bligh-Dyer
procedure in a two-phase methyl-tert-butyl ether (MTBE), methanol, and
water protocol (2:1:1) adapted from Giavalisco et al. [35]. The aqueous
phase was dried under reduced pressure and stored at —80°C.
Immediately prior to analysis, a two-step derivatization process (methox-
imation and trimethylsilylation) was carried out according to the protocol
described by Lisec et al. [36]. Samples were analyzed based on Hochberg
et al. [37] on a GC-7820A instrument coupled to an MSD-5977B single-
quadrupole mass spectrometer (Agilent Technologies, Santa Clara, CA,
USA). For the short-chain fatty acid (SCFA) quantification, samples were
extracted based on a protocol modified from Shabat et al., in which
samples were acidified with metaphosphoric acid and then extracted using
MTBE [38]. Samples were analyzed using a GC-7890B coupled to a flame
ionization (FID) detector (Agilent Technologies), in order to detect and
quantify a targeted panel of six SCFA based on a collection of standards
(acetate, propionate, butyrate, valerate, isobutyrate, and isovalerate).

Molecular networking

The metabolomics data was analyzed using the Global Natural Product
Social Molecular Networking (GNPS) platform [25]. For the LC-MS/MS data,
data files were converted to open format mzXML files using the GNPS
batch converter, and then processed with MZmine2 v2.34 [39] based on
the feature-based molecular networking workflow tutorial (batch converter
and tutorial are available at: gnps.ucsd.edu). This resulted in a list of
approx. 20,000 peak features, defined here as a given mass over charge
ratio (m/z) eluting in a chromatographic peak at a given retention time
(details regarding the MZmine2 workflow are available in the Supporting
Information). These peak features were aligned across samples and
normalized by the internal standard (ampicillin), and log-transformed.

SPRINGER NATURE

The peak list was subsequently filtered to 10,029 fecal peak features after
removing the background and dietary signals (Supplementary Fig. S4),
with a median of 1151 peak features detected per sample (Supplementary
Fig. S3). The limit of detection for the peak features depends on both the
instrument sensitivity and the cut-offs set in the automated analysis
pipeline, and will be unique to each metabolite depending on the ease of
ionization as well as possible matrix effects from the sample. A molecular
network based on spectral similarity was created with the feature-based
molecular networking workflow on the GNPS website, version 1.2.3 (http://
gnps.ucsd.edu) [40]. Two additional tools were used to further annotate
the molecular network: Network Annotation Propagation (NAP) [41], which
combines annotations with in-silico fragmentation predictions, and
MolNetEnhancer [42], which assigns chemical families to subnetworks
using ClassyFire [43] classifications.

For the GC-MS data, the data files were converted to mzML format using
MSconvert Proteowizard [44, 45]. The spectral deconvolution was
performed using the MSHub GNPS workflow, and then the resulting list
of peak features was analyzed by GC-MS molecular networking [46].
Spectral matching was performed in the GNPS workflow against public
GNPS and commercial NIST and Wiley libraries. Both workflows were
version 14, and the default settings were used. Post analysis, peak features
were filtered by balance score, a measure of the reproducibility of
fragmentation patterns across all samples, and peak features with a score
lower than 50% were discarded. Additionally, peak areas in each sample
were normalized by the area of the internal standard ribitol, with a noise
cut-off level set as 0.01 normalized abundance, and lastly, log-transformed.
A total of 347 fecal peak features passed the balance score threshold, with
a median of 131 peak features detected per sample (Supplementary
Fig. S3). Approximately 90% of the total peak features were present in both
food and fecal samples (Supplementary Fig. S4). However, since nutrients
of dietary origin such as amino acids and sugars are absorbed by the host
in the small intestine [47, 48], when these molecules are present in the
feces, they are less likely to be of dietary origin. Therefore, these peak
features were not removed from the analysis.

Statistical analysis

All statistical analyses were done using R v3.4.3 (R Core Team, 2017), using
the packages phyloseq v1.27.2 [49] and vegan v2.5.4 [50]. Plots were
created using the ggplot2 package v3.1.0 [51]. Proportional Venn diagrams
were created using the web application BioVenn [52]. In all analyses,
the cutoff for significance was below a p-value of 0.05 after multiple
hypothesis correction.

PERMANOVA analysis

The Adonis implementation of non-parametric permutational multivariate
analysis of variance (PERMANOVA) [53] was used for comparison between
groups. To examine the effect of evenness of sample numbers across the
data set, we performed PERMANOVA on smaller random subsets of
samples per species in addition to the full datasets. To do so, we randomly
subset the samples per species so that all species had n samples, from n =
1 to n=5; for species with fewer than n individuals sampled, all samples
were included. In general, PERMANOVA tests operate under the
assumption of homogeneity of dispersions among groups, and in this
dataset, there were significant differences between the dispersions among
groups. In order to examine the effect of the sample size and evenness, we
tested the homogeneities of the random n = 1-5 subsets and found that in
all grouping categories we could find examples for which the groups were
now homogenous, and the PERMANOVA tests still resulted in significant
differences between the groups. In this scenario, in which the dispersal
increases with increasing numbers of samples in a group, PERMANOVA
tends to become more conservative (if a larger group is also more widely
dispersed, a small, tightly clustered group will be more likely to fall within
it, so differences in the centroids are more difficult to detect) [54]. Based on
this analysis, the PERMANOVA results seem to be an accurate reflection of
the data, especially since the results are evident visually in the ordination
analysis.

Hierarchical clustering analysis

Trees were created using the hclust function and analyzed using the
packages dendextend v1.9.0 [55] and ape v5.2 [56] (Bray-Curtis dissimilarity
and Ward's hierarchical clustering method), and the host phylogeny tree
created using the TimeTree database [57, 58]. Correlations between trees
were calculated using dendextend’s implementations of the Pearson
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correlation and Baker's Gamma Index [59]. In order to calculate the
statistical significance of the Baker's Gamma Index, a null model was tested
using dendextend in which the labels of one tree were shuffled and the
index recalculated (n =999), and a p-value was calculated to compare the
distribution of the index for the null model to the results.

Identification of differential peak features

In order to create a shortlist of candidate differential peak features, a
principal components analysis (PCA) using Euclidean distances was
performed on the peak feature abundance tables for the LC-MS/MS and
GC-MS data (Supplementary Fig. S5), and the top and bottom percentiles
of loadings for PC1 and PC2 were extracted in order to determine the
metabolite features which contributed most to the separation along these
axes (Supplementary Fig. S6). These candidate lists were tested for
significant associations with the host species, mammalian order, diet, and
gut morphology using an indicator species analysis [60] (indicspecies v1.7.9
package in R, 99999 permutations). The resulting lists of metabolites and p
values were adjusted for multiple comparisons using the Bonferroni
correction, and the adjusted p values were filtered using a significance
cutoff of 0.05. For the LC-MS/MS data, the top 5% of loadings included
over 1500 peak features, and so the list was further filtered to the top 1%
of loadings (319 peak features), of which 230 were significantly associated
with mammalian order, diet, or gut morphology (Supplementary Table S2).
Next, we used the GNPS platform to assign putative structures based on
spectral matching (a level 3 annotation based on the Metabolomics
Standards Initiative [61]), and 74 peak features could be assigned
metabolite annotations and classified into chemical families [43]. Out of
the 74 annotated significantly enriched LC-MS/MS metabolites in this
study, 15 were automatically annotated via GNPS, with cosine scores
ranging from 0.71-0.97; the rest were annotated manually or only at the
family level based on neighboring nodes, and all annotations were
manually examined. For the GC-MS data, the top 5% of loadings included
55 peak features, 25 of which were significantly associated with
mammalian order, diet, or gut morphology (Supplementary Table S2). An
additional 7 features were manually removed as suspected artifacts due to
the sample storage in 10% glycerol, based on their similar identical
distribution patterns across samples and annotations as glycerol-related
compounds, resulting in a final list of 18 differential peak features, 14 of
which could be annotated. The annotations in this study were not
conclusively verified, for example with a commercial standard, and are
therefore considered level 3 annotations based on the Metabolomics
Standards Initiative [61].

RESULTS

Mammalian metabolomes mirror microbiomes and
demonstrate a strong phylosymbiotic signal

Under an assumption of functionally redundant microbial commu-
nities, we would expect that the metabolomes would be similar
across fecal samples despite their diverse taxonomies. However, this
hypothesis was rejected, as we found the opposite: mammalian
metabolomes closely mirrored microbiome composition (Fig. 1A, top).
The microbial community beta diversity was compared across
samples using a principal coordinate analysis (PCoA), in order to
compare the dissimilarity of the microbial composition based on
Bray—Curtis dissimilarity (additional metrics showed similar trends,
Supplementary Fig. S5). The microbial composition was found to be
highly correlated to the liquid chromatography tandem mass
spectrometry (LC-MS/MS) metabolome, as measured by a Mantel
test using a Pearson correlation (r=0.67, p=0.0001) as well as by
comparing the hierarchical clustering of all samples using a
tanglegram (Pearson correlation = 0.66) (Supplementary Fig. S7).
The gas chromatography mass spectrometry (GC-MS) metabolome
was less correlated with both the 16S rRNA gene amplicon
sequencing data (r=0.27, p=0.0001; tanglegram correlation =
0.21) and the LC-MS/MS data (r=0.56, p=0.0001; tanglegram
correlation =0.26) (Supplementary Fig. S7). Differences between
these two methods of analysis (LC-MS/MS and GC-MS) are expected,
as they target different classes of metabolites. The Mantel tests yield
similar results when repeated with five random subsets of the
samples with fewer maximum representatives per species (n=1,n <
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2-5), as well as a median sample per species (Supplementary
Table S3). For the LC-MS/MS to 16S rRNA gene amplicon sequencing
data comparisons, all subsets were highly correlated and significant (r
=0.57-0.65, p=0.0001), as well as for the LC-MS/MS to GC-MS
subset comparisons (r =0.42-0.59, p =0.0001), while for the 16S
rRNA gene amplicon sequencing data to GC-MS subset comparisons
were significantly correlated only for the n < 2-5 cases (r=0.15-19, p
=0.001-0.0001). The Mantel correlations between different data
types were in general not significant for intraspecies comparisons, as
calculated for species for which ten or more individuals were sampled
(Supplementary Table S3).

Next, we asked whether the metabolomes were associated with
host traits such as phylogeny and diet, as has been shown for the
microbiome. We performed a PERMANOVA analysis and found
that for all three datasets, the trait that explained the most
variance was the mammalian host species (R*=0.24-0.27, p =
0.001) (Table 2). Less variance was explained by dietary group
(R*=0.14-0.20, p=0.001) and by the mammalian order (R>=
0.15-0.16, p=0.001), and slightly less by the gut morphology
(R*=0.05-0.11, p=0.001). Additional factors, such as the time
elapsed since sample collection (Table 2) and sex (Supplementary
Table S4), explained very little variance and were not significant in
most datasets. Additional possible sources of variance such as
intraspecies variation accounted for less than half of the overall
variance, as measured by the residuals (R*> = 0.277-0.388). In order
to ensure that there was not an outsize effect from the species
with many individuals sampled, we repeated the PERMANOVA
analysis on five random subsets of the samples with fewer
maximum representatives per species (n=1, n<2-5) (Supple-
mentary Table S5). In general, while the n=1 and median cases
mostly lost significance, for n < 2-5 the data clustered significantly
for all factors in the 16S rRNA gene amplicon sequencing data and
LC-MS/MS subsets, and for some of the factors in the GC-MS
subsets (Supplementary Table S5). In addition to the PERMANOVA
analysis, in some cases, a clustering by host species within each
mammalian order was also evident on the PCoAs (Supplementary
Fig. S8). Notably, there was a clear difference between the
rhinoceroses and zebras for both the microbiome and the LC-MS/
MS metabolome (Fig. 1A, bottom), despite the fact that these two
species were housed and fed together in the same enclosure in
this study. Altogether, these results indicate that the mammalian
host species is the dominant factor that explains the dissimilarity
between samples.

These results led us to explore the relationships between the gut
microbial communities and metabolomes to the host phylogeny and
to measure the degree of phylosymbiosis in this dataset [7]. To this
end, we compared the topology of the microbiome and metabolome
hierarchical clustering trees to the host phylogenetic tree (Fig. 1B). For
species with multiple individuals sampled, a representative sample
was calculated using the median values for each feature. The
microbial composition tree showed the highest correlation to the host
phylogeny (Pearson correlation = 0459, Baker's Gamma Index =
0.204, and p =0.009 vs null model), closely followed by the LC-MS/
MS metabolomics data (Pearson correlation = 0.446, Baker's Gamma
Index =0.201, and p = 0.01), and lastly by the GC-MS metabolomics
data (Pearson correlation = 0.249, Baker's Gamma Index = 0.186, and
p=0.047). A similar pattern was observed in a matrix-based
comparison of the host patristic distances to each dataset: the 16S
rRNA gene amplicon sequencing data was the most correlated,
followed by the LC-MS/MS data, while the correlation to the GC-MS
data was not significant (Supplementary Table S6). These results
indicate that in addition to the phylosymbiosis previously reported
between the host phylogeny and the gut microbiome, there is a
strong degree of agreement between the host phylogeny and the gut
metabolome.

We next asked how the microbial and metabolic diversity of the
samples compared to predicted community functional profiles
based on gene annotations. In order to quantify how dissimilar
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Mammalian metabolomes mirror microbiomes, reflecting functional richness across host species. A Top, Principal coordinates
analysis (PCoA) of samples based on Bray-Curtis dissimilarity for the microbial composition (16S rRNA gene amplicon sequencing), LC-MS/MS
metabolome and GC-MS metabolome. Bottom, PCoA analysis with zebras and rhinoceroses highlighted. B Comparison of the phylogenetic
tree of the mammalian host species to the hierarchical clustering tree of samples for each data type, based on Bray-Curtis dissimilarity. Solid,
colored lines connect subtrees that match in both trees. C Comparison of the degree of dissimilarity between samples in different data types
using Bray-Curtis dissimilarity. For the boxplots, the lower and upper hinges correspond to the first and third quartiles, and outliers are not
shown. The significance was determined using one-way ANOVA analysis followed by post-hoc Tukey’s test, resulting in adjusted p values
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Table 2.
freedom, Sgs. Squares.

Df. Sums of Sqgs.
16S rRNA gene amplicon sequencing
Diet 2 5.88
Gut morphology 2 4.49
Mammalian order 2 5.53
Host species 18 12.46
Collection time 1 0.24
Residuals 75 17.49
Total 100 46.09
LC-MS/MS
Diet 2 7.04
Gut morphology 2 3.57
Mammalian order 2 461
Host species 18 7.49
Collection time 1 0.29
Residuals 75 8.80
Total 100 31.78
GC-MS
Diet 2 1.00
Gut morphology 2 0.25
Mammalian order 2 0.97
Host species 18 1.64
Collection time 1 0.04
Residuals 75 247
Total 100 6.36

samples were from one another for each type of data, we compared
the distributions of the Bray—Curtis pairwise comparisons (Fig. 1C).
The microbial composition was extremely dissimilar across samples
(median dissimilarity = 0.997). However, this diversity was lost in the
predicted functional profiles, created using PICRUSt2 [32], which
were much more similar to one another (median dissimilarity =
0.312). The two types of metabolomics data followed a similar
pattern: like the microbial communities, the LC-MS/MS metabo-
lomes were highly diverse (median dissimilarity = 0.823), while the
GC-MS metabolomes were more similar to one another (median
dissimilarity = 0.321). This difference was much greater than the
corresponding differences in the food sample data or technical
replicates, suggesting that this effect is not due to dietary
metabolites or differences in the methods of analysis (Supplemen-
tary Fig. S9), and a similar pattern was observed for intraspecies
distances (Supplementary Fig. S10). Taken together, these results
indicate that differences in microbiome composition are correlated
with differences in metabolic output, providing evidence for
functional diversity as opposed to functional redundancy.

Differences in LC-MS/MS metabolomes are driven by diverse
metabolite classes

After observing that host phylogeny is correlated to metabolome
composition, we next asked which specific metabolites are driving
these differences. In order to find differential peak features
likely to contribute to differences between animal groups, we
performed a principal components analysis (PCA) and extracted
the top percentiles of the loadings, which contributed the most to
the separation on the first two PCs (Supplementary Fig. S6). These
features were tested for significant associations with the host
species, mammalian orders, diets, and gut morphology using an
indicator species analysis [60], adjusting the p values for multiple
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PERMANOVA (Adonis) results based on Bray—Curtis dissimilarity. Samples n = 101. Permutations n = 999. Abbreviations: Df. Degrees of

PseudoF R?

Mean Sqs. p value
2.94 12.61 0.13 0.001***
2.24 9.62 0.10 0.001***
2.77 11.86 0.12 0.001%**
0.69 297 0.27 0.0071***
0.24 1.01 0.01 0.42
0.23 0.38

1
3.52 30.01 0.22 0.001***
1.78 15.21 0.1 0.001***
2.30 19.64 0.14 0.001***
0.42 3.55 0.24 0.001%**
0.29 2.46 0.01 0.005**
0.12 0.28

1
0.50 15.11 0.16 0.001***
0.12 3.78 0.04 0.001***
0.49 14.75 0.15 0.001***
0.09 2.77 0.26 0.001***
0.04 1.07 0.01 0.36
0.03 0.39

comparisons using the Bonferroni correction. Next, we used the
GNPS platform to assign putative structures based on spectral
matching, which are level 3 annotations based on the Metabo-
lomics Standards Initiative [61] (Fig. 2A, Supplementary Fig. S11).
Out of 230 significantly differential peak features detected in the
LC-MS/MS data, 74 could be assigned metabolite annotations and
classified into chemical families [43] (Fig. 2B, Supplementary
Fig. S12, and Supplementary Table S2). Some of the differential
metabolites could be linked to the interface between the host and
the microbial community, such as microbial modifications of
dietary or host compounds. However, it is difficult to connect
these metabolites to specific gut microbial pathways, as many of
the specific enzymes and modifications involved remain unknown
and unannotated.

Almost half of the differential metabolites found in the LC-MS/
MS analysis belonged to one group of closely related triterpenoids
and were significantly enriched in the Artiodactyla (sheep and
goat) and Perissodactyla orders (zebra, rhinoceros and donkey).
These 37 compounds, classified as tetracyclic triterpenoids, had
very similar MS/MS spectra and clustered in a single molecular
network, indicating that they are all closely structurally related
(Fig. 2B), with structural variations corresponding to gains and
losses of double bonds, oxygen, and hydroxyl groups, as well as
desulfation (Supplementary Table S7). Six dietary compounds
found in the food sample analysis also mapped to this molecular
network (Fig. 2B), all of which were detected in components of
these species’ diets such as straw and pellets and some of which
appear to be depleted in feces (Supplementary Fig. S13).
Interestingly, these compounds did not appear in the elephants,
even though they also consume herbivore pellets and wheat
straw. Altogether, these results suggest that these triterpenoid
compounds were likely the result of microbial modification of

SPRINGER NATURE



R. Gregor et al.

1268

A L] @cenps

Fragmentation
spectra
(MS/MS or El)

Molecular networking
Spectral library search

B o ©
& ° o & &
°¢° 6‘6 \‘,v o‘& RS b& q& é,\&
3 & & »‘5 & & eQ\ @
ol <8 AR\ I & ¢ N '
V& 2 8 £ 1 ' 1 [ 1 1 ' —
Gibbon A []E! = — - = 300
Capuchin A==l wem — - ==
= O
Mandrill A E - - - - . — - | §|:|
= -
= | =
Chimpanzee & — pE-E R s
— - - LI} -
Gorilla o DE o - - nm §|:|
Sheep @ -
Goat @ !E - 3 !
= . -
Rhinoceros @ =
b=
=
I
Zebra @ i = R
-
Donkey ¢ M E .=
As. elephant @ IE = - ;I
- -
Afr. elephant o [IE EL |
Coati A g I
Brown bear A I ; I
Black bear Amic - am
Tiger @EAC| =g - am
" Llog = [lE - El |
B mC FI ]
= at;If @ | = 2m
Wildcat @ [E| "8 == El |
Hyena @ === i
Order
Triterpenoids Primates
Wheat ® Artiodactyla
v « straw ® Perissodactyla
o o ® Proboscidea
[ & _eve PY o, . Ho . e Carnivora
ooe Rent '
[ . [0} ot o Diet _
Oat straw H o g 9 = W Carnivores
® e Y . R= o o N ® Herbivores
XY [ ] ° v Cyolic H h A Omnivores
PT" X <Ol 3-hydroxymelatonin Stercobilin Urobilin
PR e.s * ., » Normalized
° ® " . abundance
¥ ° ° — 1.000
o ® Bile acids 0.250
_ o 0.063
v Dietary m/z range Deoxycholic OH 0.016
Fecal 527.265 Mooyl | acid Taurohyo 0.004
° : f amino acids - Q
oyt %
Perissodactyla HO™ 5 acid  hn

g ©
N\)LOH
(o] '\©
N-butryl
phenyalanine

Isolithocholic

acid

plant dietary compounds that are specific to digestive strategies
and hosts.

The bile acid class showed wide variation in its distribution
across host species, with a strong dietary and phylogenetic signal
(Fig. 2B). Bile salts are host-synthesized sterol-based acids, often
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found coupled to glycine or taurine, that aid in digestion by
solubilizing lipids as well as perform important roles in host
signaling. By the time bile acids reach the colon, nearly 100% have
been modified by gut microbiota via established mechanisms of
dehydrogenation, dehydroxylation, and amino acid cleavage
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Fig. 2 Differences in LC-MS/MS metabolomes are driven by diverse metabolite classes. A Molecular networking workflow to classify and
putatively identify metabolites. Fragmentation patterns based on MS/MS in the LC-MS/MS dataset or electron ionization (El) in the GC-MS
dataset are organized based on spectral similarity scores. Spectra are also compared to library datasets for identification. Compounds are
represented by nodes in a network, with edges connecting nodes that pass a certain spectral similarity score threshold. B Out of 230
metabolites significantly associated with a host characteristic, 74 could be putatively identified and classified into eight chemical families.
Heatmap shows normalized abundance of peak features, with white corresponding to not detected. Examples of structures for different
classes are shown on the bottom right. (Unsat. LCFA = unsaturated long-chain fatty acids; N-acyl AA = N-acyl amino acids). Bottom left, all of
the herbivore-enriched triterpenoids belong to one molecular network, putatively identified as tetracyclic triterpenoids. Six plant dietary
compounds showed high spectral similarity to the fecal compounds (brown arrowheads).

[63, 64], as well as a recently reported novel amino acid
conjugation reaction [65]. Eleven of the fifteen bile acid analogues
putatively identified in this dataset were enriched in carnivores,
including three known microbially modified analogues (Fig. 2B),
while others were enriched in other groups including the Primates
and Artiodactyla orders. The structural variation between analo-
gues is likely due to microbial modifications, as well as the
diversification of host synthesis pathways over the course of
mammalian evolution [66, 67]. Indeed, none of the significantly
differential bile acids were enriched in the evolutionarily distant
Proboscidea order of elephants, which are reported to primarily
produce C-27 bile alcohols [68].

GC metabolomics data highlights differences in microbial
degradation pathways

For the GC-MS metabolomics data, the differential metabolites
covered a range of polar metabolites, including a number of
known microbial degradation products as described below. Out of
18 candidate differential peak features based on the PCA loadings
(Supplementary Fig. S6), we were able to putatively annotate or
classify 14 using GNPS for GC-MS [46] (Supplementary Table S2).
Additionally, we performed a targeted analysis of six short-chain
fatty acids (SCFA) commonly found in the gut environment, using
GC-FID (gas chromatography-flame ionization detector). In con-
trast to the LC-MS/MS analysis, here differences between animal
species were less stark, with most of the differential metabolites
shared across most samples with differences in abundance or
ratios (Supplementary Fig. S14). Since primary metabolic pathways
are much better documented than the specialized metabolism,
most of the differential metabolites in the GC-MS dataset could
be linked to known microbial enzymes or pathways.

An important indication of microbial fermentation activity is the
average molar ratio of acetate to propionate to butyrate, typically
cited as ranging from 75:15:10 to 40:40:20 [69]. The breakdown of
dietary precursors such as sugars leads to the formation of SCFA,
the final output products of many microbial metabolic processes.
The absolute concentration of SCFA is tightly linked to gut
morphology, with faster gut transit times such as in the simple gut
systems and especially Carnivora leading to less absorption and
therefore higher fecal levels [70], as is seen for most of the SCFA
measured here (Supplementary Fig. S15). Here, while the
proportions of acetate to propionate to butyrate in the samples
were in general close to the reported range, the omnivorous
Carnivora species (bears and coatis) exhibited strikingly lower
relative propionate levels (~73:7:21) (Fig. 3A, Supplementary
Fig. S15, Supplementary Table S8). Propionate can be synthesized
through three distinct microbial pathways in the gut, via the
precursors succinate, propane-1,2-diol, or lactate [71]. Indeed, two
of these precursors, lactate and succinate, exhibit elevated levels
in the omnivorous Carnivora (Fig. 3B). Previous work in raccoons
[72] and bears [73, 74] noted the presence of fecal lactate as well,
and it was suggested that fecal lactate is characteristic of the
order Carnivora due to their fast gut transit time, resulting in
metabolites being excreted too quickly to be absorbed by the
host [74]. However, here the levels of both lactate and succinate
were higher in the omnivorous Carnivora than in carnivorous
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Carnivora, despite their similar gut morphologies and the even
faster gut transit times in carnivores. This indicates that the
elevated lactate levels are more likely a function of the
composition of the microbial community than of gut morphol-
ogy. Together, the low propionate levels and elevated levels of
lactate and succinate suggest that the omnivorous Carnivora gut
microbial communities may be less enriched in propionate-
forming pathways. The gene annotations of the microbial data
further strengthen this hypothesis, as propionate CoA-transferase,
the last enzyme in these pathways, based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database [75], is
predicted to have lower levels in the omnivorous Carnivora
microbiome (Supplementary Fig. S16).

The microbial decarboxylation of nitrogen-rich amino acids
results in the production of a number of key biogenic amines,
including putrescine, cadaverine, and 5-aminovalerate, all of
which were elevated in this dataset in the Carnivora order (Fig. 3C,
Supplementary Fig. S17). Since dietary biogenic amines are quickly
absorbed by the host in the small intestine [76, 77], biogenic
amines found in the feces are generally attributed to gut microbial
activity [78]. The synthesis of these compounds has been shown
to involve multiple biosynthetic pathways shared across different
microbes that exchange intermediates and products between
them [79]. Cadaverine, a product of lysine degradation, is further
converted to 5-aminovalerate (Fig. 3C), while putrescine is formed
from arginine or ornithine degradation. When these substrates
were mapped onto KEGG pathways, we found that the omnivore
microbiomes were predicted to contain significantly higher levels
of three key enzymes belonging to the lysine degradation
pathway, as well as two enzymes in the putrescine formation
pathway via ornithine (Supplementary Fig. S17). Since Carnivora
consume protein-rich diets, it is likely that their microbiomes are
especially adapted to utilizing these amino acid substrates, as
proposed by a previous mammalian gut metagenomics study [14].

In the Perissodactyla and Proboscidea orders, 3-hydroxypheny-
lacetate, a degradation product of plant polyphenolic flavonoids,
was enriched compared to the Carnivora (Fig. 3D). This metabolite
is the primary microbial degradation product of quercetin (de-
glycosolated rutin) [80-82] and proanthocyanidins [83]. This
degradation process has been demonstrated in vitro by the
incubation of the parent compounds with fecal slurries [84], and a
handful of rumen and fecal isolate strains have been shown to
degrade quercetin into 3, 4-dihydroxyphenylacetate, which can
then be dehydroxylated to form 3-hydroxyphenylacetate [85, 86].
Recently, a gut dopamine dehydroxylase has been reported in
Eggerthella lenta [87], and a follow-up study characterizing related
catechol dehydroxylases showed that the conversion to
3-hydroxyphenylacetate is performed by a number of strains,
including E. lenta and two Gordonibacter strains [88]. As shown
above, in the LC-MS/MS metabolomics analysis, two classes of
plant-derived compounds, triterpenoids and flavonoids, were
enriched in the Perissodactyla and Artiodactyla (Fig. 2B). The
presence of 3-hydroxyphenylacetate in the GC-MS metabolomics
data is an indication that these herbivorous microbiomes may
indeed be able to degrade these plant-derived metabolites.
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Fig. 3 GC-MS metabolomics data highlights differences in microbial degradation pathways. A Different animal groups exhibited differing
ratios of acetate, propionate, and butyrate. B Top, formation of propionate via succinate or lactate. Bottom, lactate and succinate levels were
significantly higher in the omnivorous members of Carnivora as compared to the other groups, as measured by GC-MS. C Three biogenic amines
were found to be significantly enriched in Carnivora. D 3-Hydroxyphenylacetate was significantly enriched in Perissodactyla and Proboscidea as
compared to Carnivora. In all panels, all data points are shown, overlaid on a boxplot with the lower and upper hinges corresponding to the first and
third quartiles. The significance was determined using one-way ANOVA analysis followed by post-hoc Tukey’s test, resulting in adjusted p values
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DISCUSSION

A better understanding of the diversity of microbes inhabiting the
mammalian gut will address fundamental questions regarding the
coexistence between mammals and their microbes [89]. The
question of functional redundancy is especially central: it is clear
that mammalian microbiomes are diverse and that they distinc-
tively correspond to their mammalian hosts, but do these
taxonomic differences suggest host-specific functionality? Here,
we examined the metabolic content of mammalian gut micro-
biomes as a direct window into ecosystem function, using a dual
metabolomics platform alongside 16S rRNA gene amplicon
sequencing. We found that gut metabolomes closely mirrored
microbial composition, especially for the LC-MS/MS metabolomics
data (Fig. 1A). This indicates that these microbial communities
differ on the chemical level, suggesting that differences in
microbial taxonomy lead to differences in function. Further
evidence for this conclusion is the observation that related host
species with distinct microbiomes also had distinct metabolomes,
such as in the case of the zebras and rhinoceroses that were
housed and fed together in the same enclosure. This strongly
suggests that the differences in the metabolomes are due to
differences in microbial metabolism, as opposed to gut
morphology or diet. These results are supported by the recent
finding that almost half of the metabolites detected in mouse
stool did not appear in samples from germ-free mice, and were
therefore likely microbial in origin [65]. However, an important
caveat to this study is that it remains unclear how differences in
mammalian host physiology and metabolism contribute to this
variance: although zebras and rhinoceroses are both members
of the order Perissodactyla, they are estimated to have diverged
approximately 54 million years ago [90], ample time for
differences to arise which could lead to differing intestinal
metabolites. An additional caveat is that all samples in this study
were collected from captive animals, from one zoological center.
Previous studies on paired samples from wild and captive
animals [91, 92] have shown that captivity has varying effects on
the microbiome in different species, while possible effects on the
metabolome remain unknown.

The mammalian gut metabolomes exhibited a strong degree of
phylosymbiosis, with the relationships between the metabolomes
closely recapitulating the phylogenetic tree of their mammalian
hosts (Fig. 1B). It has been previously shown that phylosymbiosis
can affect the function and phenotype of the ecosystem:,
transplanting gut microbiomes between closely related mouse
species caused a loss of fitness, measured by a decrease in
digestibility of dry food [12]. This loss of fitness indicates that even
these similar microbial communities from very closely related
species were not in fact functionally redundant. In the current
study, the finding that the gut metabolome closely mirrored the
mammalian host phylogeny is indicative of such functional
phylosymbiosis, and to the best of our knowledge, this is the
first time that this phenomenon has been shown through analysis
of metabolomics data. However, some of this signal may be due to
host metabolites, which also could have a strong host phyloge-
netic signal. The complex interplay between host and microbial
metabolites in the gut ecosystem makes it very difficult to
differentiate between the two in fecal metabolomics studies, and
determining the likely source of metabolites remains an open
challenge in the field.

When we examined the metabolic dissimilarity across samples
based on predicted functional annotations, we found that the
degree of dissimilarity between samples in the LC-MS/MS
metabolomics data was much greater than predicted by
functional annotation, and was comparable to the dissimilarity
of the microbial composition (Fig. 1C). In contrast, the dissimilarity
between samples in the GC-MS metabolomics data was lower,
closer to the levels based on predicted functional annotations
(Fig. 1Q). The LC-MS/MS metabolomics platform detects semi-
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polar metabolites and lipids up to 1500 Da and is therefore likely
to detect rare, specialized metabolites that are more likely to be
specific to certain microbial groups. On the other hand, the
GC-MS metabolomics platform detects small, polar metabolites,
including many of the fundamental building blocks of primary
metabolism, for example, amino acids, SCFA, and sugars, that are
common across most organisms. Therefore, it is not surprising that
the GC-MS data showed a relatively low dissimilarity across
samples, possibly reflecting a convergence of core metabolic
functions. The predicted functional annotations are also likely to
cover more abundant, shared functions, such as those in primary
metabolism [16], and they showed a similar low dissimilarity
across samples, as has been previously shown [21]. What the
functional annotation may miss, however, are more rare functions
involving specialized metabolites, which were indeed diverse and
different across microbial species, as we found in the analysis of
the LC-MS/MS metabolomics data. This is especially true for non-
human mammalian microbiomes, which are less thoroughly
studied and harder to functionally annotate than human
microbiome samples, especially for predicted profiles extrapolated
from 16S rRNA gene amplicon sequencing [32].

A key advantage of examining metabolic function through an
untargeted metabolomics approach is that it is possible to quantify
overall chemical diversity, thus avoiding biases stemming from
relying on what is annotated. Additionally, this work highlights the
importance of casting as wide a net as possible in metabolomics
analysis, as the differences between the GC-MS and LC-MS/MS
metabolomics datasets illustrate. However, an important caveat is
that the degree of dissimilarity between samples for taxonomy has
a clear dependence on the scale examined (e.g., samples are more
dissimilar on the strain level than if categorized at the genus or
family level) [21]. The metabolomics data here is measured at the
single metabolite level and is therefore at a very fine resolution, but
the same would presumably hold true at the chemical level if
untargeted, unannotated metabolomics data could be accurately
grouped into meaningful chemical families. Progress has been
recently made in developing new chemical grouping algorithms
that may make such analyses possible in the future [93, 94].

Next, we examined the metabolites driving the differences
between animal gut metabolomes. For the LC-MS/MS metabo-
lomics data, out of a total of over 200 metabolites enriched in
different animal groups, we were able to putatively identify 74
metabolites using molecular networking (Fig. 2A, B). Some of
these molecules belong to the interface between the host and the
microbial community, including microbial modifications of host
compounds such as bile acids and of dietary compounds such as
triterpenoids. In the GC-MS metabolomics data, 14 out of 18
differential metabolites could be annotated. Since primary
metabolism pathways are better annotated than those involved
in specialized metabolism, most of these metabolites could be
putatively linked to specific microbial pathways. The differential
metabolites included the products of different microbial degrada-
tion pathways, such as fermentation products like SCFA, lactate,
and succinate (Fig. 3A, B). We also observed degradation products
of substrates expected to be enriched in different dietary groups,
including biogenic amines resulting from amino acid decarbox-
ylation in Carnivora (Fig. 3C), and an aromatic product of plant
polyphenol degradation in Perissodactyla and Proboscidea (Fig.
3D). These results are in agreement with a previous mammalian
metagenomics study which observed the enrichment of amino
acid degradation enzymes in carnivores, and specifically predicted
elevated succinate production, a prediction verified by the data
shown here [14]. These findings support the hypothesis that these
microbial communities are indeed adapted to their mammalian
host environments on the functional level. However, an important
limitation of this study is that the majority of peak features found
here could not be annotated or linked to any specific host or
microbial pathway, and even those that could be putatively
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identified were not conclusively verified, for example by compar-
ing to a commercial standard. Future studies are needed to
validate and expand upon these results, for example using
targeted metabolomics analysis for specific differential metabo-
lites together with metagenomics and/or transcriptomics data, as
well as in vitro experiments to validate specific chemical
transformations in fecal communities.

A possible explanation for the enrichment of certain metabolites
is that over the course of evolutionary history, microbes have
diversified due to pressures stemming from both the host and the
microbial community, sometimes resulting in beneficial interactions
between the two [11]. Microbial utilization of certain classes of
indigestible host dietary compounds has been documented for
example in the enrichment of specialized seaweed-degrading
enzymes in the microbiota of Japanese individuals [95, 96], and in
microbial catabolism of plant-derived toxins [97] such as the
reduction of the drug digoxin by E. lenta [98, 99]. Here, we observe
probable products of microbial catabolism of plant flavonoids,
resulting in the enrichment of a phenolic breakdown product, as
well as modifications of plant triterpenoid derivatives. Some
microbial metabolites directly affect the host, as has been
extensively documented for microbial fermentation products such
as the SCFA highlighted here, especially propionate and butyrate,
which are absorbed by the host and are known to affect human
health [71, 100]. The microbial modifications of bile acids discussed
here are also critical to host health, affecting host bile acid regulation
as well as the incidence of liver cancer and the triggering of
microbial pathogenicity [101, 102]. New host-microbe metabolic
interactions are being discovered for lipids as well: two recent
studies reported that microbes perform extensive conversions of
dietary sphinganine to sphingolipids in the gut [103] and that such
microbial sphingolipids are then incorporated in host signaling
pathways and affect ceramide metabolism [104]. Overall, these
findings lay the groundwork for further research into the complex
interplay of host and microbe metabolic exchange.

In summary, in this study, we found that mammalian
metabolomes are chemically diverse and strongly linked to
microbiome composition, and that metabolome composition is
further correlated with the phylogeny of the mammalian host. We
show that mammalian gut microbiomes do not exhibit high levels
of functional redundancy on the level of the metabolome. Specific
metabolites enriched in different host species were found to be
associated with the host-microbe interface, including the mod-
ification and degradation of host and dietary compounds. These
findings represent a first step towards unraveling the chemical
ecology of the mammalian microbiome, and towards a better
understanding of the origin and relevance of the vast gut
microbial diversity found across mammals.
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