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Abstract
Objectives  In this proof of concept study, a deep learning–based method for automatic analysis of digital mammograms (DM) 
as a tool to aid in assessment of neoadjuvant chemotherapy (NACT) treatment response in breast cancer (BC) was examined.
Methods  Baseline DM from 453 patients receiving NACT between 2005 and 2019 were included in the study cohort. A deep 
learning system, using the aforementioned baseline DM, was developed to predict pathological complete response (pCR) in 
the surgical specimen after completion of NACT. Two image patches, one extracted around the detected tumour and the other 
from the corresponding position in the reference image, were fed into a classification network. For training and validation, 
1485 images obtained from 400 patients were used, and the model was ultimately applied to a test set consisting of 53 patients.
Results  A total of 95 patients (21%) achieved pCR. The median patient age was 52.5 years (interquartile range 43.7–62.1), 
and 255 (56%) were premenopausal. The artificial intelligence (AI) model predicted the pCR as represented by the area 
under the curve of 0.71 (95% confidence interval 0.53–0.90; p = 0.035). The sensitivity was 46% at a fixed specificity of 90%.
Conclusions  Our study describes an AI platform using baseline DM to predict BC patients’ responses to NACT. The initial 
AI performance indicated the potential to aid in clinical decision-making. In order to continue exploring the clinical utility 
of AI in predicting responses to NACT for BC, further research, including refining the methodology and a larger sample 
size, is warranted.
Key Points   
• We aimed to answer the following question: Prior to initiation of neoadjuvant chemotherapy, can artificial intelligence  
   (AI) applied to digital mammograms (DM) predict breast tumour response?
• DMs contain information that AI can make use of for predicting pathological complete (pCR) response after neoadjuvant  
   chemotherapy for breast cancer.
• By developing an AI system designed to focus on relevant parts of the DM, fully automatic pCR prediction can be done  
   well enough to potentially aid in clinical decision-making.
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NACT​	� Neoadjuvant chemotherapy
pCR	� Pathological complete response
PET/CT	� Positron emission tomography/computed 

tomography
ROC	� Receiver operating characteristics
US	� Ultrasound

Introduction

Neoadjuvant chemotherapy (NACT) for breast cancer (BC) 
is increasingly used for patients with early-stage disease 
who are eligible for chemotherapy [1]. Advantages include 
assessment of treatment response with the option to continu-
ously alter the systemic regime and provide an individu-
alised prognosis post-NACT. From a surgical perspective, 
NACT enables less invasive surgery, both in terms of caus-
ing tumour shrinkage that would permit breast-conserving 
surgery and lowering the rates of axillary dissections due to 
recent treatment changes with the use of post-NACT sentinel 
lymph node biopsies [2, 3]. In addition, the recently intro-
duced concept of salvage adjuvant chemotherapy for patients 
who do not achieve pathological complete response (pCR) 
further utilises the NACT setting [4–6].

In a clinical routine, assessment of disease stage (T- 
and N-stage) for BC patients undergoing NACT is based 
on imaging of the breast and the axilla. Common imaging 
includes digital mammograms (DM) and axillary ultra-
sound (US), whereas breast US, magnetic resonance imag-
ing (MRI) and/or positron emission tomography/computed 
tomography (PET/CT) are less often used [7]. Imaging 
can predict a high degree of disease progression but has 
discouraging results when predicting pCR, a surrogate for 
survival [8, 9]. In clinical practice and research, different 
approaches can be used to monitor tumour responses dur-
ing NACT: (1) clinical exam (most commonly used), (2) 
dynamic changes in tumour size as measured by imaging, (3) 
sequential biopsy of the tumour to evaluate change in bio-
markers (often proliferation marker Ki67) and (4) molecular 
biomarkers in blood samples drawn over the time course of 
treatment [10, 11].

Previously, we investigated the impact of breast density 
on treatment response prediction as a means to extract addi-
tional data from the clinical DM but did not obtain any con-
clusive results by using this method [12, 13]. Going beyond 
a mere value of breast density, evidence that certain breast 
parenchymal patterns and tumour appearances, which could 
potentially have an impact on treatment response, are associ-
ated with the breast tissue milieu have been demonstrated 
[14, 15].

In this proof of concept study [16], we introduce a deep 
learning–based method for automatic DM analysis as a tool 
to aid in treatment response assessment. Convolutional 

neural networks (CNNs) have shown outstanding perfor-
mance in image recognition tasks as this process automati-
cally learns feature representation in a general manner from 
pixels in medical images according to corresponding class 
annotations [17]. Our hypothesis is that treatment response 
is affected by breast parenchymal patterns and tumour 
appearances as reflected by different grey-level pixel pres-
entations or the features of images that can be deciphered 
using a CNN. The aim of this work was to develop a DM-
based CNN model that will provide the discriminative power 
of pCR. The clinical question at hand can be asked: ‘Prior 
to initiation of neoadjuvant chemotherapy, can we predict 
tumour responses utilising artificial intelligence (AI) in 
DM?’.

Materials and methods

Cohort

The cohort consisted of female BC patients undergoing 
NACT (chemotherapy, and in cases of human epidermal 
growth factor receptor 2 [HER2] positivity, combined with 
HER2 blockade) for BC in Sweden from 2005 to 2019. A 
total of 493 patients were eligible for the AI model. The 
reasons for exclusion (50 patients) are pictured in Fig. 1. 
The study cohort (453 patients) consisted of a retrospective 
(N = 258, treatment period 2005–2016) and a prospective 
cohort (N = 195, treatment period 2014–2019) as previously 
described [18]. The inclusion criteria for both cohorts were 
female patients treated with NACT undergoing the intended 
breast surgery. Medical charts and study-specific patient 
questionnaires (filled out upon diagnosis) were reviewed 
and data on patients’ characteristics were retrieved.

In total, 90% (N = 408) of the patients received a chemo-
therapy regimen consisting of a combination of epirubicin 
and cyclophosphamide (EC)/fluorouracil, epirubicin and 
cyclophosphamide (FEC) and docetaxel/paclitaxel. Addi-
tionally, 8% (N = 38) of the patients received taxane-only 
NACT regimen and a total of 1% (N = 4) of the patients 
received FEC/EC only. The remainder 1% (N = 3) received 
various other regimens. For the patients with HER2 posi-
tive tumours (N = 134), N = 89 (66%) received trastuzumab, 
N = 43 (32%) received trastuzumab and pertuzumab, and the 
remaining two (1%) received no HER2 targeted treatment.

Information about tumour pathology from the surgical 
specimen following NACT was derived from clinical-path-
ological reports. In accordance with national guidelines, 
tumour hormone receptor positivity was defined accord-
ing to staining positive in > 10% of the tumour cells with 
immunohistochemistry (IHC), and HER2 status was defined 
as either 3 + with IHC and/or amplified with fluorescence 
in situ hybridisation [11]. The proliferation marker Ki67 
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(reported as a percentage from 0 to 100%), was considered 
highly proliferative when Ki67 > 20%, and otherwise low 
proliferative [11]. The following definition for pCR was 
used: the absence of any residual invasive cancer in the 
resected breast after surgery as well as all sampled regional 
lymph nodes following completion of NACT [19].

All women with any baseline DMs were included in 
this study. From the eligible patients (N = 493), drawn ran-
domly while maintaining the cohort pCR ratio, a test set 
of 60 (12%) patients were set aside for final assessment. 
The development and execution of the AI model led to 
the exclusion of 40 (8%) patients; 23 (5%) were excluded 
because only one breast had been imaged and 17 (3%) were 
excluded due to technical errors of which 15 (3%) were for-
matted incorrectly and two (0.4%) had corrupt files (Fig. 1). 
Four-hundred (88%) patients were used for model train-
ing and validation in an 80/20 ratio, and 53 (12%) for final 
assessment (of the original N = 60 in the reserved test set) 
(Table 1). This study was designed in accordance with the 
Strengthening of the Reporting of Observational Studies 
(STROBE) guidelines [20].

All procedures performed in studies involving human 
participants were in accordance with the ethical standards 
of the institutional and/or national research committee, and 
with the 1964 Helsinki declaration and its later amendments 
or comparable ethical standards. The study was approved by 
the Regional Ethics Committee in Lund, Sweden (commit-
tee’s reference number: 2014/13, 2014/521 and 2016/521).

Imaging

DM were retrieved from local picture archiving system 
(Sectra AB) and/or prospectively stored on a local server. 
The 2514 processed DM (training N = 1796 DM, validation 
N = 422 DM and test set N = 296 DM) selected for analysis 

originated from the following vendors: (1) GE Health-
care (31%), (2) Philips Healthcare (16%) and (3) Siemens 
Healthineers (52%). All patients had sets of either six or four 
images with an average of 5.5 images acquired from both 
breasts and all available views (cranio-caudal and medio-
lateral oblique for all patients and additional lateral-medial 
views in the set of six images). The important image param-
eters are collected from the standardised meta-information, 
i.e. Digital Imaging and Communications in Medicine 
(DICOM) tags. When this was not standardised, we encoun-
tered technical issues as in N = 15 cases. All operations are 
invariant to any remaining differences.

Neural networks

The deep learning system used to predict pCR in DM con-
sists of two main steps: (1) a network for detection tumours 
is first applied to the DM and (2) image patches are extracted 
around the detected tumour in addition to the same posi-
tion in the reference image (contralateral cancer-free breast). 
The two image patches are fed into a classification network 
(Fig. 2) that predicted pCR. By extracting smaller image 
patches of interest, the classification network is forced to 
make predictions based on what we hypothesised to be rel-
evant information instead of overfitting the information to 
irrelevant input.

For detection, a detection transformer (DETR) model 
was selected [21]. The model uses the whole DM as input 
and predicts the location and size of tumours in the form 
of bounding boxes. Apart from changing the number of 
output classes to one tumour, we followed the same train-
ing and inference procedures as described in the original 
paper [21]. For training, we used the publicly available 
Curated Breast Imaging Subset of DDSM (CBIS-DDSM) 
consisting of scanned film mammography studies paired 

Fig. 1   Patient flow chart

No available images N=1

Included in the study cohort N=453

Included in the 
NeoDense-study 

N=200

Included in the 
NeoMon-study 

N=302

Excluded due to only unilateral mammogram N=23
Excluded due to technical errors N=17 (whereof N=15 
incompa�bly forma�ed and N=2 corrupted files) 

Excluded due to missing 
images N=8

Eligible for AI model 
N=493

Test 
N=53

Training/valida�on  N=400
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with bounding boxes of tumours [22]. In total, we used 
1485 images during training and validation of the detec-
tion network. Before being input to the model, histogram 
equalisation was performed on the images. This step 
was crucial for allowing the detection model to perform 
well on the images in the cohort presented in this paper. 
The equalisation was done to increase the contrast in the 
images as well as decrease differences between images 
from different vendors. This is done by using the normal-
ised histogram of the original image intensities to remap 
the pixel intensities [23]. The resulting image will have a 

uniform distribution of image intensities. Equalisation was 
done on the range of intensities available in the original 
image, excluding zero.

The classification network consists of two paral-
lel pathways in which the first one processes the image 
patch extracted from the detected tumour, and the sec-
ond one processes the patch extracted from the reference 
image. The two pathways have the same base structures 
as ResNet18 [24] with a strided convolution at the end, 
which reduces the spatial size of the feature maps to 1 × 1. 
The features from the two pathways are then concatenated 

Table 1   Patient and tumour characteristics at baseline (whole cohort and stratified according to pathological complete response [pCR] status)

pCR, pathological complete response; BMI, body mass index; HER2, human epidermal growth factor receptor 2; IQR, interquartile range

All pCR Non-pCR

Total, N 453 95 (21.0%) 358 (79.0%)
Age (years) median (IQR) 52.5 (43.7–62.1) 53.1 (43.9–62.6) 52.4 (43.7–62.1)
BMI (kg/m2), median (IQR) 25 (23–29) 25 (23–29) 25 (23–29)
Menopausal status Premenopausal 255 (56.3%) 52 (54.7%) 203 (56.7%)

Postmenopausal 198 (43.7%) 43 (45.3%) 155 (43.3%)
Any births No children 62 (13.7%) 10 (10.5%) 52 (14.5%)

1 or more children 390 (86.1%) 85 (89.5%) 305 (85.2%)
Missing 1 (0.2%) 0 (0.0%) 1 (0.3%)

Ever hormone replacement therapy Yes 57 (12.6%) 14 (14.7%) 43 (12.0%)
No 393 (86.8%) 81 (85.3%) 312 (87.2%)
Missing 3 (0.7%) 0 (0.0%) 3 (0.8%)

Mammographic density, BI-RADS A 22 (4.9%) 7 (7.4%) 15 (4.2%)
B 174 (39.1%) 40 (42.1%) 137 (38.3%)
C 205 (45.3%) 39 (41.1%) 166 (46.4%)
D 49 (10.8%) 9 (9.5%) 40 (11.2%)

Tumour size (mm), median (IQR) 30.0 (22.0–40.0) 26.5 (20.0–34.5) 31.5 (22.5–40.0)
Oestrogen receptor Positive (> 10%) 274 (60.5%) 24 (25.3%) 250 (69.8%)

Negative (≤ 10%) 175 (38.6%) 70 (73.7%) 105 (29.3%)
Missing 4 (0.9%) 1 (1.1%) 3 (0.8%)

Progesterone receptor Positive (> 10%) 224 (49.4%) 15 (15.8%) 209 (58.4%)
Negative (≤ 10%) 224 (49.4%) 79 (83.2%) 145 (40.5%)
Missing 5 (1.1%) 1 (1.1%) 4 (1.1%)

HER2 receptor Positive 134 (29.6%) 51 (53.7%) 83 (23.2%)
Negative 310 (68.4%) 42 (44.2%) 268 (74.9%)
Missing 9 (2.0%) 2 (2.1%) 7 (2.0%)

Proliferation (Ki67) High (> 20%) 361 (79.7%) 82 (86.3%) 279 (77.9%)
Low (≤ 20%) 51 (11.3%) 3 (3.2%) 48 (13.4%)
Missing 41 (9.1%) 10 (10.5%) 31 (8.7%)

St. Gallen subtype Luminal A–like 45 (9.9%) 0 (0.0%) 45 (12.6%)
Luminal B–like 136 (30.0%) 7 (7.4%) 129 (36.0%)
HER2-positive 134 (29.6%) 51 (53.7%) 83 (23.2%)
Triple-negative 113 (24.9%) 34 (35.8%) 79 (22.1%)
Missing 25 (5.5%) 3 (3.2%) 22 (6.1%)

Node status Positive 307 (67.8%) 63 (66.3%) 244 (68.2%)
Negative 76 (16.8%) 23 (24.2%) 53 (14.8%)
Missing 70 (15.5%) 9 (9.5%) 61 (17.0%)
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and processed through a series of fully connected and 
dropout layers to finally output classification scores for 
pCR, and non-pCR, a visualisation of the network struc-
ture can be seen in Fig. 2.

The classification network processed the DM in the 
original resolution of 0.085 and 0.085 mm per pixel for 
Siemens and Philips systems and 0.1 and 0.1 mm per pixel 
for GE systems. The size of the image patches input was 
224 × 224 pixels. For the images in which multiple tumours 
were detected, a random one was chosen during training, 
whereas for images without detected tumours, a random 
area was selected in the foreground of the imaging areas 
within the breast contour. The training was done using 
cross-entropy loss and stochastic gradient descent with a 
learning rate 1e−3, momentum 0.9, weight decay 1e−4 and 
dropout rate of 0.5 for all dropout layers. Training was 
done for 300 epochs, and the weights from the epoch with 
lowest validation loss were used. During inference, the 
classification network was applied to all detected tumours 
averaging the output. For the final estimated patient pCR 
probability, the output for all available views was averaged.

Statistical analyses

We summarised cohort baseline characteristics for the whole 
cohort as absolute values and as percentual shares that were 
split by pCR status with pCR binary outcome. Receiver 
operating characteristics (ROC) curves were constructed, 
and a two-sided Mann–Whitney U test was used for statisti-
cal significance testing. Statistical significance was defined 
as p < 0.05.

For both descriptive and analytic statistics, IBM SPSS 
Statistics for Windows, version 26 (IBM Corp.) was used.

Results

Descriptive results

The patient and tumour characteristics of the 453 patients 
included in this study are presented in total and according 
to pCR in Table 1. A total of 95 patients (21%) achieved 
pCR. The median age was 52.5 years (interquartile range 

Fig. 2   Classification model 
architecture. Image patches 
from the detected tumour and 
corresponding position in the 
reference image were processed 
in two parallel pathways. The 
feature output from the two 
pathways was concatenated and 
processed by a series of fully 
connected layers and a final 
soft-max layer. The numbers 
shown in the image denotes the 
size of the feature dimension
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[IQR] 43.7–62.1), and 255 (56%) patients were premenopau-
sal. The median tumour size at baseline was 30.0 mm (IQR 
22.0–40.0); the patients in the pCR group presented some-
what smaller tumours (26.5 mm, IQR 20.0–34.5) in com-
parison to the non-pCR group (31.5 mm, IQR 22.5–40.0). 
The majority of the patients had highly proliferative tumours 
(N = 361, 80%) and presented with nodal metastases at diag-
nosis (N = 307, 68%). In terms of the St. Gallen subtype, 
patients with luminal A–like tumours were in the minority 
(as is to be expected given the criteria for receiving NACT), 
and none of these patients achieved pCR. Correspondingly, 
descriptive statistics for the randomly drawn test set (N = 53) 
is presented in Table 2; the test set shows similar patients 
and tumour characteristics of the cohort as a whole.

AI

The AI output probability pCR scores for the test set are 
shown in Fig. 3, and the associated ROC curve is illustrated 
in Fig. 4. The AI model showed a performance of predicting 
pCR as represented by the area under the curve [AUC] of 
0.71 (95% confidence interval [CI], 0.53–0.90; p = 0.036). 
The sensitivity at a fixed false-positive rate of 0.10 (90% 
specificity) was 0.46. Please note that false-positive here 
refers to AI predicting pCR where in fact the patient did not 
accomplish pCR.

Discussion

Prediction of treatment response, upfront or as early as pos-
sible, is important in order to offer BC patients individual-
ised treatment. Currently, evaluation of responses to NACT 
includes anatomical imaging, functional imaging (metabolic 
evaluation through PET/CT), and possibly biomarker evalu-
ation [10, 25]. To the best of the authors’ knowledge, this 
study is the first one investigating the use of AI on baseline 
DM to predict treatment responses. In this report, we present 
results of a deep learning–based method on baseline DM and 
its capability to subsequently identify patients who achieved 
pCR, resulting in an AUC of 0.71.

AI and treatment response evaluation

Tahmassebi et al. conducted a study using machine learn-
ing based on both pre- and during-NACT MRI (N = 38) 
with residual cancer burden as an outcome measure (with 
class zero being defined as pCR), which yielded an AUC of 
0.86 [26]. A study by Qu et al. presented results of a deep 
learning–based method applied to MRI (N/training = 244, 
N/validation = 58) using pCR as an outcome measure and 
showed an AUC of 0.55 using pre-NACT data in compari-
son to an AUC of 0.97 when using post-NACT data or the 

combination of both pre- and post-NACT MRI [27]. Sut-
ton et al. applied machine learning to pre- and post-NACT 
MRI (N/training = 222, N/validation = 56) and showed 
an AUC between 0.78 and 0.83. In the latter model, the 
molecular subtype was added to radiomics [28]. From the 
I-SPY TRIAL breast MRI database, an implemented CNN 
algorithm on MRI (N = 131) showed an AUC of 0.72 [29]. 
Similarly, CNN used in a pre-NACT MRI study by Ha et al. 

Table 2   Patient and tumour characteristics at baseline (test set, 
N = 53)

pCR, pathological complete response; BMI, body mass index; HER, 
human epidermal growth factor receptor; IQR, interquartile range

N (%)

pCR Yes 11 (20.8%)
No 42 (79.2%)

Age (years) median (IQR) 55.5 (45.8–65.1)
BMI (kg/m2), median (IQR) 26 (24–29)
Menopausal status Premenopausal 25 (47.2%)

Postmenopausal 28 (52.8%)
Any births No children 4 (7.5%)

1 or more children 49 (92.5%)
Missing 0 (0.0%)

Ever hormone replacement 
therapy

Yes 6 (11.3%)
No 47 (88.7%)
Missing 0 (0.0%)

Mammographic density, BI-
RADS

A 2 (3.8%)
B 26 (49.1%)
C 19 (35.8%)
D 6 (11.3%)

Tumour size (mm), median 
(IQR)

30.0 (22.0–38.0)

Oestrogen receptor Positive (> 10%) 35 (66.0%)
Negative (≤ 10%) 17 (32.1%)
Missing 1 (1.9%)

Progesterone receptor Positive (> 10%) 29 (54.7%)
Negative (≤ 10%) 22 (41.5%)
Missing 2 (3.8%)

HER2 receptor Positive 16 (30.2%)
Negative 36 (67.9%)
Missing 1 (1.9%)

Proliferation (Ki67) High (> 20%) 42 (79.2%)
Low (≤ 20%) 8 (15.1%)
Missing 3 (5.7%)

St. Gallen subtype Luminal A–like 7 (13.2%)
Luminal B–like 16 (30.2%)
HER2-positive 16 (30.2%)
Triple-negative 13 (24.5%)
Missing 1 (1.9%)

Node status Positive 40 (75.5%)
Negative 5 (9.4%)
Missing 8 (15.1%)
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(N = 141) showed an AUC as high as 0.98 [30]. Cain et al. 
built multivariate machine learning models (logistic regres-
sion and a support vector machine) based on pre-NACT 
MRI (N/training = 144, N/ validation = 144), which resulted 
in an AUC of 0.71 [31]. Nevertheless, our results suggest 
that our AI model on DM is in the range of those based on 
pre-NACT MRI. The most obvious advantages of DM are 
easy accessibility worldwide in contrast to the expensive and 
more complicated imaging methods of MRI and PET/CT.

Predictive factors for NACT response

It is well known that different BC subtypes with their hetero-
geneous biology respond differently to NACT [32]. Gener-
ally, the most aggressive BC subtypes are associated with 

higher pCR rates [32]. On the other hand, the relevance of 
pCR as an outcome measure is less certain for luminal BC, 
which is often considered a less aggressive subtype [32, 33]. 
In addition to BC subtype and immunohistochemical param-
eters, immunological markers (such as tumour-infiltrating 
lymphocytes), tumour-genetic profiles (which are commonly 
used in the adjuvant setting), and immune-associated signa-
tures hold predictive information at baseline [34–36]. How-
ever, the tumour and its relation to the surrounding tissue 
must be taken into account. The local microenvironment 
and the systemic host characteristics also influence tumour 
response, and these properties are not routinely included 
in medical decision-making and treatment algorithms [11, 
37]. Increased mammographic density, MRI background 
parenchymal enhancement, higher age and higher body 
mass index have been suggested to be associated with lower 
rates of pCR [13, 38–40]. In addition, multiple studies have 
investigated dynamic predictive factors, for example, pre-
dicting pCR status by considering a change in various bio-
markers, such as tumour immune microenvironments [41], 
measurements of cell loss [42] and circulating tumour cells 
[43]. Many tumour response studies using structural and 
functional imaging studies are published using both con-
ventional and state-of-the-art imaging, including mammog-
raphy, tomosynthesis, ultrasound, MRI, PET and shear wave 
elastography [44–47]. Evaluating AI in breast tomosynthesis 
would be an interesting line of research for future studies. In 
order to fine-tune predictive information, many nomograms 
have been developed that consider multiple parameters aim-
ing to optimise precision in estimation of response to NACT 
[48]. Recently, the concept has been further developed by 
evaluating the predictive performances of machine learning 
using clinical and pathological data [49].

Implications of identifying pCR/non‑pCR

In order to individualise NACT treatment, more biomarkers, 
including imaging biomarkers, are needed. Tools to early 
identify responders from non-responders could aid clinical 
decision-making, motivate patients to continue treatment, 
and enable the concept of response-guided treatment as 
introduced in the GeparTrio study [50]. Since response-
guided treatment is currently lacking convincing evidence 
of its benefits, the common strategy is to complete NACT 
unless evident progression or intolerable side effects occur 
[11, 37]. Early identification of patients who are not likely 
to achieve pCR after subsequently administrated NACT has 
the potential to improve tailored treatment and escalate/de-
escalate treatment accordingly. On the other hand, in the 
post-NACT setting, the potential clinical gain is mostly a 
surgical matter; if imaging in combination with minimally 
invasive procedures could lead to a considerably high degree 

Fig. 3   Distribution of the pathological complete response (pCR) 
probability scores in the test set

Fig. 4   Receiver operating characteristics (ROC) curve for the artifi-
cial intelligence (AI) model
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of correctly identified pCR, further invasive surgery for 
these patients may not be needed.

Digital mammograms: AI versus breast radiologists

To evaluate the performance of our AI model in relation 
to the performance of radiologists, seven experienced radi-
ologists jointly reached an AUC of 0.71 in correctly dis-
criminating between pCR and non-pCR (unpublished data 
from the NeoDense trial [12]) for the post-NACT time point 
by evaluating DM. The baseline NeoDense study-specific 
protocol was not designed for the radiologists to estimate 
subsequent pCR status after completion of NACT; therefore, 
a more direct comparison between performances at the pre-
NACT time point was not possible. Also, comparison with 
MRI is not possible since this modality is not currently used 
for this purpose at the study sites.

Strengths and limitations

We present the results of a relatively large BC patient cohort 
who received NACT according to clinical routine. Conven-
tional imaging was used according to the local routine at the 
time being; thus, MRI, as used by many other researchers, 
was not available. While hindering direct comparison, the 
use of DM makes our study unique since, to the best of our 
knowledge, no literature is available concerning AI appli-
cation to baseline DM to predict treatment response dur-
ing NACT for BC patients. Before AI training, a test set of 
patients were set aside for final assessment, enhancing valid-
ity of our results. The concerns with a binary output as pCR 
must be briefly acknowledged. Many post-NACT pathologi-
cal assessment scores also reflect partial responses, possi-
bly providing a more nuanced prognosis. The importance 
of these results is most evident when considering salvage 
adjuvant chemotherapy for which residual cancer burden 
score 1 (“near-pCR”) shows as good an outcome as patients 
who achieved a pCR [51]. Nevertheless, convincingly, pCR 
is still the most widely accepted endpoint in NACT studies.

A limitation of our study is the heterogeneous cohort in 
terms of both BC subtype and time period for NACT treat-
ment. Unfortunately, the cohort was not large enough to 
perform subgroup analyses according to BC subtype since 
AI modelling demands a large number of images. Here, 
we shortly address possible concerns of the long recording 
period (2005–2019) and possible changes in NACT treat-
ment during this time period. For both cohorts, the standard 
NACT contained series of FEC or EC followed by series of 
taxanes (docetaxel or paclitaxel) and, in the case of HER2-
positive tumour, combined with HER2 blockade (trastu-
zumab/pertuzumab). Thus, the NACT regimen was consist-
ent during the recording time and we therefore believe this 
to be of minor impact.

Future aspects

Next, we will train AI using dynamic DM from three time 
points during NACT and further explore explainable AI by 
identifying the areas on the mammograms that AI find most 
informative to generate “heat maps.” In addition, the con-
cept of AI-guided response evaluation during NACT can be 
applied to other medical images for other organs.

Conclusion

In conclusion, our study describes an AI platform using 
baseline DM to predict the response to NACT in BC 
patients. The initial AI performance presents the potential 
to aid in the clinical decision-making. In order to continue 
exploring the clinical utility of AI in predicting response to 
NACT for BC, further research including refined method-
ology and a larger sample size is warranted. Overall, our 
proof-of-concept study of the response evaluation highlights 
an important area of AI research in BC. In addition, our 
study might prompt future studies in NACT-treated cancer 
patients in general and, therefore, has implications beyond 
BC.
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