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Cell-lineage controlled epigenetic regulation in
glioblastoma stem cells determines functionally
distinct subgroups and predicts patient survival
Xi Lu 1,8, Naga Prathyusha Maturi 2,8, Malin Jarvius3,4, Irem Yildirim 2, Yonglong Dang1,5, Linxuan Zhao1,

Yuan Xie2,6, E-Jean Tan 2,7, Pengwei Xing1, Rolf Larsson3, Mårten Fryknäs3, Lene Uhrbom 2,9✉ &

Xingqi Chen 1,9✉

There is ample support for developmental regulation of glioblastoma stem cells. To examine

how cell lineage controls glioblastoma stem cell function, we present a cross-species epi-

genome analysis of mouse and human glioblastoma stem cells. We analyze and compare the

chromatin-accessibility landscape of nine mouse glioblastoma stem cell cultures of three

defined origins and 60 patient-derived glioblastoma stem cell cultures by assay for

transposase-accessible chromatin using sequencing. This separates the mouse cultures

according to cell of origin and identifies three human glioblastoma stem cell clusters that

show overlapping characteristics with each of the mouse groups, and a distribution along an

axis of proneural to mesenchymal phenotypes. The epigenetic-based human glioblastoma

stem cell clusters display distinct functional properties and can separate patient survival.

Cross-species analyses reveals conserved epigenetic regulation of mouse and human glio-

blastoma stem cells. We conclude that epigenetic control of glioblastoma stem cells primarily

is dictated by developmental origin which impacts clinically relevant glioblastoma stem cell

properties and patient survival.
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G lioblastoma (GBM) is one of the most aggressive cancers
and the most frequent and lethal primary malignant
brain tumor1. Standard therapy of care includes

maximal-safe surgical resection, concomitant chemo- and
radiotherapy, and adjuvant chemotherapy, yet the 2-year survival
is 18.5%1. Treatment resistance is explained by extensive genetic
and epigenetic tumor cell heterogeneity of GBM, both with
regard to intertumor heterogeneity2–4 and intratumor hetero-
geneity at different regions5 and in individual cells6–9. Large
efforts have been done to converge GBM heterogeneity into
biologically and clinically relevant subgroups of GBM.
Transcriptome-based stratifications have produced three major
isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) wild-type
(wt) GBM subtypes, also called The Cancer Genome Atlas
(TCGA) subtypes: proneural (PN), classical (CL), and
mesenchymal (MS)2,10,11. Studies of patient-derived GSC cul-
tures, clonal derivatives, and single cells have shown the presence
of a PN to MS differentiation axis with plasticity of the
states8,12,13, and a comprehensive GBM single-cell analysis has
uncovered additional and dynamic cellular states in GBM
tumors7. The GBM epigenome has been most frequently ana-
lyzed by DNA methylation profiling3,4,14 and methylomes have
proven prognostically more useful than transcriptomes to predict
patient survival3,4, demonstrating the importance of under-
standing epigenetic regulation in GBM. The active chromatin
landscape of GBM has been investigated with chromatin
immunoprecipitation sequencing (ChIP-seq) of acetylated lysine
27 on histone H3 (H3K27ac) in a collection of primary tumors
and GSC cultures15, and by the assay for transposase-accessible
chromatin using sequencing (ATAC-seq)8,16,17, which have
uncovered subgroups of GBM suggested to be regulated by dif-
ferent sets of transcription factors (TFs).

Several studies have implied a connection between GBM
molecular subgroups and developmental origin2,18. Methylation
profiling has proven particularly useful to connect primary
tumors with their tissue of origin19 and has been used to separate
GBM with higher resolution than gene expression4,20. We have
shown by experimental modeling of GBM that developmental
state and age of the cell of origin could affect its vulnerability to
GBM development21, and that it shaped the phenotype of the
resulting GBM stem cells (GSCs)21,22. Tumors were induced by
the same oncogenic events in three different mouse cell lineages
which produced contrasting tumor cell phenotypes with regard to
malignancy and drug sensitivity, where a more differentiated
origin promoted a less tumorigenic but more drug resistant
mouse GSC (mGSC) phenotype22. Through a cross-species GSC-
based stratification approach applying the mouse cell of origin
(MCO) gene signature of differentially expressed genes on a large
collection of human GSC (hGSC) cultures, we found that devel-
opmental origin could be used to stratify functionally distinct
groups of patient-derived GSC cultures22. A recent similar cross-
species approach has further corroborated the importance of cell
lineage origin in GBM23. In all this has demonstrated that
intertumor heterogeneity to a large extent is shaped by the
intrinsic properties of the GBM cell of origin which result in
highly dynamic GSCs that basically evade all current therapies.

Here we show a cross-species epigenome analysis where the
chromatin accessibility landscape of 9 mGSC cultures of defined
developmental origin and 60 IDH wt hGSC cultures are analyzed
with high-sensitivity ATAC-seq24. We relate the results to a range
of molecular and functional data and show that genome-wide
chromatin accessibility separates both mouse and human GSC
cultures into three functionally distinct subgroups. The mGSC
groups are divided by developmental origin and display shared
molecular features with each of the three hGSC groups along a
PN to MS axis. Cross-species analyses support the hGSC

subgroups to be cell lineage controlled and show a conservation
of enriched TF motifs in the differential chromatin-accessible
regions. Importantly, the ATAC-seq-based stratification can
separate patients with significantly different survival pointing to
the ability of this analysis to distinguish clinically relevant tumor
cell properties.

Results
Chromatin accessibility in mouse GSCs predicts developmental
origin. We performed ATAC-seq analysis of nine previously
established mGSC cultures (mGC1GFAP: SC81, SC83, SC84;
mGC2NES: SC50, SC52, SC64; mGC3CNP: SC37, SC74, SC112)
derived from GBMs induced by the same oncogene (PDGFB) in
three different cell lineages in adult tv-a transgenic mice (Gfap/tv-
a;Arf−/−, Nes/tv-a;Arf−/−, and Cnp/tv-a;Arf−/−, respectively)22

(Fig. 1a and Supplementary Data 1). The cell of origin in these
mice had previously been deduced to be a neural stem cell (NSC)-
like cell in G/tv-amice, an astrocyte precursor cell-like cell in N/tv-
a mice and an oligodendrocyte precursor cell (OPC)-like cell in C/
tv-a mice22, and cell cultures of different origin had displayed
distinct functional, phenotypic, and transcriptomic properties22.
The ATAC-seq data from all samples were determined to be of
high quality based on analyses of enrichment of sequence reads at
transcription start sites (TSS) (Fig. 1b), fraction of reads in peaks
(FRiP) (Fig. 1c) and reproducibility among the technical replicates
(Supplementary Fig. 1a). Genomic annotation of ATAC-seq data
displayed some variation across cultures, but showed high repro-
ducibility between replicates (Supplementary Fig. 1b). In all this
supported a high quality of the mouse ATAC-seq data.

Previous principal component analysis (PCA) of gene expres-
sion array data from the same mGSC cultures had shown a clear
separation based on developmental origin22. PCA analysis of
global ATAC-seq data also distinguished cell of origin groups and
produced a clear separation between NSC and GSC cultures
(Fig. 1d). To understand the underlying molecular regulation of
the mGSC groups we extracted the differentially enriched ATAC-
seq peaks (Log 2 (Fold change (FC)) > 1, false discovery rate
(FDR) < 0.05) of each group (Fig. 1e and Supplementary Data 2),
which produced 819 peaks for mGC1GFAP, 1161 peaks for
mGC2NES and 95 peaks for mGC3CNP. The differential ATAC
peaks were annotated to their nearest genes (Supplementary
Data 2), where some examples are indicated for each of the
mGSC groups (Fig. 1e). Representative genome tracks for each
group validated the differential chromatin accessibility of
annotated genes (Fig. 1f). Many genes of the mGC2NES group
showed a clear mesenchymal character (e.g., Cd44, Bmp7, Tgfb2)
which is in line with the previous finding that mGC2NES cells
were most closely related to the MS GBM subtype, while both the
mGC1GFAP and mGC3CNP cells were most similar to PN GBM22.
To widen our understanding of the characteristics of each mGSC
group we performed Gene ontology (GO) enrichment analysis of
the annotated genes (Supplementary Fig. 1c–f). The top-15 GO
terms selected by strength and ranked by FDR were for
mGC1GFAP mainly related to voltage gated ion channels and
RAS GTPase activity for molecular function (Supplementary
Fig. 1c), and to synaptic functions and adult responses to
neuronal stimuli for biological processes (Supplementary Fig. 1d).
For mGC2NES the majority of molecular functions were involved
in protein binding and RNA polymerase II DNA binding
(Supplementary Fig. 1e) and for biological processes the GO
terms were centered around epithelial and mesenchymal cells
(Supplementary Fig. 1f). For mGC3CNP the number of genes were
small and there were no significant GO results. Taken together,
also these results supported a mesenchymal character of the
mGC2 cells and a neural character of mGC1 cells.
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To discover the differential regulatory motifs between cultures
of different origin we performed TF motif analysis of the unique
accessible chromatin regions and extracted the unique TFs among
the mGSC groups (Fig. 1g and Supplementary Data 3). In line
with having the highest number of unique ATAC regions
mGC2NES samples also produced the largest number of uniquely

enriched TF motifs. Overall, the result suggested different
regulatory circuits between the mGSC groups, which was further
sustained when extracting all significantly enriched and variable
TF motifs of each group (Supplementary Fig. 1g–i). These were
highly overlapping with the unique TF motifs (Fig. 1g) but in this
analysis all significant TFs for each group were included which
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Fig. 1 The chromatin accessibility landscape of mouse GSC cultures can predict cell of origin. a Overview of mouse GBM models and GSC cultures of
different origin that were analyzed by ATAC-seq. Schematic figures were produced by the authors. b Enrichment of ATAC-seq reads at transcription start
sites (TSS) from the mGSC cultures. c Fraction of reads in peaks (FRiP) in duplicate samples of mouse NSC and GSC cultures. Dashed line shows minimum
FRiP score required for further analyses of that sample. d Principal component analysis of ATAC-seq data from mouse NSC and GSCs samples. Dashed
ovals show same origin mGSC samples. Dashed square show control NSC samples. e Heatmap of unique accessible chromatin regions of each mGSC cell
of the origin group. Examples of genes annotated to the chromatin regions are indicated. f Genome browser tracks of ATAC-seq data for each mGSC
sample of Cdk5r1, Runx1, and Kif5c. g Heatmap of mGSC group-unique, significantly enriched TF motifs. Examples of TFs are indicated. Source data are
provided as a Source Data file for Fig. 1b–e, g.
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produced a clear overlap between mGC1GFAP and mGC3CNP, and
mGC3CNP and mGC2NES, while clearly separating mGC1GFAP
and mGC2NES.

In summary, the ATAC-seq analysis of mGSC cultures
produced, in accordance with our previous gene expression
analysis, distinct cell of origin groups. Analysis of TF motifs in
differential accessible chromatin supported distinct differences
between mGC1GFAP and mGC2NES while there was some overlap
between mGC3CNP and mGC1GFAP or mGC2NES. This proposed
that although all mGSC cultures have the same driver mutations
(PDGFB overexpression and p19Arf deletion) there are important
developmentally inherited mechanisms that regulate their
previously shown22 different phenotypes.

Heterogeneous chromatin accessibility across 60 patient-
derived GSC cultures. Next, we investigated the chromatin
accessibility landscape in GSC cultures of our local human GBM
cell culture (HGCC) biobank22,25,26. We performed ATAC-seq
on 60 patient-derived IDH wt GSC cultures (Fig. 2a and Sup-
plementary Data 1). We applied established and stringent criteria
for the ATAC-seq data processing and could show high Pearson
correlation coefficient (0.8–0.98) for technical replicates, TSS
enrichment scores above 3.8, and FRiP of all duplicate samples at
or above 20%27 (Supplementary Fig. 2a–c). We performed a
saturation analysis using random sampling non-linear regression
to analyze the fraction of all predicted accessible chromatin
regions that we could expect to detect with 60 cultures (Fig. 2b).
This showed that our sample size was large enough and that all
predicted regions of accessible chromatin would be detected with
47 cultures. In total, we had captured 323526 ATAC peaks from
our hGSC cohort. To obtain an overview of the global chromatin
accessibility landscape of the samples we identified all unique
chromatin-accessible regions in the entire data and calculated for
each region the number of samples it was present in (Fig. 2c). A
large proportion (25.4%) of ATAC peaks was only detected in one
hGSC culture, and just 1.5% of the accessible regions were
common to all 60 cultures. Nonetheless, unique chromatin-
regions showed increased openness the more frequently they
were present across the samples (Supplementary Fig. 2d). SOX2
showed an overall high chromatin accessibility across the cohort
(Fig. 2d) in line with previous data showing SOX2 expression in
all HGCC cultures investigated28. Yet, individual cultures showed
a clear variability in chromatin openness of this locus (Fig. 2d).
Inter-culture heterogeneity was further sustained by separate
analyses of promoter (−1 kbp to +100 bp of TSS) and non-
promoter (also called distal regulatory element (DRE)) regions of
GSC metamodule genes7 and MCO genes22 (Fig. 2e and Sup-
plementary Fig. 2e). Also structural genomic annotation of the
ATAC data showed a clear variation in chromatin-openness
among the 60 cultures (Fig. 2f). Taken together, this demon-
strated that our cohort of 60 patient-derived GSC cultures dis-
played a highly heterogeneous chromatin accessibility landscape
in line with the high GBM inter-patient diversity.

Chromatin-accessibility robustly identifies three clusters of
patient-derived GSC cultures. To identify unifying features of
the hGSC cohort we performed non-negative matrix factorization
(NMF) analysis on the ATAC-seq data, which produced three
clusters: ATAC60-C1 (n= 22), ATAC60-C2 (n= 16), and
ATAC60-C3 (n= 22) (Supplementary Fig. 3a, b and Supple-
mentary Data 1). A large part of the HGCC cultures had pre-
viously been classified based on gene expression according to
the TCGA subtypes28 and with the MCO gene signature
(MCO1–3)22. To compare the ATAC-seq clusters with the TCGA
and MCO classifications we excluded hGSC samples lacking such

information and re-analyzed 50 samples with NMF. This pro-
duced, again, three clusters: ATAC50 C1 (n= 19), ATAC50 C2
(n= 14), and ATAC50 C3 (n= 17) (Fig. 3a and Supplementary
Fig. 3c). Comparing ATAC50 to ATAC60 clusters showed that
only three samples had changed cluster in ATAC50 (Supple-
mentary Fig. 3d and Supplementary Data 1), which showed a
robustness of the chromatin accessibility-based clustering. From
hereon we focus mainly on the ATAC50 classification.

When we compared the ATAC50 clusters with the TCGA
subtypes there was little overlap (Fig. 3b). The majority of PN and
CL cultures were in C1 while MS cultures basically were divided
between C2 and C3. Comparing to MCO showed a higher degree
of overlap (Fig. 3c), likely reflecting the relation between
developmental origin and epigenetic state of GSC.

Next, we extracted the unique chromatin-accessible regions for
each ATAC50 cluster with DESeq2 (Log 2 (FC) > 1, FDR < 0.01,
peak average intensity >30, and coefficient of variance <0.2;
Fig. 3d). By this we identified 4023 regions in C1, 5547 in C2, and
949 in C3 (Fig. 3d and Supplementary Data 4). The genomic
features of all chromatin-accessible regions from each ATAC50
cluster were annotated using the chromatin state discovery and
characterization software (ChromHMM)29 (Fig. 3e and Supple-
mentary Fig. 3e). There was a diverse distribution of chromatin
states with some marked differences between ATAC50 clusters.
C1 had the largest proportion of active promoter regions
(H3K4me3 and H3K27ac), C2 occupied a higher proportion of
active regions (H3K27ac), and C3 had a higher frequency of weak
enhancer regions (H3K4me1). Common to all three clusters was
that the combined proportion of non-promoter regions (strong
and weak enhancer regions) constituted the biggest proportion of
chromatin states, clearly larger compared to the distribution in
the whole ATAC-seq data (Fig. 3e). This indicated, as for mGSCs,
that DRE regions were central in defining the ATAC50 clusters.
To test our hypothesis, we performed Pearson correlation
hierarchal clustering of all ATAC peaks, of DRE regions only,
and of promoter regions only (Supplementary Fig. 3f). All ATAC
peaks and DRE peaks displayed a similar dynamic range of
chromatin openness and cluster patterns, while the dynamic
range of promoter regions was smaller which supported our
assumption. NMF clustering of DRE ATAC peaks (Fig. 3f and
Supplementary Fig. 3g) produced almost identical clusters as
ATAC50 (Fig. 3g). Clustering promoter regions resulted in three
clusters (Supplementary Fig. 3i) that were entirely different and
non-overlapping with ATAC50 (Supplementary Fig. 3j). Collec-
tively, our analyses showed that chromatin accessibility could
robustly stratify hGSC cultures and clusters were predominantly
dictated by the DRE regions. The high correspondence of the
ATAC50 clusters with the MCO stratification implied an
important role of cell lineage-controlled gene regulation of
human GSC cultures.

ATAC50 clusters are phenotypically distinct. To phenotypically
characterize the ATAC50 clusters we first used hGSC gene
expression array data22 and analyzed the 256 GSC meta module
genes7 across the 50 cultures (Fig. 4a and Supplementary Fig. 4).
While only 53 genes showed a significant difference between the
clusters (Fig. 4b) there were clear differences comparing global
meta module gene expression (Fig. 4a). C1 showed significantly
higher expression of NPC1, NPC2, and OPC genes compared to
both C2 and C3, significantly higher expression of AC genes
compared to C2, and significantly lower expression of MES genes
compared to both C2 and C3. Thus, C1 and C2 were always at the
end of the spectrum with C3 in the middle. Notably, C3 showed
significantly higher expression of NPC1, OPC, and AC genes and
significantly lower expression of MES2 genes compared to C2.
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Fig. 2 Heterogeneous chromatin accessibility across 60 patient-derived GSC cultures. a Overview of 60 patient-derived IDH wild-type GSC cultures
analyzed by ATAC-seq. Schematic figures were produced by the authors. b Saturation analysis using a non-linear model. Number of predicted accessible
chromatin regions in GBM (blue dotted line), and number of observed accessible chromatin regions in our 60 hGSC samples (black dotted line).
c Histogram of the distribution of unique ATAC peaks in the hGSC cohort. d Genome browser tracks of ATAC-seq signals at SOX2. Top panel shows the
average genome track of all 60 samples. Bottom panel shows individual results. e Violin plots of cohort-wide distribution of chromatin accessibility at
promoters and DRE regions of some GBM meta module and cell lineage-relevant genes. f Genomic annotation of ATAC peaks in each hGSC sample.
Source data are provided as a Source Data file for Fig. 2b, c, e, f.
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This suggested that ATAC50 clusters were separated along a
gradient of GSC states with C1 being progenitor cell-like, C2
being mesenchymal-like, and C3 being intermediate.

Next, we analyzed chromatin openness of metamodule genes in
promoter regions (Fig. 4c) and DRE regions (Fig. 4d). The
openness of DRE regions was significantly different between all
clusters in all metamodules whereas promoter regions showed
less distinct differences for NPC1, NPC2, OPC, and AC
metamodules and were nonsignificant for MES1 and MES2. This
is in line with the dominant role of DRE regions to separate the
ATAC50 clusters (Fig. 3f). Although the differences between
ATAC50 groups in most of the comparisons in Fig. 4a, c, d were

statistically significant the box plots were still highly overlapping
reflecting the extensive intertumor heterogeneity of GBM.

Of the metamodule genes with significant different gene
expression (Fig. 4b) the majority (39) were higher expressed in C1
and belonged to the NPC1, NPC2, OPC, and AC modules.
C2 showed a higher expression of some MES1 and MES2 genes,
and C3 cultures displayed higher expression of a few NPC1,
NPC2, and AC genes. To investigate the chromatin openness of
DRE regions of these genes we first linked all human ATAC DRE
regions with their nearest gene through a peak-to-gene linking
prediction analysis27 (Supplementary Fig. 5a and Supplementary
Data 5). This was used to compare ATAC peaks of the significant
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genes (Fig. 4b) between clusters (Supplementary Data 5) which
showed that 47% (25 of 53) had significantly different chromatin
accessibility in DRE regions (Fig. 4e and Supplementary Data 5),
compared to only 7 of 53 for promoter regions, supporting the
importance of DREs in regulating ATAC50 clusters.

To investigate underlying mechanisms controlling the
ATAC50 clusters, we performed TF motif enrichment analysis

on significantly different chromatin-accessible regions. Of the
top-50 most variable TFs motifs the majority were bZIP (n= 14)
or bHLH (n= 15) motifs (Supplementary Fig. 5b and Supple-
mentary Data 6). There was a clear and inverse enrichment when
comparing ATAC50 C1 and C2, with bHLH motifs being most
common in C1 and bZIP motifs being most common in C2. GSCs
maintained in stem cell media have been shown to enrich for
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bHLH TFs while serum media enriched for bZIP TFs30

corroborating different state identities of C1 and C2 cultures.
To find distinctive features of each cluster we extracted the
significantly enriched cluster-specific TF motifs (Fig. 4f and
Supplementary Data 7). This identified 64 uniquely enriched
motifs in C1, 51 in C2, and 13 in C3. Among the TF motifs in C1
many were regulators of neural development with strong
connections to GBM such as TCF12 (refs. 31–34), ASCL1
(ref. 35), OLIG2 (ref. 36), and SOX9 (ref. 37). Dominant TF
motifs enriched in C2 were AP-1 complex motifs of the JUN,
FOS, ATF, and MAF families and motifs of the MAF dimerizing
proteins NRF2, BACH1, and BACH2, which have also been
associated with cancer progression and metastasis38 and are
plausible candidates to regulate the mesenchymal features of C2
cultures. Since C3 was intermediate to C1 and C2, there were
fewer uniquely enriched TF motifs in this cluster. Among
them were GBM-associated FOXM1, FOXA1, and SOX3
(Fig. 4f)31–34,39. When analyzing the relationship of TF motif
openness and TF gene expression we found a positive correlation
for several TFs (Fig. 4g) which strengthened their involvement in
shaping the cluster phenotypes. To further analyze TF regulation
we performed TF footprint analysis of differential ATAC peaks,
which is a computational method to predict TF binding (Fig. 4h
and Supplementary Fig. 5c). We found that ATAC50 C1 showed
significantly higher occupancy of OLIG2, TCF12, ASCL1, and
NEUROD1 compared to C2 and C3, while C2 and C3 showed
significantly higher occupancy for NF-E2, JUNB, and FOSL2
compared to C1. Among the C3-uniquely enriched TF motifs
there were no significant footprints, but among the top-50
variable TF motifs TEAD3 showed significantly higher occupancy
for C3 compared to C1 (Fig. 4h). In all, the TF motif enrichment,
TF gene expression, and TF occupancy analyses confirmed the
phenotypic differences and revealed distinct epigenetic regulation
of the ATAC50 clusters.

ATAC50 classification produce functional separation of hGSC
cultures. Since the transcriptome and ATAC-seq defined mGSC
groups had displayed different functional properties22, we asked if
the ATAC50 clusters also would. We investigated essential GSC
properties in 16 C1, 8 C2, and 13 C3 cultures (Fig. 5), of which
the majority had overlapping MCO and ATAC50 classifications
(Supplementary Data 1). As a reference we also analyzed all data
by grouping the cultures according to TCGA subtype (Supple-
mentary Fig 6 and Fig. 6b). We first performed consecutive
sphere-forming assays under clonal conditions (Fig. 5a and
Supplementary Fig. 6a). C1 cultures displayed the highest sphere-
forming ability while there was no significant difference between
C2 and C3 cultures, although C3 cultures produced a higher
average number of spheres (Fig. 5a). TCGA grouping also

produced significant differences between the MS subtype and CL
or PN (Supplementary Fig. 6a). Extreme limiting dilution assay
(ELDA) is considered a more reliable and objective measurement
of self-renewal and showed that C1 cultures had a significantly
higher self-renewal capacity compared to both C2 and C3.
However, this method also captured a significant difference
between C2 and C3 (Fig. 5b). With this method TCGA groups
only captured a difference between MS and the other two sub-
types (Supplementary Fig. 6b). Cell proliferation was measured by
BrdU incorporation and here C1 cultures showed significantly
higher proliferation compared to both C2 and C3 cultures
(Fig. 5c). For this trait TCGA classification could distinguish a
significantly lower proliferative capacity of MS cells compared CL
and PN (Supplementary Fig. 6c). Tumor cell invasion was ana-
lyzed with the spheroid collagen gel invasion assay. Here we
found that C2 cultures were significantly more invasive than both
C1 and C3 cultures (Fig. 5d), while TCGA subtypes could sepa-
rate the MS and CL groups only (Supplementary Fig. 6d). In all,
the functional characteristics were in accordance with the stem
and progenitor cell-like molecular phenotype of C1 cultures, the
mesenchymal-like phenotype of C2 culture and the mixed
molecular phenotype of the C3 cultures. It also showed that
ATAC50 was superior to TCGA in predicting two key features of
GSCs, self-renewal and invasion.

We also analyzed the drug response phenotype of 11 C1, 7 C2,
and 10 C3 cultures by measuring cell viability after 72 h exposure
to a collection of 28 anticancer drugs at seven different
concentrations (Fig. 5e–g and Supplementary Data 8). This
produced dose-response curves that were converted to area under
the curve (AUC) measures that were compared pair-wise between
clusters. There was a clear overall higher sensitivity of C1 cultures
to the compounds compared to both C2 (Fig. 5e) and C3 (Fig. 5f)
cultures. All drugs that produced a significantly different response
between C1 and C2 or C3 cultures were more effective in C1
cultures. These comparisons identified two compounds as
particularly efficient for C1 cultures, Melflufen (alkylating), and
PD173074 (FGFR1 inhibitor). When comparing C2 to C3
cultures, C3 cultures were clearly, overall, more sensitive to the
tested drugs (Fig. 5g). However, C3 cultures showed a
significantly higher resistance to two drugs, 5-azacytidine and
6-thioguanine, compared to both C1 and C2 cultures (Fig. 5f, g).
When we compared drug responses between TCGA groups the
result was less pronounced (Supplementary Fig. 6e–g). We found
that PN cultures had an overall higher sensitivity to these
compounds compared to MS cultures (Supplementary Fig. 6e)
while there were small differences between PN and CL
(Supplementary Fig. 6f), and MS and CL (Supplementary Fig. 6g).
The distinct drug response phenotypes of the ATAC50 clusters
suggested that cell lineage dependencies are important to account
for when developing therapeutic strategies for GBM.

Fig. 4 ATAC50 clusters are phenotypically distinct. a Comparison between ATAC50 clusters of average gene expression of all genes in each GSC meta
module. b Meta module genes with significantly different gene expression between ATAC50 clusters. c Comparison between ATAC50 clusters of average
chromatin accessibility at promoters of all genes in each GSC meta module. d Comparison between ATAC50 clusters of average chromatin accessibility at
DRE regions of all genes in each GSC meta module. The box plots in the violin plots (a, c, d) show the minima (bottom dot), the maxima (top dot), the
median (middle line), and the first and third quartiles (boxes), whereas the whiskers show 1.5× the interquartile range IQR above and below the box. For
GSC cell line numbers: ATAC50 C1 (n= 19), ATAC50 C2 (n= 14), and ATAC50 C3 (n= 17). In plots (a, c, d), 256 GSC metamodule genes were used to
compared. Two-sided Welch’s t-test was performed on all pair-wise comparisons in (a, c, d), significant differences are indicated with p value. e Genome
browser tracks of the average ATAC-seq signal in each ATAC50 cluster for ASCL1, CTSB, DPYSL2. f Heatmap of significantly enriched cluster-unique TF
motifs. g Scatter plots of TF motif chromatin accessibility (x-axis, normalized chromatin openness) and TF gene expression (y-axis, microarray data, counts
per million reads mapped (CPM)). All significantly enriched TF motifs in (f) were analyzed and those with a significant positive correlation are shown.
R= Pearson correlation, p calculated by two-sided Welch’s t-test. Ninety-five percent confidence intervals are indicated with shaded areas. h TF footprint
analysis of cluster-specific ATAC50 peaks. Friedman–Nemenyi test was performed, p < 0.05 for all. The p value for each TF is labeled. Source data are
provided as a Source Data file for Fig. 4a–d, f–h.
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ATAC-based clusters can predict mouse and patient survival.
Orthotopic tumor growth is a defining capacity of cancer stem
cells. We used in vivo survival data, in total 322 intracranially
injected immune-deficient mice, from published22,25,26,28 and
unpublished experiments, and included only individuals that had
been killed because of disease symptoms before the experimental
endpoint (Supplementary Data 9). When grouping mice
according to the ATAC50 clusters we found a significant differ-
ence in survival between all groups with C1 being most aggressive
(Fig. 6a). The same data divided by TCGA subtypes showed
significant differences between MS and CL or PN but could not
separate all three groups (Fig. 6b).

We also analyzed survival of GBM patients from whom the
hGSC cultures had been derived (Fig. 6c–f). When ATAC50
patients were grouped according to TCGA there were no survival
differences (Fig. 6c), which is in line with previous patient data
for IDH wt GBM. ATAC50 clusters produced more separated
curves (Fig. 6d), although there were no significant differences.
We also analyzed the MCO clusters because of the high degree of
overlap with ATAC50 (Fig. 6e), which produced even more
separated curves and a close to significant difference between
MCO2 and MCO3 patients (Fig. 6e). Finally, we used all patients
and the ATAC60 classification, which for the overlapping 50
hGSC cultures had produced essentially the same clusters as
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Fig. 5 ATAC50 produces functional separation of hGSC cultures. a Consecutive sphere assays comparing ATAC50 clusters. Primary spheres (left),
secondary spheres (middle), and tertiary spheres (right). b ELDA comparing ATAC50 clusters. c Frequency of BrdU-positive cells. Data show mean ± SEM.
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ATAC50 (Supplementary Fig. 3d). By adding ten more patients
the curves between C2 and C3 patients became clearly significant
and showed improved survival for C3 patients (Fig. 6f). Because
of the clinically relevant ATAC60 patient stratification we
reanalyzed the results of Figs. 5 and 6a using ATAC60 groups
(Supplementary Fig. 7). This showed overall the same result as
with ATAC50 with small changes in significance levels for
proliferation (Supplementary Fig. 7c, slightly decreased between
C1 and C2), invasion (Supplementary Fig. 7d, slightly increased
between C2 and C1 or C3), drug response (Supplementary
Fig. 7f–g, slightly decreased between C3 and C1 or C2), and
in vivo tumorigenicity (Supplementary Fig. 7h, slightly increased
between C2 and C3) which supports the robustness of the ATAC
clustering.

In conclusion, TCGA subtypes had no predictive value while
both the MCO- and ATAC-classifications could separate patients
of the two most molecularly and functionally similar GBM
subgroups. The substantial overlap of these classifications
suggests that cell lineage-based classifications could be valuable
to predict GBM patient survival, likely because of their ability to
distinguish essential tumor cell phenotypes.

Cross-species analyses reveal MCO prediction of hGSC ATAC
clusters. By a glance the MCO groups and ATAC50 clusters had
shown certain similarities such as a PN-like phenotype of
mGC1GFAP and ATAC50 C1, and a MS-like phenotype of
mGC2NES and ATAC50 C2. To investigate this further we per-
formed a cross-species comparison of enriched TF motifs in
unique ATAC peaks (Supplementary Data 3 and 6) of both
species (Supplementary Fig. 8a–c). We analyzed the positive
correlation of the significantly enriched and variable TF motifs of
mGC1GFAP (Supplementary Fig. 8a), mGC2NES (Supplementary
Fig. 8b), and mGC3CNP (Supplementary Fig. 8c) separately with
the complete list of enriched TF motifs from the ATAC50 data.

This showed that for mGC1GFAP the majority of positively cor-
relating TF motifs were with C1 (OCT2, OCT4, OCT6, RFX2,
RFX3). For mGC2NES the strongest correlation were with TF
motifs enriched in C2 (AP-1, AP-2γ, AP-2α, ATF3, BACH1,
BACH2, BATF, ERG, ETS1, FOSL2, JUNB, NFE2L2, NF-E2,
NRF2), although there were a number of TFs that correlated with
C1-enriched TFs (ERG, ETS1, HIC1, LHX1, NF1, SIX1, SIX2,
SIX4). For mGC3CNP there were fewer overlapping TFs which
was expected because of the intermediate phenotype of this
group, and those that were positively correlating were enriched in
C1 (HIC1, NF1, OCT4, OCT6) and C3 (AP-2a, TEAD2, TEAD3,
PU.1). This supported the perception of a relation between
mGC1GFAP and C1, mGC2NES and C2, and mGC3CNP and C3
and strengthened the connection between developmental origin
and ATAC50 clusters.

Finally, we analyzed the relation of the cell lineage-based MCO
stratification with ATAC50. We had already observed a
considerable overlap of ATAC50 and MCO (Fig. 7a) and wanted
to investigate the underlying reason. We started by analyzing if
the chromatin landscape of the MCO genes could guide the
ATAC50 clusters. Of the 196 MCO genes22 we used 166 human
homologs for which the ATAC-seq peaks of promoter regions
were extracted and analyzed by NMF (Supplementary Fig. 8d, e).
This produced a poor overlap with the ATAC50 clusters (Fig. 7b),
consistent with the importance of DRE regions (Fig. 3h). Next we
used the DRE regions of the MCO genes through the peak-to-
gene linking prediction analysis (Supplementary Data 5). The
MCO human homolog genes were annotated to 786 ATAC peaks
of DRE regions that were analyzed by NMF (Supplementary
Fig. 8f, g). This showed a higher concordance with ATAC50
(Fig. 7c) compared to promoter-guided clusters (Fig. 7b) but still
lower than the MCO stratification (Fig. 7a). Then we used the cell
of origin-specific mouse ATAC peaks (n= 2075, Fig. 1e and
Supplementary Data 2) that were annotated to 2028 mouse genes,
converted to 1629 human homolog genes of which 805 were

a b

Time (days)

0 100 200 300 400

M
ou

se
 s

ym
pt

om
- 

fr
ee

 s
ur

vi
va

l (
%

)

ATAC50 C1 (n=18)

ATAC50 C2 (n=14)

ATAC50 C3 (n=16)

d

0

20

40

60

80

100
ATAC50 C1 (n=169)

ATAC50 C2 (n=83)

ATAC50 C3 (n=69)

p 
= 

1.
57

e-
23

p 
= 

2.
38

e-
12

p 
= 

1.
57

e-
23

e

Time (days)

ATAC60 C1 (n=21)

ATAC60 C2 (n=16)

ATAC60 C3 (n=21)

f

CL (n=80)

MS (n=142)

PN (n=99)

Time (days)

0 100 200 300 400

M
ou

se
 s

ym
pt

om
- 

fr
ee

 s
ur

vi
va

l (
%

)

c

0

20

40

60

80

100

0

20

40

60

80

100

P
at

ie
nt

 s
ur

vi
va

l (
%

)

0 500 1000 1500 2000

Time (days)

PN (n=8)

MS (n=26)

CL (n=14)

0 500 1000 1500 2000

0

20

40

60

80

100

P
at

ie
nt

 s
ur

vi
va

l (
%

)

P
at

ie
nt

 s
ur

vi
va

l (
%

)

0

20

40

60

80

100

0 500 1000 1500 2000

Time (days)

0

20

40

60

80

100

P
at

ie
nt

 s
ur

vi
va

l (
%

)

0 500 1000 1500 2000

Time (days)

MCO1 (n=21)

MCO2 (n=14)

MCO3 (n=13)

p 
= 

2.
49

e-
14

p 
= 

1.
25

e-
13

p 
= 

0.
01

4

Fig. 6 Survival analyses comparing ATAC50, TCGA subtype, MCO, and ATAC60 classifications. a, b Kaplan–Meier analysis of symptom-free survival of
immune-deficient mice intracranially injected with 104, 105, or 2 × 105 cells from 35 different hGSC cultures. n, number of injected mice. a Cultures are
divided by ATAC50 clusters, C1 (n= 14), C2 (n= 11), C3 (n= 9). b Cultures are divided by TCGA subtypes, PN (n= 6), MS (n= 21), CL (n= 7).
c–f Kaplan–Meier analysis of GBM patient survival. n, number of patients. c Patients are divided based on TCGA subtype. d Patients are divided based on
ATAC50. e Patients are divided based on MCO. f Patients are divided based on ATAC60 clusters. C2 versus C3. Log-rank (Mantel–Cox) test was used and
significant differences are indicated with p values. Source data are provided as a Source Data file for Fig. 6a–f.
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present in the peaks-to-genes data and could be linked to 4834
human ATAC peaks. These peaks were used in NMF (Supple-
mentary Fig. 8h, i) which produced clusters that, surprisingly,
showed a very high agreement with the ATAC50 clusters

(Fig. 7d). As reference we compared this to 1000 NMF analyses
of at each time 4834 randomly selected ATAC peaks from the
peaks-to-genes data, which did not reproduce the ATAC50
clusters (Supplementary Fig. 8j). To investigate the regulation of

a

MCO stratification of hGSC cultures (Jiang et al, Cell Rep, 2017)

18

2

2

1

9

4

0

3

11

C1

C2

C3

A
TA

C
50

1          2         3

MCO promoter-guided hGSC clusters

C1

C2

C3

A
TA

C
50

1          2         3

MCO DRE-guided hGSC clusters

15

0

3

4

7

5

0

7

9

C1

C2

C3

A
TA

C
50

1          2         3

0

10

20

mGSC ATAC-guided hGSC clusters

18

0

2

1

11

0

0

3

15

C1

C2

C3

A
TA

C
50

1          2          3

b

c

196 MCO
gene signature

166 Human 
homologue genes 

hGSC ATAC peaks 
in promoters

mGSC ATAC peaks Mouse genes hGSC ATAC peaks
Human homologue

genes

d

196 MCO
gene signature

166 Human 
homologue genes 

hGSC ATAC peaks 
in DRE regions

196 MCO
gene signature

166 Human 
homologue genes 

0

10

20

0

10

20

0

10

20

Consensus between
mouse-predicted
human clusters

and ATAC50 

3

12

14

3

1

2

13

1

1

BATF
FOSL1
ATF3
FOSL2
AP-1
JUNB

BACH2

SOX10
SOX9

SOX3

FOSL1
ATF3
BATF
JUNB
FOSL2

AP-1

BACH2
NF1
SOX10
SOX3

150

100

50

0

600

400

200

0

-lo
g1

0(
P

-v
al

ue
)

-lo
g1

0(
P

-v
al

ue
)

Ranking of mouse TF motifs

0               100              200             300             400

Ranking of human TF motifs

0               100              200             300             400

C
A
G
T
T
G
C
A

ACGTACT
G

CGT
AATCGCGA
T

TGA
C

CG TAACGT
A
C
T
G
C
A
T
G
T
C
G
A

ACG

T
AC

T
G

CG

T
AATCG

ACG

T
G T

A
C

CG T

AGACTAGTC
C
T
A
G
T
C
G
A

ACGTACT
G

CG TAATGCACGTG TA
C

CG TAAGCTGATCGTAC

A
C
T
G
C
A
T
G
T
C
G
A

ACG

T
AC

T
G

CG

T
AATCG

ACG

T
G T

A
C

CG T

AGACTAGTC
A
C
T
G
C
A
T
G
T
C
G
A

ACG

T
AC

T
G

CG

T
AATCG

ACG

T
G T

A
C

CG T

AGACTAGTC

C
A
G
T
T
G
C
A

ACGTACT
G

CGT
AATCGCGA
T

TGA
C

CG TAACGT

e f

MCO

MCO promoter

MCO DRE

mGSC ATAC

Fig. 7 Cross-species analysis reveal conservation between mouse and human GSC chromatin accessibility. a–d Analyses of mouse GSC-guided
clustering of hGSC cultures and their overlap with ATAC50 clusters. a Overlap with MCO gene expression classification22. Schematic figures were
produced by the authors. b Overlap with clusters produced by hGSC ATAC data at MCO gene promoters. c Overlap with clusters produced by hGSC ATAC
data at MCO DRE regions. d Overlap with clusters produced by converting mGSC cluster-unique ATAC data to hGSC ATAC data through peaks-to-genes
and genes-to-peaks conversions. e Ranking of enriched TF motifs in mGSC cluster-specific ATAC peaks. Red circles indicate top-10 significant motifs.
f Ranking of enriched TF motifs in the hGSC ATAC peaks obtained in (d). Red circles indicate top-10 significant motifs. Source data are provided as a
Source Data file for Fig. 7a–f.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29912-2 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2236 | https://doi.org/10.1038/s41467-022-29912-2 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the open chromatin in the mouse and human ATAC data used in
the mouse-dictated human ATAC50 clusters (Fig. 7d), we
compared enriched TF motifs in the 2075 mouse ATAC peaks
to those of the corresponding 4834 human ATAC peaks. This
showed an 90% overlap of the top-10 significantly enriched TF
motifs (Fig. 7e, f). As a reference, we compared this to a 1000
times repeated control experiment where enriched TF motifs in
2075 randomly selected mouse ATAC peaks and their corre-
sponding human ATAC peaks were compared (Supplementary
Fig. 8k). The TF motif overlap extended from 0 to 7 with an
average overlap of 18.3% (standard deviation= ±18.7%).

Our cross-species analyses supported a molecular relation of
the mGSC groups with the ATAC50 clusters, where the core set
of overlapping TF motifs in differential mouse and human ATAC
peaks showed a connection between mGC1GFAP and ATAC50
C1, mGC2NES and ATAC50 C2, and the intermediate character-
istics of mGC3CNP and ATAC50 C3 (Supplementary Fig. 8a). The
predictive capacity of the differential mouse ATAC peaks to
produce almost identical hGSC clusters as ATAC50 (Fig. 7d) that
displayed common TF regulatory mechanisms with the mGSC
groups (Fig. 7e, f) supported the role of neurodevelopmental
processes in GBM. In all, this provides strong support for the
presence of a conserved cell of origin-determined epigenetic
regulation of GBM.

Discussion
Cross-species analyses of transcriptomes have been performed for
many cancers, including primary malignant brain tumors such as
medulloblastoma40, ependymoma41, and GBM22,23, and have
helped to extend our knowledge about how developmental
mechanisms contribute to cancer. With increasing knowledge
about the central role of epigenetic regulation in GBM and GSCs
we set out to perform a cross-species analysis of chromatin-
accessibility in mouse and human GSC cultures that we had
previously analyzed by cross-species transcriptome analysis22.
The contribution of developmental regulation in GBM biology
and GSC function remains to a large extent to be deciphered and
we reasoned that it would be a strength to use the same exten-
sively characterized mouse and human GBM models to be able to
compare the previous transcriptome data with the new genome-
wide chromatin-accessibility data.

ATAC-seq analysis divided both mouse and human cells in
three molecularly and functionally distinct groups, and for both
species these groups were mainly determined by the chromatin
state of DRE regions and regulated by contrasting sets of TFs. The
three mGSC cell of origin groups were arranged, as we had
already shown for transcriptome data22, in a gradient of PN to
MS phenotypes with mGC1GFAP and mGC2NES at each end and
mGC3CNP in between. The three hGSC ATAC clusters aligned
well with recent ATAC-seq analyses of human GBM cells and
GSC cultures from independent cohorts8,16 and supported our
non-linear regression analysis which predicted our cohort to be
large enough to capture the spectrum of GBM inter-patient
heterogeneity. The hGSC ATAC clusters were similarly to the
mouse cultures found along the PN to MS axis where expression
of GSC state markers7 and analyses of TF circuits showed that C1
cultures were glial stem and progenitor cell-like, C2 profoundly
mesenchymal-like, and C3 intermediate with mostly astrocytic
and mesenchymal traits. The cross-species analysis of enriched
TF motifs in unique ATAC peaks of mouse and human data
strengthened the connection between mGC1GFAP and ATAC50
C1, mGC2NES and ATAC50 C2, and mGC3CNP and ATAC50 C3.
As previously shown for mGSC cultures of different origin22, also
ATAC50 clusters were functionally well-defined, where C1 cul-
tures were most self-renewing, proliferative, tumorigenic, and

drug-sensitive, C2 cultures most invasive and drug-resistant, and
C3 cultures least invasive and tumorigenic. Importantly, we found
that the functional differences between C2 and C3 also were
reflected in significantly different patient survival. The precision
of chromatin accessibility to separate prognostic patient groups
emphasized the importance of epigenetic regulation in GBM.

The considerable overlap of the MCO classification with the
ATAC50 clusters implied a cell lineage-controlled regulation of
hGSCs. This was corroborated by a second cross-species analysis
where we used the unique chromatin-accessible regions of the
mGSC data and converted those to chromatin-accessible regions
of hGSCs which almost completely could re-establish the
ATAC50 clusters. The 90% overlap of top-10 enriched TF motifs
in the mouse and human accessible chromatin regions provided
strong support for a conserved epigenetic cell lineage regulation
of GBM. Our cross-species analyses also validated that our three
PDGF-driven tv-a mouse GBM models can produce tumors
representative of the breadth of developmental regulation present
in our large collection of patient-derived GSC cultures. The fact
that one oncogenic driver (PDGFRA activation) could reproduce
the epigenetic heterogeneity of human GBM was in line with
results from the comprehensive single cell RNA-seq analysis of
human GBM7 where multiple cellular states were shown to be
present in all investigated tumors, while state distributions were
proposed to be dictated by certain genetic factors such as
PDGFRA. Taken together, this would argue for that GBM epi-
genetic heterogeneity is mainly the consequence cell of origin-
inherited developmental regulation which in turn provide the
basis for possible GSC states, where GBM driver mutations
determine the state transition dynamics.

We show the power of a chromatin accessibility-based func-
tional classification of GSCs. Continued work to identify the key
regulatory elements in the DREs dictating the different properties
and common features of the epigenetic clusters, and to validate
key TF circuits regulating GSC states by perturbation strategies
will be crucial to pinpoint therapeutic targets. Our analysis of
chromatin accessibility in mGSCs and hGSCs has revealed a
species conservation of the GBM epigenome and demonstrated
the importance of cell lineage diversity for accurate in vivo
modeling of GBM inter-patient heterogeneity.

Methods
Mouse GBM cell cultures. Previously established mouse GSC and NSC cultures
explanted from mouse primary GBM tissues or the SVZ of uninjected mice22 were
cultured on growth-factor depleted ECM-coated dishes (Sigma) in media con-
taining DMEM/F12 GlutaMAX mixed 1:1 (GIBCO-Invitrogen) with addition of
1% penicillin G/streptomycin sulfate (Sigma), B-27 without vitamin A (1:50;
GIBCO-Invitrogen), HEPES (0.2 mM; Sigma), and insulin (20 ng/ml; Sigma).
Mouse GSCs were cultured without addition of growth factors while mouse NSC
were cultured with FGF2 (20 ng/ml; PeproTech) and EGF (20 ng/ml; PeproTech).
Mouse cells used in all experiments were below passage 13. All mouse cell cultures
are listed in Supplementary Data 1.

Human GBM cell cultures. All 60 human GSC cultures used in this study have
been established in our laboratory and are part of the HGCC biobank (hgcc.se).
Handling of human tissues and data were performed in accordance with the
protocol approved by Uppsala ethical review board (2007/353) and following
informed written consent from all patients. All have been previously described and
most have been authenticated22,25,26. Cultures were maintained on poly-ornithine/
laminin-coated dishes in DMEM/F12 Glutamax (Gibco) and Neurobasal medium
(Gibco) mixed 1:1 with addition of 1% B27 (Invitrogen), 0.5% N2 (Invitrogen), 1%
penicillin/streptomycin (Sigma), 10 ng/ml each of EGF and FGF2 (Peprotech).
Human cells used in all experiments were below passage 20. All human cell cultures
are listed in Supplementary Data 1.

All cell cultures, both mouse and human, have been regularly analyzed for
mycoplasma infection using either a PCR-based method with the primers Myco1
(50-GGCGAATGGGTGAGTAACACG) and Myco2 (50-CGGATAACGCTTGC
GACTATG) (Invitrogen), or the KAPA kit (Techtum, cat# 25-KK7352), and have
at all times tested negative.
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ATAC-seq of mouse and human cell cultures. Omni-ATAC method was used on
mouse GSCs as previous described42. In brief, mouse GSCs (mGC1GFAP: SC81,
SC83, SC84; mGC2NES: SC50, SC52, SC64; mGC3CNP: SC37, SC74, SC112) were
counted and 50,000 cells were used per omni-ATAC reaction. Counted cells were
centrifuged at 500g in a fixed angle microfuge for 5 min at 4 °C and the supernatant
was discarded. Cell pellets were resuspended in 50 μl resuspension buffer (10 mM
Tris-Cl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% NP40, 0.1% Tween-20, and
0.01% digitonin), and incubated on ice for 30 min. Then, 950 μl resuspension buffer
was added and cells were centrifuged at 500g in a fixed angle microfuge for 10 min
at 4 °C. The supernatant was discarded, cell pellets were gently pipetted in trans-
posase mixture (12.5 μl 2× transposase buffer, 16.5 μl 1× PBS, 0.5 μl 1% digitonin,
0.5 μl 10% Tween-20, 2.5 μl Tn5 transposase (2 μM), 5 μl nuclease-free water), and
incubated 30 min at 37 °C. The transposase mixture was purified with MinElute
PCR Purification kit (Qiagen, 28004) and eluted in 10 µl Qiagen EB elution buffer.
Sequencing libraries were prepared following the original ATAC-seq protocol43.

Human GSCs and mouse NSCs were fixed with 1% formaldehyde (Thermo
Fisher Scientific, 28906) for 10 min and quenched with 0.125 M glycine for 5 min at
room temperature. After the fixation, ATAC-seq was performed as previous
described44. Cells were counted and 50,000 cells were used per ATAC-seq reaction.
The transposition reaction followed the normal ATAC-seq protocol. After
transposition, a reverse crosslink solution (final concentration 50 mM Tris-Cl PH
8.0 (Invitrogen, 15568-025), 1 mM EDTA (Invitrogen, AM9290G), 1% SDS
(Invitrogen, 15553-035), 0.2 M NaCl (Invitrogen, AM9759) and 5 ng/μl proteinase
K (Thermo Scientific, EO0491)) was added up to 200 µl. The mixture was
incubated at 65 °C with 1200 rpm shaking in a heat block overnight, then purified
with MinElute PCR Purification kit (Qiagen, 28004) and eluted in 10 µl Qiagen EB
elution buffer. Sequencing libraries were prepared following the original ATAC-seq
protocol43. All sequencing was performed on Illumina NovaSeq 6000, and at least
20 million paired-end sequencing reads were generated for each ATAC-seq library.

ATAC-seq data processing and quality analyses. All ATAC-seq data were
processed with same pipeline described below. After the Adapter sequence trim-
ming, the ATAC-seq sequencing reads were mapped to genome hg19 (for human
GSCs) or mm9 (for mouse GSCs and mouse NSCs) using bowtie2 (ref. 45). Mapped
paired reads were corrected for the Tn5 cleavage position with shifting +4/−5 bp
depending on the strand of reads. All mapped reads were extended to 50 bp
centered by Tn5 offset. The PCR duplication were removed using Picard (http://
broadinstitute.github.io/picard/) and sequencing reads from chromosome M were
removed. The Peak calling of each ATAC-seq library was performed with
MASC246 with parameters -f BED, -g hs, -q 0.01, -nomodel, -shift 0. Peaks were
merged into matrix with bedtools merge47. Raw reads within peaks were nor-
malized using EdgeR’s cpm48. Log transformation were applied on these normal-
ized peaks to calculate the pearson correlation among duplicates. Unique ATAC
peaks for hGSC ATAC clusters were selected using DESeq2 (ref. 49), with cutoff
p value <0.01, FDR < 0.01, log2 fold change > 1, peak average intensity > 30, and
coefficient of variance < 0.2. Mouse differential ATAC-seq peaks were identified by
comparing each mGSC group with each other using the parameters log2(fold
change) > 1, false discovery rate < 0.05.

The ATAC-seq saturation analysis from human GSC was performed by
randomly selecting samples and successively calculating the number of peaks
identified within the number of samples. The self-starting non-linear mode has
been used to predicate the saturation point.

Non-linear model:

PðxÞ ¼ aþ b � ecxþd

where P(x) represents predicted numbers of peaks, x corresponds the actual
number of peaks, a, b, c, and d represent the parameters for self-starting
simulation.

For ATAC-seq peak visualization, Washu Epigenome Browser was used to
visualize these presentative peak regions from mouse NSC, mGSC and hGSC.

To analyze the chromatin accessibility signal per gene, the accessibility of the
regions (no further than the window −1000 to +100 bp from a transcriptional start
site) were defined as promoter regions and the elements (located more than 3 kbp
from a TSS and no further than 500 kbp) were represented as DREs. The genomic
annotation of ATAC-seq was performed with seven genomic features: 3′ UTR, 5′
UTR, exon, intergenic region, intron, TSS, and TTS using ChIPseeker50.

For ATAC-seq peak visualization, Washu Epigenome Browser was used to
visualize these presentative peak regions from mouse NSC, mGSC, and hGSC.

Annotation of unique ATAC peaks to genes and GO analysis. Genomic
annotation of each ATAC peak to its nearest gene for mouse (Supplementary
Data 2) and human (Supplementary Data 5) was done using ChIPseeker50.
STRING (https://string-db.org/) was used to perform GO enrichment analysis and
the result was ranked by strength.

NMF cluster analysis of human GSC ATAC-seq data. The NMF method51 was
used to cluster Human GSC ATAC-seq with nsNMF52. In brief, ATAC-seq peaks
were ranked according to their variance from high to low. The cophenetic corre-
lation score was calculated with cluster number 2 to 8, and used to determine the

number of clusters following the standard method51. Top 70000 (20%) ATAC-seq
peaks from hGSC were used to build NMF clusters.

Genomic segmentation analysis for the human GSC ATAC-seq data. The
chromatin-state discovery and genome annotation for the ATAC-seq peaks from
the human GSC ATAC-seq peaks was performed with ChromHMM53 by down-
loading the data from following dataset: GSE119755 (H3K27ac ChIP-seq);
GSE121601 (H3K27ac and CTCF ChIP-seq); GSE92458 (H3K4me1 and H3K27ac
ChIP-seq); GSE74557 (H3K27me3 and H3K4me3 ChIP-seq). In total, seven
chromatin status referred to Epigenomic Roadmap Consortium were defined:
active promoter (H3K27ac and H3K4me3 together), active region (H3K27ac
alone), inactive regions (H3K27me3 alone), insulator (CTCF), strong enhancer
(H3K4me1 and H3K27ac together), weak enhancer (H3K4me1 alone) and no
signal, were used to characterize the human GSC ATAC-seq peaks.

Cluster-specific TF motif enrichment analysis of unique ATAC-seq peaks.
Specific ATAC-seq peaks for different mGSC groups and different hGSC clusters
were first calculated with DESeq2 using default parameters, and the specific dif-
ferential peaks for each group/cluster were analyzed for TF motif enrichment. In
brief, the Homer vertebrate TF database was used as input of TF motifs in
chromVAR, then TF accessibility deviation values for each sample were calculated
across the whole sample set. TF deviations with a threshold larger than 1 were kept,
and TF motifs with positive correlation with one group/cluster was selected to
represent that group/cluster. TFs were ranked based on their variabilities for each
group/cluster, and z-scores of deviations from each TF were visualized in a
heatmap.

Correlation analysis of enriched TF motifs and corresponding TF gene
expression. To more accurately predict TF activity, TF deviation and gene
expression were combined in a Pearson correlation analysis with the threshold
p value <0.05.

Identification of significantly enriched and variable TF motifs of unique
ATAC-seq peaks. To identify all significantly enriched and variable TF motifs of
the mGSC group-unique and hGSC cluster-unique ATAC peaks the deviation
score of TF motifs was positively correlated to each cluster with the cut-off para-
meters of variability >1.5 and q value <0.05. TFs representing each mGSC group
are listed in Supplementary Data 3 and TFs representing each ATAC50 cluster are
listed in Supplementary Data 6.

Linkage of hGSC ATAC-seq data to genes and gene expression correlation
analysis. To analyze the correlation between human ATAC-seq data and gene
expression array data we performed a correlation-based approach. First, ATAC-seq
peaks were annotated to their nearest genes (“peak-to-gene linkage”; Supplemen-
tary Data 5) within ±0.5 Mbp but ±3 kbp of TSS. For each pair, the Pearson
correlation between the ATAC-seq peak accessibility and the gene expression level
was calculated. Next, the mean and standard deviation for these correlations were
calculated to represent nonspecific correlation. Then, multiple correction was
performed using Benjamini–Hochberg procedure to adjust these p values. At last,
only pairs with false discovery rate (FDR) < 0.05 were kept.

TFs footprint analysis for cluster-specific hGSC ATAC-seq peaks. In previous
descriptions, Tn5 transposase inserted two adaptors separated by 9 bp54. Sequen-
cing reads aligned files in sam format by offsetting +4/−5 bp for all the reads
depending on the strand of reads. A shifted base sam file converted to bam format
and was sorted by samtools55. ATAC-seq reads for each ATAC50 cluster of
samples (C1, C2, and C3) were concatenated and 200 million reads were randomly
selected from each cluster and merged into bam files. Then TF footprint analysis
was performed on cluster-specific regions using the HINT-ATAC software. Input
motifs were obtained from the Homer56 database of vertebrates. Four hundred and
fourteen motifs were tested and filtered with p value <0.05. The normalized read
counts were centered by the motif sites around 200 bp genomic region for visua-
lizing motif footprints.

Consecutive sphere formation assays. Adherent human GSC cultures were
dissociated with TrypLE (Thermo Fisher, 12563011) into single-cell suspensions.
For primary sphere formation, 1000 cells/well were seeded in eight replicates in a
24-well low attachment plates. After 7 days, the number of primary spheres formed
for each culture were counted. The primary spheres were dissociated and 1000
cells/well were again seeded in eight replicates for secondary sphere formation that
were counted after 7 days. The same procedure was repeated for the tertiary
spheres.

Proliferation analysis. Human GSC cultures (5 × 103 cells/well) were seeded (Day
0) on laminin-coated coverslips in a 24-well plate using serum-free medium. The
next day (Day 1) 1 μg/μl of BrdU (Sigma, B5002) was added to each well for 16 h
before they were fixed with 4% formaldehyde (Histolab, 02176). After fixation cells
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were washed with PBS and permeabilized in 2M HCl for 20 min, followed by the
washing again with PBS. Cells on the coverslips were permeabilised in 0.2% Triton
X-100 with 3% bovine serum albumin (Sigma, A7906) for 5 min and washed thrice
with PBS. Cells were blocked in 0.2% Triton X-100 solution containing 1% BSA
and 5% normal goat serum (Dako, X0907) for 1 h. Primary antibody again BrdU
(1:100; Abcam, Ab6326) was applied overnight in a humidified chamber at 4 °C.
Cells were washed three times with 0.2% Triton X-100 solution for about 5 min
each time. Secondary antibody incubation was performed for 30–60 min in room
temperature with anti-rat Alexa 555 (1:400; Invitrogen, A21434). Lastly cells were
washed three times with 0.2% Triton X-100 solution for about 5 min each time and
mounted in Fluoromount (Sigma, F4680) with 0.1% DAPI in it. The stainings were
visualized and quantified under a LEICA DMi8 Fluorescent microscope. The
experiment was repeated three times on consecutive passages for all the cultures.

Extreme limiting dilution assay. Human GSC cultures were dissociated into
single-cell suspensions in serum-free medium. Cells were seeded in a 96-well low
attachments plates (CLS3474-24EA; Sigma) with the seeding density ranging from
100 cells to 1 cell per well, with 10 replicates per condition. After 7–10 days, the
number of wells without spheres for each cell density were counted. The number of
cells required to form at least one sphere per well was calculated by extrapolating
the values of x-intercept for each culture and plotted using PRISM 7 software. The
experiment was repeated three times for all cultures.

Invasion assay. Cell spheres obtained from hGSC cultures by seeding 50 or 100
cells per well in the ELDA experiment were used to measure the invasive capacity
for each culture. Collagen gel matrix was prepared and spheres were transferred
into the collagen gel matrix sandwich in a 24-well plate as described previously26.
Pictures were taken after 10 min and 24 h in an Eclipse TS 100 Nikon microscope.
Image J 1.52a software was used to measure the invasion area for each sphere.
From each hGSC culture at least 10 spheres were analyzed. The experiment was
repeated three times on consecutive passages for all cultures.

Drug response analysis in HGCCs. A panel of 28 anticancer compounds (Sup-
plementary Data 8) were used to measure the drug sensitivity of hGSC cultures.
Cells were seeded, 1000 cells/well in a poly-ornithine (Sigma, P3655) and laminin
(Sigma, L2020) coated 384-well plate (Thermo Fisher Scientific, 164688) with six
replicates for each culture and dose. The following day cells were exposed to the
compounds and drug response was measured after 72 h with the non-clonogenic
fluorometric microculture cytotoxicity assay. The experiment was repeated twice.
Dose response curves were plotted and the average area under the curve values for
each compound and culture were calculated. For each ATAC50 cluster (C1, C2,
C3) the average of AUC values for each compound was calculated and compared,
pairwise, between ATAC50 clusters. The log10 fold change between clusters were
calculated using Wilcoxon test and scatter plots produced as described
previously21.

In vivo xenograft analysis. All animal experiments were performed in accordance
with the rules and regulations of Uppsala University and approved by Uppsala
animal ethics committee (C237/12 and C182/14). Intracranial cell transplantations
of human GSC cultures were performed in neonatal NOD.CB17-Prkdcscid/NCrHsd
mice (Harlan) of both sexes as previously described22,25,26,28. Of the 321 mice
included in the study 60 were previously unpublished (Supplementary Data 9). In
brief cells were dissociated in TrypLE and resuspended in DMEM/F12 medium. A
volume of 2 μl cell suspension with cells ranging from 10,000 till 200,000 was
orthotopically injected using a motorized stereotaxic injector (Stoelting CO). The
coordinates measured from lambda were anterio-posterior 1.5 mm, medio-lateral
0.7 mm, and dorso-ventral 1.5 mm. Mice were monitored every second day and
euthanized through exposure to carbon dioxide upon symptoms of illness
according to the ethical permit humane endpoint, determined by Uppsala Uni-
versity guidelines on the recognition of pain, distress, and discomfort in experi-
mental animals. Such symptoms could for example include immobility,
piloerection, hunched posture and weight loss of 10%. Only mice that showed
disease symptoms before the endpoint of the experiment were used in the survival
analysis.

Quantification and statistical analysis. Statistical analysis was performed using
GraphPad PRISM 7 software or R version 3.4.0. Figures containing data from
multiple repetitions of experiments were presented as mean ± SEM. For sphere-
formation, ELDA, proliferation, and invasion experiments Student's t-tests were
performed. For mice and patient survival, log-rank (Mantel–Cox) test was the
statistical method used to calculate the significance in between the groups/clusters.

Cross-species analysis of TF motifs in cluster-specific mouse and human
ATAC peaks. The deviation scores of significantly enriched and variable TF motifs
of mouse (Supplementary Data 3) and human (Supplementary Data 6) GSC cul-
tures were compared. If the average deviation was larger than zero the TF was
defined as positively correlated.

Cross-species analyses of MCO genes and unique mouse ATAC peaks. MCO
genes were converted to human homolog genes and ATAC-seq data of promoter
regions or DRE regions of these genes were used to build NMF clusters. For the
mGSC ATAC-guided clusters we used the annotated mouse genes from the unique
mouse ATAC peaks (Supplementary Data 2) and converted these to human
homologs. The human homolog genes were converted to human ATAC peaks
through the peaks-to-genes analysis (Supplementary Data 5). NMF analysis was
performed on these hGSC ATAC peaks. To analyze the major regulatory sequences
in the (input) unique mGSC ATAC peaks and the (output) hGSC ATAC peaks we
performed TF motif enrichment analysis using HOMER of both data sets and
compared the top-10 ranked enriched TF motifs.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw data ATAC-seq data from human GSC and mouse GSC generated in this study
have been deposited in Gene Expression Omnibus of National Center for Biotechnology
information under access code GSE163853. The publicly available gene expression data
of human GSC used in this study is from previous published report22 and available in the
Gene Expression Omnibus of National Center for Biotechnology information under
access code GSE91393. The in vivo survival data of intracranially injected immune-
deficient mice from previous published reports22,25,26,28 are available in Supplementary
data 9. The remaining data are available within the Article, Supplementary Information
or Source Data file. Source data is provided with this paper.

Code availability
All detailed scripts used in this study were deposited and can be accessed via the link
https://github.com/chenlab2019/GSC and the corresponding DOI is as follows: https://
doi.org/10.5281/zenodo.6374965 (ref. 57).
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