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TIMELESS (TIM) was first identified as a molecular cog in the Drosophila

circadian clock. Almost three decades of investigations have resulted in an

insightful model describing the critical role of Drosophila TIM (dTIM) in

circadian timekeeping in insects, including its function in mediating light

entrainment and temperature compensation of the molecular clock. Fur-

thermore, exciting discoveries on its sequence polymorphism and ther-

mosensitive alternative RNA splicing have also established its role in

regulating seasonal biology. Although mammalian TIM (mTIM), its mam-

malian paralog, was first identified as a potential circadian clock compo-

nent in 1990s due to sequence similarity to dTIM, its role in clock

regulation has been more controversial. Mammalian TIM has now been

characterized as a DNA replication fork component and has been shown

to promote fork progression and participate in cell cycle checkpoint signal-

ing in response to DNA damage. Despite defective circadian rhythms dis-

played by mtim mutants, it remains controversial whether the regulation of

circadian clocks by mTIM is direct, especially given the interconnection

between the cell cycle and circadian clocks. In this review, we provide a

historical perspective on the identification of animal tim genes, summarize

the roles of TIM proteins in biological timing and genomic stability, and

draw parallels between dTIM and mTIM despite apparent functional diver-

gence.

Introduction

Circadian rhythms are common features in all domains

of life and are driven by molecular clockworks [1–6].
Molecular clocks incorporate a range of environmental

time cues, such as light–dark and temperature signals,

and metabolic signals to orchestrate daily rhythms in

physiology and behavior [4,6,7]. This allows organisms

to synchronize their biology to their external environ-

ment, thereby promoting organismal health and fitness

[8–11]. The animal circadian clock is powered by cell-

autonomous interlocked transcription–translation feed-

back loops (TTFLs) [6]. In the primary TTFL in Dro-

sophila, which relies heavily on Drosophila TIM

(dTIM) function, transcription factors CLOCK (CLK)

(ortholog of mammalian CLOCK) and CYCLE

(CYC) (ortholog of mammalian BMAL1) are positive

elements that heterodimerize and activate the expres-

sion of negative elements, PERIOD (PER) (ortholog

of mammalian PER1, PER2, and PER3) and dTIM

(functionally replaced by CRYPTOCHROMEs

(CRYs) in mammalian clockworks). In addition to

core clock components, CLK-CYC also activates the

transcription of other clock-controlled output genes

[12–14], often in tissue-specific manner [15–17]. To

complete the TTFL, PER, and dTIM form a repressor

complex that enters the nucleus in a time-of-day-

dependent manner [18–22] to repress CLK-CYC
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transcription activity [23–25]. This repression is

relieved when both PER and dTIM are degraded in a

proteasome-dependent manner [26–30]. In addition to

its role within the molecular clock, thermosensitive

alternative splicing of dtim RNA [31–34] and light sen-

sitivity [35–38] of TIM protein are key features that

allow dTIM to function at the interface between circa-

dian and seasonal timing.

In the mammalian clock, CRYs replace TIM to

partner with PERs to maintain circadian rhythms [39–
44]. Whether mammalian TIM (mTIM) is a key com-

ponent of the mammalian clock has been heavily

debated since it was first characterized [45–47]. On the

other hand, evidence supporting the role of mTIM in

DNA replication and DNA damage response is strong.

We will discuss the controversial role of mTIM in

timekeeping below.

This review summarizes the various roles played by

dTIM in Drosophila circadian clocks, in the regulation

of seasonal biology, and other non-circadian processes.

We will then discuss the circadian and non-circadian

functions of mTIM, highlighting data that either sup-

port its role in circadian timekeeping or are in conflict

with the notion. Finally, we conclude the review by

summarizing recent findings on the potential func-

tional parallel between dTIM and mTIM.

Drosophila TIM plays critical roles in
circadian timekeeping

Drosophila TIM in the molecular clock

Circadian timekeeping relies on cycling genes and pro-

teins that maintain a free-running period of approxi-

mately 24 h. Investigations to elucidate the inner

workings of the molecular clockwork started around

50 years ago, when Konopka and Benzer [48] isolated

the first three clock mutants in Drosophila melanoga-

ster via genetic screening. The mutations were all

located in the same loci, which were later confirmed as

the key clock gene, period (per) [49–53]. Hardin et al.

[54] suggested that PER may feedback to repress its

own mRNA expression to establish molecular oscilla-

tions that manifest into behavioral and physiology

rhythms. In the next few years, taking advantage of

high throughput genetic screening in Drosophila, Seh-

gal et al. [55] identified dtim as the second clock gene.

This gene encodes a protein with novel structure at the

time and the only recognizable sequence feature the

authors highlighted was a stretch of acidic residues

[56]. The arrhythmic PER nuclear localization as well

as locomotor activity in dtim null mutants has led to

the model illustrating how the coordination of per and

dtim may generate 24-h free-running period via nega-

tive feedback: (a) transcriptional activation of per and

dtim in midday due to the absence of nuclear PER; (b)

PER and dTIM heterodimerize and enter the nucleus

at dusk; (c) increasing amount of nuclear PER blocks

per and dtim mRNA transcription and accumulation

at night; (d) nuclear PER and dTIM decline because

of inhibited mRNA production and subsequent pro-

tein turnover in late night to early morning (Fig. 1)

[57]. This model was eventually expanded to incorpo-

rate CLK [58,59] and CYC [60] after their characteri-

zation, thereby establishing the TTFL model of the

Drosophila clock.

As a negative component in the molecular clock-

work, dTIM does not have intrinsic repression activity.

Instead, it is essential in maintaining rhythmic PER

expression and activity (Fig. 1). This is strongly sup-

ported by observations that PER rhythmic expression

and behavioral rhythmicity are abolished in dtim null

mutant [18] and mutants that are defective in TIM

nuclear entry [61,62]. Early studies suggest that dTIM

binds to and blocks the cytoplasmic localization

domain (CLD) of PER and thus reduces PER cyto-

plasmic retention [63]. Another study described a

mechanism by which dTIM antagonizes the activity of

DOUBLETIME (DBT, homolog of mammalian casein

kinase 1 delta/epsilon) in inhibiting PER nuclear entry

[22]. dTIM also acts as the major cargo recognized by

the Importin-a1 (IMPa1) nuclear entry machinery,

thus transporting PER into the nucleus [64]. Saez et al.

[61] identified a functional nuclear localization signal

(NLS) that is potentially recognized by IMPa1
(Fig. 2). Once in the nucleus, dTIM appears to be

bound to PER constitutively and facilitates PER

repression [25,65]. Sun et al. [66] suggested that dTIM

may act as a scaffold to promote PER-CLK interac-

tion. Alternatively, dTIM may facilitate yet-to-be-

characterized CLK kinase(s) [23,24,67] in the PER-

dTIM repressor complex to phosphorylate CLK and

inactivate transcriptional activity.

dTIM function is extensively regulated by posttrans-

lational modifications (PTMs). Notably, phosphoryla-

tion is the best-studied protein modification to achieve

dTIM time-of-day specific functions. Casein kinase 2

(CK2) and SHAGGY [SGG, homolog of mammalian

glycogen synthase kinase-3b (GSK3b)] have been

shown to phosphorylate both PER and dTIM and

promote nuclear entry [68–72] (Fig. 1). Interestingly,

once in the nucleus, PER-dTIM complexes are sub-

jected to phosphorylation-dependent nuclear export,

providing an additional means to control nuclear accu-

mulation [21,67]. Protein phosphatases also participate

in regulating PER-dTIM nuclear accumulation [73–
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75]. Over the past 10 years, site-specific functions of

dTIM phosphorylation have been characterized in a

few studies (Fig. 2). In vivo functional analysis leverag-

ing mutagenesis of dTIM protein revealed that T113 is

critical for rhythmic dTIM expression [62]. Mutating

T113 to non-phosphorylatable alanine (A) abolishes

dTIM nuclear entry, whereas mutations at a nearby

proline (P115) produce similar defects. Combining

genetic and biochemical studies, Top et al. [72] showed

that SGG and CK2 phosphorylate five residues at ST

region (S297, T301, T305, S309, and S313) to promote

dTIM nuclear accumulation. Interestingly, SGG and

CK2 appear to regulate PER-dTIM only in a subset

of clock neurons, which may contribute to the diver-

gent functions of specific neuronal groups within the

circadian neuronal circuitry. This could potentially

explain how alteration in TIM phosphorylation in flies

carrying timblind allele (A1128V, L1131M) results in

lengthened locomotor activity rhythms but normal

eclosion rhythms [76]. Activity and eclosion rhythms

are two well characterized output of the Drosophila

clock and are normally altered to the same extent in

most fly mutants, including the three per mutants

Konopka and Benzer identified in 1971 [48]. The

mechanisms by which kinases phosphorylate PER-

dTIM in specific neurons remain unclear. Since alter-

native pre-mRNA splicing patterns were observed in

different clock neurons including for sgg mRNAs [77],

we speculate that this may result in cell-type-specific

posttranslational modification programs for key clock

proteins, including dTIM.

Recently, two studies harnessed mass spectrometry pro-

teomics to identify dTIM phosphorylation sites [67,75]

(Fig. 2). Kula-Eversole et al. [75] identified five dTIM

Fig. 1. Drosophila TIM (dTIM) is a core component of the molecular oscillator. During the day, CLK-CYC heterodimers activate the

transcription of rhythmic genes, including per and tim in the nucleus [6]. In the cytoplasm, dTIM undergoes proteasomal degradation

mediated by CRYPTOCHROME (CRY) [35–38] and JETLAG (JET) [28,88] upon light exposure. CULLIN-3 (CUL-3) has also been observed to

mediate dTIM degradation in a light-independent manner [27]. Early in the night, SHAGGY (SGG) [68], casein kinase 1a (CK1a) [187], casein

kinase 2 (CK2) [69,70], Importin-a1 (Impa1) [64] and phosphatase of regenerating liver-1 (PRL-1) [75] promote nuclear accumulation of PER-

dTIM complex. This is antagonized by DOUBLETIME (DBT) [25], protein phosphatase 1 (PP1) [74] and protein phosphatase 2A (PP2A) [73].

Once PER-dTIM complex is in the nucleus, CK2-dependent phosphorylation of dTIM (S1404) inhibits PER-dTIM nuclear export by exportin 1

(XPO1) complex, retaining PER-dTIM complex in the nucleus [67]. At midnight, nuclear PER–dTIM complex interacts with CLK-CYC and

represses their transcriptional activity [23,25]. From late night to early morning, CRY and JET mediate light-dependent TIM degradation

[28,88], whereas DBT and SUPERNUMERARY LIMBS (SLIMB) mediate PER degradation [26,29]. There have also been reports suggesting

the involvement of SLIMB in TIM degradation [27].
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phosphorylation sites in Drosophila S2R+ cells coexpress-

ing dTIM and relevant kinases (SGG and CK2). S586

and T991 are shown to be dephosphorylated by Phos-

phatase of Regenerating Liver-1 (PRL-1), which in turn

promotes dTIM nuclear accumulation. In Cai et al. [67],

we identified 12 phosphorylation sites in PER-bound

dTIM from Drosophila tissues. In particular, we showed

that S1404 phosphorylation inhibits the interaction

between dTIM and the nuclear export complex, thereby

promoting dTIM nuclear accumulation. S1404 phospho-

rylation status in fly tissues was confirmed using phospho-

specific antibody.

In addition to nuclear accumulation, phospho-

rylation also regulates dTIM protein turnover.

CULLIN-3 (CUL-3) and SKP1-CUL1-F-box-protein/

SUPERNUMERARY LIMB complex (SCF/SLIMB)

differentially facilitates dTIM degradation depending

on its phosphorylation status [27,78], thus fine-tuning

dTIM phase-specific functions (Fig. 1). Besides phos-

phorylation, O-GlcNAcylation at multiple residues on

dTIM was also identified [67]. Since O-GlcNAcylation

modifies serine/threonine residues and regulates the

function of many proteins including PER and CLK

[79–82], it will be interesting to determine how the two

types of PTMs coordinate to regulate dTIM phase-

specific functions. Given O-GlcNAcylation is nutrient-

sensitive, this could be a mechanism by which meta-

bolic signals can integrate with time-of-day environ-

mental signals to promote robust circadian rhythms.

Finally, besides PTMs, dtim expression is regulated

by posttranscriptional mechanisms. Carbon catabolite

repression-negative on TATA-less deadenylation com-

plex (CCR4-NOT) has been shown to regulate dtim

mRNA stability to support phase-specific dTIM func-

tion [83]. Drosophila tim also exhibits alternative splic-

ing pattern in response to environmental conditions,

which will be described later.

Drosophila TIM and light entrainment of

circadian rhythms

To confer fitness, a circadian clock must be synchro-

nized to local time. Environmental time cues such as

daily light–dark or temperature cycles entrain the cir-

cadian clock [84]. Identification of clock genes paved

the way to investigations on molecular components

that mediate clock entrainment. Two years after the

identification of dtim in 1994, four exciting papers

showed that dTIM displays light sensitivity, thus cou-

pling the molecular clockwork to photic input from

the environment [35–38] (Fig. 1). CRY is the major

photoreceptor that mediates TIM light-dependent

Fig. 2. Schematic illustrating domain structure of TIM isoforms generated from alternative splicing. All amino acid numbering is based on

the TIM-L1421 isoform. ‘TIM-S start’ denotes alternative translation start site for TIM-S. Previously described domains of TIM: 32 amino acid

region (amino acid [aa] 260–291) [188], also known as serine-rich domain (SRD) (aa 260–292) [71]; serine/threonine (ST)-rich region (aa 293–

312) [72]; a stretch of acidic amino acid residues (acidic aa) (aa 383–412) [56]; PER binding domain 1 (PER BD1) (aa 536–610) [61]; nuclear

localization sequence (NLS) (aa 558–593) [61]; C-terminal tail-like sequence (CTL) (aa 640–649) [87]; PER binding domain 2 (PER BD2) (aa

747–946) [61]; and cytoplasmic localization domain (CLD) (aa 1261–1421) [61]. P = phosphorylation sites [62,67,72,75]. Phosphorylation sites

in black = identified via mass spectrometry; blue = identified via in vivo functional analysis but have not been validated by mass

spectrometry or phospho-specific antibodies. TIM-cold, TIM-SC, TIM-M isoforms are based on Shakhmantsir et al., Foley et al., Martin

Anduaga et al. [31–33].
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degradation [85–87]. Light induces CRY conforma-

tional change, thus enabling CRY to bind to dTIM.

Thereafter, E3 ubiquitin ligase JETLAG (JET) along

with CRY promotes rapid TIM proteasomal degrada-

tion [28,87,88] upon yet uncharacterized TIM tyrosine

phosphorylation [89]. QUASIMODO (QSM), a light-

responsive protein expressing predominantly in CRY-

negative clock neurons, also trigger dTIM degradation

upon light exposure [90]. dTIM degradation promotes

PER turnover, thus resetting the circadian clock [37].

Drosophila TIM and temperature compensation

of the circadian clock

Whereas rates of chemical reactions are often

temperature-dependent on a molecular level, a clock is

only meaningful if its period length stays constant over a

wide range of temperatures. The circadian clock has the

property of temperature compensation; its pace is stable

over a wide range of temperatures [84]. PER was first

identified to participate in this process. A repetitive

threonine-glycine (Thr-Gly) tract in PER exhibits more

flexible conformation in higher temperature [91], which

correlates with the observation that flies expressing PER

with a deletion in the Thr–Gly tract display impaired tem-

perature compensation of the circadian clock [92]. In wild

D. melanogaster populations, the Thr–Gly tract is poly-

morphic in length; this is adaptive and enables flies to

maintain the pace of the clock in environments with dif-

ferent range of temperatures [93].

dtim has also been demonstrated to contribute to tem-

perature compensation of the clock. At the posttranscrip-

tional level, manipulating dtim thermosensitive splicing

results in defective temperature compensation [32,33].

Elucidating the function of each dtim isoform under dif-

ferent temperatures could help understand how they regu-

late temperature compensation in future studies. At the

posttranslational level, mutant lines bearing a number of

amino acid substitutions, timrit (P1116A) and timblind,

exhibit impaired temperature compensation [94,95]. The

mechanism by which dTIM regulates temperature com-

pensation remains unclear. One possibility is that temper-

ature directly modulates PER-dTIM interaction. Another

possibility is that temperature may indirectly modulate

site-specific phosphorylation to regulate phase-specific

functions of PER-dTIM and achieve temperature com-

pensation. In mammalian systems, temperature has been

shown to determine the priority of competing phosphory-

lation sites to regulate PER2 turnover rate [96,97]. There-

fore, mass spectrometry-based phosphorylation site

mapping in combination with molecular genetics may fur-

ther expand our understanding of how dTIM phosphory-

lation confers temperature compensation in flies.

Sequence polymorphism and
alternative splicing of Drosophila tim
regulates seasonal biology

To prepare for seasonal changes, plants and animals

rely on internal photoperiodic timers, allowing them to

undergo physiological and behavioral changes to sur-

vive unfavorable times [98–100]. Genetic analysis of

wild D. melanogaster populations as well as molecular

studies revealed that polymorphism at the dtim locus

facilitates seasonal adaptation (Fig. 3A). ls-tim is a

derived dtim allele that evolved 300–3000 years ago in

Europe [101] and has a G nucleotide insertion

upstream of the original ATG translational start site

[102,103]. This generates an extra ATG 23 amino acids

upstream of the TIM-S start codon. ls-tim allele thus

generates two protein isoforms: TIM-S and a 23-aa

longer TIM-L (Fig. 2) (TIM-S and TIM-L were origi-

nally named S-TIM and L-TIM but we are renaming

them to follow the convention used in more recent

publications describing other TIM protein isoforms

resulting from alternative pre-mRNA splicing). TIM-L

displays reduced light sensitivity, largely due to its

reduced binding affinity to CRY [88]. Since light-

dependent degradation of dTIM is critical to the reset-

ting of the clock, reduced light sensitivity is thought to

keep the molecular clockwork rhythmic in long sum-

mer days [104]. Furthermore, in anticipation of the

onset of winter, flies carrying ls-tim alleles enter repro-

ductive dormancy earlier in autumn as compared with

flies carrying only s-tim alleles [103]. This is expected

to be adaptive for flies inhabiting higher latitudes

where harsh conditions are common in winter. For

this reason, it was surprising that Tauber et al. [103]

initially found the highest ls-tim allele frequency in

southeastern Italy and decrease of ls-tim as the sam-

pling distance increases both northward and south-

ward. Subsequent analysis now suggests that this

derived allele is only 300–3000 years old; it is still

under selection and has not yet achieved fixation [101].

In fact, more extensive sampling in Spain [101] and in

North America [105] reported a strong latitudinal cline

where ls-tim allele increases in frequency as latitude

increases.

In addition to sequence polymorphism at the dtim

locus, dtim displays thermosensitive alternative splic-

ing. This has been proposed to be a temperature sens-

ing mechanism to regulate D. melanogaster seasonal

biology. In response to temperature changes, dtim pro-

duces four splice variants: tim-cold, tim-short and cold

(tim-sc), tim-M (also called tim-tiny), and tim-L (full-

length isoform) (Fig. 2). At moderate temperature

(25 °C), constitutively spliced tim-L is the major
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isoform and produces full-length TIM [32] (Fig. 3B).

tim-cold and tim-sc are major isoforms in colder tem-

peratures (10–18 °C) [32–34,106], whereas tim-tiny

intron is retained in higher temperatures, resulting in

high levels of tim-M isoform (29–35 °C) [31,32,107].

Thermosensitive alternative splicing is also observed in

three other Drosophila species, indicating this could be

a conserved mechanism across the genus [32]. Less is

known regarding the functional divergence of each

dtim splice variant and how the pattern of splicing

modulates the circadian clock in different seasonal

conditions. Since some splicing events generate trun-

cated TIM proteins, they could differentially affect

TIM function in the circadian clock. For example, the

TIM-SC protein lacks the C-terminal CLD and part

of PER-binding domain, which may compromise

nuclear accumulation of the PER-dTIM complex. Fur-

ther functional studies on TIM isoforms are required

to test this hypothesis.

There has been a substantial amount of evidence to

support the role of dtim in regulating seasonal biology

in addition to the studies mentioned above. They

include the observed correlation between tim alleles

and photoperiodic diapause in D. triauraria [108],

changes in tim expression levels in response to pho-

toperiod in several insect species [109,110], and differ-

ential photosensitive alternative splicing of tim

observed in cold-adapted D. montana populations col-

lected in a wide latitudinal range [111]. We recently

provided evidence supporting the role of dTIM in sea-

sonal physiology in D. melanogaster [34] (Fig. 3B). We

showed that dtim null mutants fail to enter reproduc-

tive dormancy in simulated winter condition, while

flies overexpressing dtim exhibit higher incidence of

reproductive dormancy. We report evidence indicating

that the cold-induced and light-insensitive isoform

TIM-SC facilitates the accumulation of EYES

ABSENT (EYA) protein in winter condition, an event

that is sufficient to promote reproductive dormancy. It

remains unclear why TIM-SC is not subjected to light-

dependent degradation and how it interacts with EYA.

One possibility is that the truncated protein reduces

the binding affinity to CRY and/or JET, and somehow

stabilizes EYA via yet unknown mechanisms. A

temperature-dependent alternative splicing event is also

observed in frequency (frq), a key repressor in the

A

B

Fig. 3. Role of Drosophila TIM in regulating

seasonal biology. (A) Flies carrying s-tim

allele express TIM-S, whereas flies carrying

ls-tim allele express both TIM-L and TIM-S.

Sampling of flies in North America [105] and

on the eastern side of the Iberian Peninsula

[101] showed that ls-tim allele frequency

exhibits a latitudinal cline and increases

with latitude. Since TIM-L is less

susceptible to light-activated CRY-

dependent degradation, flies carrying ls-tim

allele interpret light signal differently and

have higher inducibility of reproductive

dormancy at the onset of winter to survive

harsh conditions [103]. (B) High temperature

promotes accumulation of TIM-M isoform

[31]. TIM-L is the major isoform at warm

temperature [32]. Cold temperature

promotes the accumulation of TIM-SC and

TIM-cold isoforms [32,33]. TIM-SC can

potentially stabilize EYES ABSENT (EYA) to

promote reproductive dormancy [34].

6564 The FEBS Journal 289 (2022) 6559–6575 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Timeless in circadian clocks and beyond Y. D. Cai and J. C. Chiu



Neurospora clockwork [112–114]. It is possible that this

temperature-regulated event also contributes to Neu-

rospora seasonal adaptation.

What is the mechanism by which temperature regu-

lates dtim alternative splicing? So far, splicing regula-

tor P-element somatic inhibitor (PSI) [33] and triple

small nuclear ribonuclearprotein (tri-snRNP) spliceo-

some [31] have been shown to regulate dtim splicing.

Temperature is known to modulate alternative splicing

at multiple levels, including the expression of splicing-

related genes [115,116], PTMs [117], spliceosome

assembly [118], and spliceosome localization [119,120].

Non-circadian roles of Drosophila TIM

The fact that dTIM is expressed and differentially reg-

ulated in non-clock cells has led to the investigation of

non-circadian roles of dTIM. A few studies revealed

unexpected results regarding dTIM circadian expres-

sion pattern and light sensitivity in non-clock cells.

dTIM and its binding partner PER remain constitu-

tively cytoplasmic in the fly ovary, which is known to

lack intracellular molecular clocks [121–123]. This is

unlike the subcellular shuttling of PER-dTIM observed

consistently in clock neurons. Furthermore, dTIM in

the follicle cells is not susceptible to light-induced

degradation [123,124]. It is noteworthy that egg-laying

rhythms persist under constant light, in contrast to the

arrhythmic eclosion and locomotor activity rhythms in

the same condition [125]. Whether the peculiar PER-

dTIM behavior in ovaries relates to rhythmic egg lay-

ing under constant light remains unclear. Although

dtim null mutants display reduced fitness in terms of

female fertility and fecundity [123], it has been pro-

posed that this is likely due to the overall loss of the

circadian clock [11]. To examine non-circadian roles of

dtim, it is necessary to manipulate dtim specifically in

target cells/tissues. One possibility is that dtim

expressed in non-clock cells has a residual role in

maintaining chromosome integrity inferred from its

ancestral paralog dTIMEOUT, the homolog of mTIM

[126] (Fig. 4A). The non-circadian function of mTIM

will be discussed below.

Debate on mammalian TIM function in
circadian timekeeping

Evidence supporting the role of mammalian TIM

in the circadian clock

Whether mTIM is a core component in the mam-

malian clock has been controversial. Due to their

sequence similarity, mTIM was first identified as the

homolog of dTIM in late 1990s [127–130]. Because of

its rhythmic mRNA expression in the mammalian

brain [127,131] and physical interaction to core clock

proteins mPER1/2/3 [130,132] and CRY1/2 [133–136],
mTIM was implicated as a clock protein. In addition,

short-term mTIM knockdown causes phase resetting,

whereas long-term knockdown of mTIM disrupts cir-

cadian neuronal activity rhythms [132]. Recently, Kur-

ien et al. [137] reported a mutation in human TIM

(hTIM) that causes familial advanced sleep phase syn-

drome (FASPS), reviving the discussion of the poten-

tial role of mTIM in mammalian clockworks. This

mutation inhibits TIM nuclear accumulation and

destabilizes PER/CRY2 repressor complex at the

molecular level.

Evidence contradicting a direct role of

mammalian TIM in regulating circadian rhythms

Multiple lines of evidence argue against a direct role

of mTIM in the molecular clock. Homozygous mTim

mutant mice are lethal in embryonic stage, whereas

other homozygous clock mutants remain viable, sug-

gesting a critical non-circadian role of mTIM [45]. The

binding of mTIM to CRY1/2 does not necessarily sup-

port a circadian role of mTIM given that CRY1/2 also

participates in non-circadian processes. CRY1 and

CRY2 are known to modulate DNA damage response

[138] and cell proliferation [139], and the interaction of

mTIM-CRY1 and mTIM-CRY2 are critical for check-

point activation [140,141]. Furthermore, phylogenetic

analysis revealed that mTIM is an ortholog of dTIME-

OUT [142]. Drosophila TIMEOUT is the widely con-

served ancestral paralog of dTIM among eukaryotes

that originated from gene duplication at the time of

Cambrian Explosion [45,46,143]. Unlike dTIM, dTI-

MEOUT is an essential gene in Drosophila develop-

ment and maintenance of chromosome integrity [126].

Non-circadian roles of mammalian TIM

There have been extensive investigations focusing on

non-circadian roles of mTIM (Fig. 4B,C). Similar to

its yeast homolog topoisomerase 1-associated factor 1

(tof1) [144], mTIM and its evolutionally conserved

partner Tim-interacting protein (TIPIN) maintain

replisome stability [145,146] and promote fork progres-

sion through hard-to-replicate regions [147–151]. In

response to DNA damage, mTIM collaborates with

cardinal signaling kinases ataxia telangiectasia-mutated

checkpoint kinase 1 (ATR-CHK1) [140,152], ataxia

telangiectasia and Rad3-related checkpoint kinase 2

(ATM-CHK2) [153], and poly [ADP-ribose]
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polymerase 1 (PARP1) [154,155] to facilitate proper

checkpoint control and DNA repair [156–158].
Because of its role in genome maintenance, it is not

surprising that mTIM dysregulation is commonly

found in many cancer types [153,159,160]. Specifically,

mTIM promotes cancer development by protecting

cancer cells from replication stress and cell cycle arrest

[153,161,162]. Thus, mTIM appears to be a promising

target for anticancer treatment. However, given its

ability to influence the circadian clock, the side effect

of clock disruption needs to be considered, as clock

disruption has been linked to increased risks of many

diseases including metabolic disorders and cancers

[163,164].

Considering the role of mTIM discussed in this sec-

tion, it is noteworthy that the period shortening phe-

notype on the molecular clock resulting from the

mTIM(R1081X) mutation is limited to proliferative

cells [137]. Since the circadian clock ticks regardless of

cell proliferation status, why was the period shortening

phenotype only observed in proliferating cells? We

speculate that mTIM modulates the circadian clock

through its role in other cellular processes occurring

only in proliferating cells. Specifically, its elevated

expression in proliferative tissues such as spleen and

thymus are consistent with its cell cycle-related func-

tion [137,165]. DNA damage has been shown to

induce a circadian phase shift [166–168], with mTIM

downregulation attenuating this effect [165]. Interest-

ingly, the FASPS mutation found in hTIM lacks the

C-terminal domain critical for mTIM-mediated DNA

repair and checkpoint activation through replication

stress response regulator SDE2 and PARP1 binding,

respectively [153,154,162]. Taken together, it is

A

C

B

Fig. 4. Drosophila TIMEOUT and mammalian TIMELESS in genome maintenance. (A) Drosophila TIMEOUT interacts with Ataxia

telangiectasia and Rad3-related (ATR) (genetically) to maintain genomic stability [126]. (B) mTIM and Tim-interacting protein (TIPIN) couple

replicative DNA helicase CMG (CDC45, MCM2-7, GINS) and DNA polymerase (Pol) [145,146] in progressing replication fork. (C) In response

to DNA damage, mTIM physically interacts with and recruits poly [ADP-ribose] polymerase 1 (PARP1) to damaged sites [153,154]. ATR and

ataxia telangiectasia mutated (ATM) can both sense DNA damage and phosphorylate checkpoint kinase 1/2 (CHK1/2) [189]. This is

dependent on a number of partner proteins including mTIM [140,152,153].
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plausible that the period shortening effect in proliferat-

ing cells can be attributed to a non-circadian role of

mTIM.

Despite functional divergence of mTIM and dTIM,

there are still some parallels. Drosophila TIMEOUT is

expressed in the optic lobe of adult Drosophila and

contributes to light entrainment, analogous to light

sensitivity of dTIM [126]. Decreased dTIM and mTIM

nuclear accumulation in Drosophila and mammals

respectively both lead to similar outcome in circadian

rhythms at the molecular and behavioral levels

[67,137] (Fig. 5). This highlights an unexpected func-

tional parallel between mTIM and dTIM in circadian

regulation.

Conclusion and perspectives

The very name of the timeless gene hints at its critical

function in biological timing. Since its discovery,

almost three decades ago in D. melanogaster, a large

body of work have uncovered the role of dTIM as a

cardinal clock protein necessary to maintain circadian

timekeeping, mediate light entrainment, and modulate

temperature compensation. Thermosensitive splicing

of tim mRNA in combination with the light sensitiv-

ity of dTIM protein enables its role in regulating sea-

sonal physiology. Its ancestral paralog timeout

(mTIM in mammals) surprisingly plays a distinct role

in the maintenance of genomic stability. An important

unanswered question regarding the role of dTIM in

biological rhythms is how splice variants affect dTIM

protein function in response to thermal and photic

cues. The answer would clarify how the circadian

clock interplays with seasonal timing. Another area of

interest is to elucidate how mTIM regulates the

molecular clockwork and potentially sits at the inter-

section between circadian clocks and cell cycle regula-

tion. This would further shed light on the functional

similarity and divergence of the two TIM paralogs.

More importantly, this would extend our understand-

ing of the interconnection between the circadian clock

and the cell cycle. Circadian regulation of the cell

cycle has been found in all domains of life [169–178],
and the cell cycle also influences the phase and ampli-

tude of circadian rhythms [166,179,180]. Given the

accumulating evidence on circadian regulation of the

cell cycle in the context of cancer and tissue regenera-

tion upon injury [181–186], understanding the interac-

tion of the circadian clock and the cell cycle could

pave the way for innovative therapeutics for cancer

and improved recovery of patients who suffered inju-

ries.
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[137].
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