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Abstract
This paper provides a comprehensive overview of the applications of game theory in deep
learning. Today, deep learning is a fast-evolving area for research in the domain of
artificial intelligence. Alternatively, game theory has been showing its multi-dimensional
applications in the last few decades. The application of game theory to deep learning
includes another dimension in research. Game theory helps to model or solve various
deep learning-based problems. Existing research contributions demonstrate that game
theory is a potential approach to improve results in deep learning models. The design of
deep learning models often involves a game-theoretic approach. Most of the classification
problems which popularly employ a deep learning approach can be seen as a Stackelberg
game. Generative Adversarial Network (GAN) is a deep learning architecture that has
gained popularity in solving complex computer vision problems. GANs have their roots
in game theory. The training of the generators and discriminators in GANs is essentially a
two-player zero-sum game that allows the model to learn complex functions. This paper
will give researchers an extensive account of significant contributions which have taken
place in deep learning using game-theoretic concepts thus, giving a clear insight, chal-
lenges, and future directions. The current study also details various real-time applications
of existing literature, valuable datasets in the field, and the popularity of this research area
in recent years of publications and citations.
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1 Introduction

Game theory is an essential field for research, and it helps to choose the suitable strategy
of the players in a game. It has several applications in various domains. Game theory has
significant applications in technology, especially concerning computer science, electron-
ics, aerospace engineering, etc. [90, 91, 96, 99, 100]. Different types of games are
briefed in Fig. 1. Alternatively, Deep Learning is the study of various learning algo-
rithms that uses multiple layers of non-linear processing units. The output of the previous
layer is taken as input by each successive layer. Deep learning algorithms are primarily
classified into three categories, e.g., supervised, semi-supervised and unsupervised. Deep
Learning algorithms implement higher-level features that are extracted from lower-level
features. The depth in neural networks plays an essential part in the outcome of the
model. The framework of the neural networks can represent dynamic environments, and
similarly, dynamic environments can further be presented as games [37, 72].

Artificial intelligence has adapted the game theory to solve or model various real-
time problems, and it is observed that the performance is improved while applying
game theory [43, 76, 124, 148]. This paper establishes the connection of deep
learning algorithms with game theory. The applications of evolutionary computing
and swarm intelligence are discussed in [20]. This paper mainly focuses on applica-
tions of game theory to solve GAN models. GAN has received a tremendous response
from several research communities because of its complex problem-solving abilities
and performance improvement [19, 36, 130].

The multilayer neural network comprises any number of unit neurons and may determine
multimodal output functions. The multimodality nature of the output function creates hard-
ships to optimize deep neural network models. Strategic Deep Learning is a defying game task
[62, 84, 136, 141, 151]. Table 1 shows research articles in game theory, deep learning, and
their collaborative research as per the records obtained from various databases. In a nutshell,
the contribution of the paper is as follows:

& This paper reviews several significant contributions to applying game theory in deep
learning models and achieving performance improvement.

& Paper considers a variety of evolutionary algorithms from game-theoretic perspectives.
& The paper suggests how the bonding between game theory and deep learning can be

strengthened.

Fig. 1 Types of games
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Indexing of this paper is as follows: basics and background of game theory and deep learning
are discussed in section 2; game theory in deep learning and artificial intelligence is discussed in
section 3; after that, game theory in reinforcement learning (section 4) is followed by game theory
in GAN (section 5); section 6 discusses implementation environment of the current study; section
7 outlined challenges and future direction and section 8 summarizes the discussion.

2 Basics and background

This section discusses fundamentals and rudimentary concepts that are directly or indirectly
applied in the existing literature. This section is a platform for the readers to enter into the field
and helps readers understand advancements in the field. The objective of this section is to
formally introduce important terms in both areas to the readers before elaborating their
connections in subsequent sections. This paper discusses various applications of game theory
in the domain of deep learning. Thus, this section initially introduces the game theory,
followed by an introduction to deep learning architectures and techniques. In the subsequent
sections, the scope of the paper is narrowed down, and specific areas of game theory and deep
learning are discussed in detail. Section 2.1 explains various game-theoretic concepts, and
section 2.2 discusses multiple deep learning architectures and techniques.

2.1 Game theory overview

Game theory is a significant area of applied mathematics to model various real-world complex
scenarios as games. Thus, game theory is broadly used in multiple fields where strategic
interaction among the players plays a vital role.

Table 1 A statistics of the number of research articles on game theory, neural/network/deep learning, and
applications of game theory in deep learning as per the records of various databases (Data obtained on 20th
June 2020)

Sr
No

Database Total
Results

Game
theory
(From first
25 results)

Neural Network/
Deep learning
(From the first 25
results)

Both Game theory
and Deep
Learning (From
first 25 results)

Total
Citations
(From first
25 results)

1 Google Scholar 2270 23 13 8 1305
2 Sage Journal Database 8 0 7 0 (Exact

citation
metrics
is not
avail-
able)

3 ProQuest/ABI/Inform
(Books, Journal Article,
video, Dissertations and
thesis/Working Paper)

18 4 12 0 31

4 EBSCO 31, 625 7 25 5 1228
5 JSTOR 5 0 2 0 23
6 ScienceDirect 51 3 12 2 127
7 Citeseerx 1,16,135 18 21 16 1443
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2.1.1 Game

A game can be defined as a competitive or cooperative interaction among the objects or
players [89]. The nature of interactions among players determines the behavior of games.
There are several types of games in the game theory: cooperative and non-cooperative, zero
and non-zero, sequential and simultaneous, normal-form and extensive-form, finite and
infinite, perfect-information and imperfect-information combinatorial, Bayesian, stochastic,
etc. In this paper, cooperative and non-cooperative, zero and non-zero, normal-form and
extensive-form, perfect-information and imperfect-information, finite and infinite, and sto-
chastic games are addressed, and the games are played between single or multiple players. The
basic concepts of the games mentioned above are as follows:

(a) Cooperative and non-cooperative games: The players cooperatively choose their
strategies to maximize the overall payoff [23]. Alternatively, the players choose their
strategies to maximize their self-payoffs for non-cooperative games [93].

(b) Zero and non-zero games: In zero-games, the value of a game is zero. On the other hand,
it can be defined as the summation of payoffs for adversary players for any set of actions
must be zero. Alternatively, the value of a non-zero game is non-zero [126].

(c) Normal-form and extensive-form games: Normal-form games are represented by matri-
ces that include possible strategies for players in the topmost row and leftmost column.
The payoffs of players are represented as matrix elements separated by commas. Alter-
natively, extensive-form games are described as trees, where internal nodes represent
players’ turns, edges represent players’ actions, and external nodes represent players’
outcomes for a particular set of moves. Figure 2a and b illustrate examples of the normal-
form and extensive-form game representations [79].

(d) Perfect-information and imperfect-information games: Perfect information games can be
defined as a game where players have the same information. In other words, players are
aware of all actions that have occurred in the past. In imperfect information games,
players choose their moves simultaneously. So, they are not perfectly informed about the
moves of opponents [88].

(e) Finite and infinite games: Finite games/finite strategy games are the games with finite
strategies. Alternatively, infinite games are games with infinite strategies [12].

(f) Stochastic games: The game is played in a sequence of time units/stages. In each stage,
games enter into a new state. Payoffs of players depend on the present state and chosen
action [117].

Fig. 2 Game representation (a) Normal-form (b) Extensive-form
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2.1.2 Players

Players are the critical components of a game. They participate in a game intending to achieve
certain goals. The nature of interaction among the players can be primarily classified into two
types: cooperative and non-cooperative. Two or more than two players can take part in a game.
The players always aim to maximize the overall payoff of the whole group.

2.1.3 Strategies

In a game, strategies are a sequence of actions chosen by the players. The strategies can also be
fundamentally classified into two types, cooperative and non-cooperative, based on players’
goals. The paramount of a game is to determine suitable strategies for players.

2.1.4 Payoffs

The payoffs of players represent the rewards or penalties for choosing their respective
strategies. In cooperative games, players aim to improve the overall payoffs of a group. In
contrast, the players aim to maximize their self-payoff (without considering the overall payoff
of the group) in non-cooperative games. The game planners formulate the payoff functions.
Let StI represents all possible strategies for player I. If there are m number of players, then,
possible combinations of strategies for player I is St1 × St2…Stm. So, the payoff function can
be represented as util(St1 × St2…Stm).

2.1.5 Best response

Best response strategies denote the most favorable outcomes for a player considering all the
strategies for opponents. The players in a game usually prefer to choose the best response
strategies. NE is determined based on the best response strategies for players. Let best response
strategy for player I be represented asbrI(.). Thus, considering a set of opponent’s strategiesx−I,
brI(x−I) denotes player I’s best response to x−I.

2.1.6 Nash equilibrium

It is a stable state where players cannot earn more profits by unilaterally deviating from their
strategies. Players can have a pure or mixed strategy equilibrium in a game.

Let a game with m players be denoted by (St, util), StI represents strategies for player I, St
= St1 × … × Stm represents strategy combinations andutil(x) = (util1(x), …, utilm(x))
represents the utility or payoff function, wherexϵSt. xIandx−I are the strategy combination for
player I and others except for player I, respectively. When each player Iϵ1,…, mcomputes the
strategy xI from the strategy-profilex = x1, …, xm, then, the player I gets a payoffutilI(x). A
strategy profile x∗ϵSt is a NE if the following condition is satisfied

8I ; xI�St1 : utilI x*I ; x
*
�I

� � � util xI ; x*�I

� �
:

Mixed equilibrium is computed for those scenarios, where the players mix their strategies with
uncertainties, and the mixed equilibrium is computed based on the expected payoffs of
respective players [92].
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2.1.7 Shapley function

In cooperative games, the reward of each player is computed by a function called
Shapleyfunction. The Shapley value ΦSiðvÞ for each player Si, 1 ≤ i ≤ N is computed based
on its individual contribution to a coalition, where N represents the player count. The Shapley
value [116] for each player is calculated by the equation given below.

ΦSiðvÞ ¼
Xn�1

c¼0

c! N� c� 1ð Þ
N!

Xn

C�Sn Sif g; Cj j¼c
v C [ Sif gð Þ � v Cð Þð Þ:

In the above equation, S represents a set of N players (|S| = N), C denotes a group (|C| = c) and

C is a subset of S\{Si},
c! N�c�1ð Þ

N! denotes the uncertainty in a permutation, the contributors of C
are ahead of the individual player Si and (v(C ∪ {Si}) − v(C)) denotes the individual
contribution of a player Si in the group C, where the rewards of all groups are initially
determined. In this way, the Shapley function ΦSiðvÞ yields the Shapley value of a player Si
for a particular group. A player having the highest Shapley value is the most significant
contributor in a group.

2.1.8 Minimax theorem

In 1928, John Von Neumann introduced the Minimax theorem, which opens the door for
conventional game theory. For a two-player, zero-sum, simultaneous move finite game, there
must be a value and exists an equilibrium point for both the players [126]. The equilibrium
point can be determined by applying pure or mixed strategies by either one or both the players.
Let’s assume that x and y are strategies of two players and v is the value of the game. Then, the
minimax theorem can be formulated as

x ∈ X ; y ∈ Ymax min f x; yð Þ ¼ y ∈ Y ; x ∈ X min max f x; yð Þ ¼ v

2.2 Deep learning overview

Deep learning is an advanced part of machine learning algorithms based on artificial neural
networks and various learning methods, i.e., supervised, unsupervised, and reinforcement.
There are well-known deep learning architecture and techniques. Deep learning models use
multiple layers in an artificial neural network to extract significant characteristics from the
unprocessed data. Graphics Processing Units (GPUs) are required to perform high-power
computation on complex deep learning architectures. Deep learning has immense applications
in multi-dimensional fields such as speech recognition, computer vision, audio recognition,
natural language processing, medical image analysis, games, etc.

2.2.1 Deep learning architecture

In recent times, deep learning has received tremendous responses from various fields. Robust
deep learning architectures bring significant improvement in the performance of multiple
models. They can solve or model various complex problems because of their robustness. In
most cases, it is observed that deep learning architectures outperform other existing models.
The most popular deep learning architectures are the convolutional neural network, recurrent
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neural network, generative adversarial network, deep belief network, autoencoder, residual
neural network, etc. This paper primarily studies generative adversarial neural networks
because of their architecture, where game-theoretic techniques can be easily applied. In the
future, we may explore possibilities of applications of game theory in other deep learning
architectures.

Convolutional neural network The convolutional neural network, a significant type of deep
learning architecture, is best known for its vast capabilities when analyzing visual imagery.
They comprise regularized versions of complicated multilayer perceptrons (usually fully
connected networks). A CNN has three layers, input, hidden, and output. The hidden layers
are mainly convolutional layers that convolve with multiplication or other product, and the
activation function is commonly a RELU layer. CNNs were inspired by the works [32, 59, 60].

Recurrent neural network Recurrent Neural Network is a category of advanced artificial
neural networks. A directed graph with a temporal sequence is what we get when there is a
connection between the nodes. Temporal dynamic behavior is exhibited in RNN. Using
internal states, RNNs have capabilities to process inconsistent range sequences of inputs.
They are powerful enough because having a distributed hidden state makes them capable of
storing huge amounts of information regarding the past and non-linear dynamics, acknowl-
edging them to revise their hidden state in complex ways [39, 111, 146].

Long Short-Term Memory, applied in deep learning, belongs to the family of recurrent
neural networks. Its specialty lies in the fact that along with feed-forward neural networks, it
has feedback connections too. A general LSTM architecture constitutes a cell, an input gate, an
output gate, and a front gate. The utility of a cell is to store values over irregular periods, and
all gates examine the flow of data entering into and exiting out of the cell. LSTM networks are
best applicable in categorizing, processing, and predicting based on time series data [15, 54].

Generative adversarial network Generative adversarial network (GAN), a type of deep
learning architecture, was invented in 2014 by Ian Goodfellow [36]. Here, two neural networks
challenge amongst themselves in a game (initially given a training set). The theory of GAN is
to train images that can generate new images that look accurate to human eyes. GANs were
originally modeled for unsupervised learning, but they are broadly used in reinforcement
learning, semi-supervised learning, and fully supervised learning.

GAN layered architecture is represented in Fig. 3. Let’s introduce the variables and
parameters related to the GAN model

D Discriminator
G Generator
θd Parameters of the discriminator
θg Parameters of generator
Pz(z) Input noise distribution
Pdata(x) Original data distribution
Pg(x) Generated distribution
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The final loss function for the discriminator can be written as

LðDÞ ¼ max log DðxÞð Þ þ log 1� D gðzÞð Þð Þ½ �
Alternatively, the generator is competing with the discriminator. The final loss function for the
generator can be written as

LðGÞ ¼ min log DðxÞð Þ þ log 1� D gðzÞð Þð Þ½ �
Both the equations can be combined and rewritten as

G Dmin max log DðxÞð Þ þ log 1� D gðzÞð Þð Þ½ �
The above equation represents a single data point. For an entire dataset, we can write the
equation as follows:

G Dmin max V D;Gð Þ

¼ G Dmin max Ex�PdataðxÞ
� �

log DðxÞ
i
þ Ez�PzðzÞ log 1� D gðzÞð Þð Þ½ �

� �

Deep belief networks A deep belief network, a type of deep learning architecture, is a
probabilistic generative graphical model. They are constructed from several layers of stochas-
tic, latent variables with binary values called hidden layers or feature identifiers. The two
compelling features of deep neural networks are:

& A sequential layer-wise, efficient method for learning the top to bottom, generative
weights capable of determining how variables on a layer depend upon the variables on
its top layer

Fig. 3 The layered architecture of GAN
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& After learning, values are determined for latent variables in each layer, resulting in the
single, bottom-up pass. It starts with a vector of selected data in the bottom layer. It
exploits the weights in the opposite direction [48–50].

Autoencoder Autoencoder, a distinctive category of artificial neural network utilized in
learning efficient data coding through unsupervised techniques. Autoencoders target to learn
an encoding for a set of given data and to reduce dimensions in data by training the given
network to ignore “noise.” They can probably encode a provided input to represent smaller
dimensions, being a data-compression model. Later, decoders can then reconstruct the input
back from the encoded version [125, 147].

Residual neural network Residual neural networks, abbreviated as ResNet, are artificial
neural networks of a particular type inspired by the pyramidal cells of the animal cerebral
cortex. Residual neural networks perform this by applying skip connections or shortcuts to
jump through a few layers. ResNet models are achieved using double/triple layer skips
consisting of nonlinearities (ReLU) and batch normalization in between [46]. An extra new
weight matrix may be used to learn the skip weights. Such architectures are known as
HighwayNets [121]. Architecture with several parallel skips is termed as DenseNets [57].

Radial basis function networks (RBFNs) “The RBF network model is motivated by the
locally tuned response observed in biologic neurons. Neurons with a locally tuned response
characteristic can be found in several parts of the nervous system, such as cells in the auditory
system that are selective to small bands of frequencies [114]”.

Multilayer Perceptrons (MLPs) “MLPs belong to the class of feedforward neural networks
with multiple layers of perceptrons that have activation functions. MLPs consist of an input
layer and an output layer that is fully connected. They have the same number of input and
output layers but may have multiple hidden layers and can be used to build speech recognition,
image recognition, and machine-translation software [8].”

Self-organizing maps (SOMs) “The SOM algorithm distinguishes two stages: the competitive
stage and the cooperative stage. In the first stage, the best matching neuron is selected. In the
second stage, neuron weights are not modified independently but as topologically-related
subsets on which similar kinds of weight updates are performed [66].”

2.2.2 Deep learning techniques

Dropout Dropout is adapted as a technique to overcome overfitting problems in a neural
network. It addresses both issues – training and testing computations. Effectively, it allows the
training of several neural networks without any significant computational overhead. Also, it
gives an efficient approximate way of combining exponentially many different neural net-
works. In the training phase, dropping out refers to dropping out units(neurons) of a certain set
of randomly chosen neurons. The dropped out units are not further considered during a
forward and backward pass. Temporarily removes a node and all its incoming/outgoing
connections, resulting in a thinned network [49, 50].
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Rectified linear unit ReLU is an activation function broadly used in various deep learning
architectures. It is a non-linear activation function used for both types of networks, i.e.,
multiple-layer neural networks and deep neural networks. The function for any negative input
returns zero. Alternatively, x is returned by the function for any positive input x. So, the
simplified form of the function is f(x) = max(0, x).

In recent times, a sigmoid and hyperbolic tangent is replaced by the ReLU function. The
main reason for the popularity of the ReLU function is its ability to make the training speed of
deep neural networks faster than other conventional activation functions. A significant feature
of ReLU is the derivative of this function is 1 for positive input. Deep neural networks can
save additional time for calculating error terms due to a constant during the training phase. The
extensive use of ReLU is shown in [34].

Stochastic gradient descent Stochastic gradient descent is one of the powerful algorithms
used in several machine learning and deep learning models. It is the basis of neural networks. It
is an essential iterative algorithm. The functionalities of the gradient descent algorithm are as
follows: it starts from an arbitrary point on a function. It moves down its slope in several steps/
iterations until it reaches the minimum point of the given function. The algorithm is modified
by including a random probability, called Stochastic Gradient Descent. In this algorithm, a set
of samples is randomly chosen from the whole data set in each iteration. If we consider a large
dataset, the programmer may require using many samples in each iteration while using the
Gradient Descent algorithm. The task needs to be performed for each iteration until the minima
are found, which is the main challenge in the Gradient Descent algorithm. Computational
complexity is a significant concern in this algorithm. Stochastic Gradient Descent is introduced
as a solution to this problem. SGD reduces the sample size. It takes only a single sample to
perform the task for each iteration. Therefore, the sample is randomly mixed and chosen for
completing the task for the iteration. The backbone of the SGD is to consider the gradient of
the cost function of a single sample for each iteration. Applications of the Gradient Descent
method are addressed in [26, 65].

Batch normalization Batch normalization is an essential technique in artificial neural net-
works. The advantages of the method are improvement in speed, stability, and performance of
neural networks. The input layer can be normalized by scaling and adjusting the activation
functions. It is a technique by which the inputs for each layer are normalized to deal with the
internal covariate, shift problem, i.e., the problem appears in the intermediate layers because,
during training, the distribution of the activation functions is constantly changing. This change
slows down the training process because each layer needs to learn a new distribution of
activation functions in each training step. This method includes: calculating the variance and
mean of the layer inputs, normalizing the layer inputs with the help of batch statistics, scaling,
and shifting to find the layer’s output [61].

3 Application of game theory in deep learning and artificial intelligence

This section addresses some contributions in which game models solve deep learning and
artificial intelligence problems. Figure 4 depicts the basic architectures of a simple neural
network and deep learning neural network.
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The authors in [112] address a new approach by which game-theoretic techniques can
model individual neurons. The authors show that different strategic game-theoretic approaches
can be applied to model paired neuron systems. A learning algorithm is developed depending
on game theory for neural learning. Artificial neural network has proved its significance in
multi-dimensional domains. Selecting an appropriate network is challenging to solve a
problem [62, 141, 151]. The authors in [122] show that game-theoretic concepts like the
Shapley value help to differentiate significantly from unnecessary elements of an artificial
neural network. A cooperative game is designed from a neural network where neurons that
form different groups and their contributions to the game are determined with the help of the
Shapley value. The experiments prove that the Shapley value concept is better than other
heuristics approaches to assess the contribution of neurons.

There are various GAN algorithms. The first is fully connected neural networks for both the
generator and discriminator. The second is convolutional GAN, as going from fully connected
to convolutional neural networks is a natural extension. The third neural network is conditional
GAN. It extends the 2D GAN framework to the conditional setting by making both the
generator and the discriminator networks class-conditional [142].

Alternatively, a max-min problem is formulated for adversarial learning with multiplayer
stochastic games and two-player sequential games above deep learning networks [17]. The

Fig. 4 (a) Simple Neural Network (b) Deep Learning Neural Network
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experimental results forecast the efficacy of the used adversarial algorithm. The algorithm can
manipulate adversarial features that affect testing results in deep learning models. The work
introduces a secure learner who is adaptive to the antagonistic attacks on deep learning. The
paper claims that the given framework is more robust than a traditional convolutional neural
network (CNN) and a generative adversarial network under adversarial attacks. This paper also
highlights the impacts on adversarial payoff functions over randomized strategies while the
rules of the games are changed. The offensive scenarios over such strategy spaces find
multiplayer games over varied strategies. A reduction of supervised learning to the game is
explored in [113]. For convex one-layer problems, an equivalence between Nash equilibria in
a simple game and global minimizers of the training problem is shown. It is also demonstrated
how the game can be extended to acyclic neural networks using differentiable convex gates.
The work in [86] presents a model that integrates the concepts from the field of deep learning
and artificial life to reflect their potentiality in various scenarios. The model shows the
potentiality of neural networks to simulate population dynamics. The model also shows the
applications of evolutionary game theory result in the behavior of the networks.

Modeling humans’ ability to depict the mental state transitions of others is a challenging
task for the research community. The authors of [106] train a machine to construct such
models. A Theory of Mind neural network (ToMnet) is designed by meta-learning that builds
handler models by observing their behavior. The ToMnet model is applied to agents in simple
grid environments. This system can autonomously learn modeling other agents, which is a
significant contribution to designing multi-agent AI systems. It can be applied to develop
technologies for machine-human communication and advance the growth of interpretable
artificial intelligence. For large-scale perfect-information games, artificial intelligence is supe-
rior to human-level intelligence [124]. On the other hand, it is not easy to find good results in
large-scale imperfect-information games (i.e., business strategies, war games, etc.). NFSP is a
self-play-based approach without prior information, which helps for effectively learning
approximate Nash equilibrium. But, the algorithm depends on Deep Q-Network. In online
games, it is not easy to converge by changing opponents’ strategies. Neither in large search
scale nor deep search depth games can it find approximate Nash equilibrium. This paper
introduces the Monte Carlo Neural Fictitious Self Play (MC-NFSP) algorithm that amalgam-
ates the NFSP and Monte Carlo tree search. For large-scale zero-sum imperfect-information
games, the approach improves performance. The asynchronous Neural Fictitious Self Play
(ANFSP) model is developed to use a parallel and asynchronous framework to gather the
game’s history [145].

The authors in [128] address a reversed reinforcement learning method. After training a
deep neural network according to strategies in the payoff table, randomized strategy input is
initialized, and the error differentiates the actual output. The required output is propagated
back to the initially randomized strategy input in the input layer of the trained deep neural
network results in performing a task similar to the human deduction. Detecting imaging
biomarkers for autism spectrum disorder (ASD) is challenging to help to explain ASD and
predicting or monitoring treatment outcomes. Deep learning classifiers are used to detect ASD
from functional magnetic resonance imaging (fMRI) with better correctness than traditional
learning strategies. The concept of Shapley value from cooperative game theory is applied to
this problem. Cooperative game theory is suitable since it more accurately determines bio-
marker importance for each instance from deep learning models. The main challenge for using
Shapley Value calculation is its computational complexity. The method is validated on the
MNIST dataset and compared to human perception. A Random Forest (RF) is modeled is
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trained to classify ASD or control subjects from fMRI and compare Shapley value outcomes
with existing RF-based feature importance [74]. The development of intelligent machine
learning applications is studied with expected-long-term profit maximization in multi-agent
systems. A learning algorithm for the IPD problem is proposed in [2]. It is shown to
outperform the tit-for-tat algorithm and many other adaptive and non-adaptive strategies using
numerical analysis. It is also discussed how artificial intelligence and machine learning work
closely to provide the agent with a mind-reading capability.

Shin et al. [119] have put forward a model to assign the updating time period to the drones
by auctioning. Alternatively, a second-price auction system is applied in which the victorious
bidder pays the second-highest bid. In the model, data needed for the dispersal of drones was
found from the deep learning algorithm. The shortcoming of the model proposed by Shin and
the team was it does not consider two significant criteria; the possibility of increasing the
charging station and the uncertainty of charging to the drones at smaller bids. Ren et al. [107]
have summarized the representative defenses developed, including adversarial training,
randomization-based schemes, de-noising methods, and provable defenses.

Further, to utilize the adversarial training-based intuitive training method, Ren et al. have
combined min-max games with deep learning and neural network. Leckie et al. [71] have
combined game theory and deep learning to evade jamming attacks in network security. Based
on a deep analysis of node behavior characteristics in the opportunistic network, Wang et al.
[135] have introduced the evolutionary game theory to traverse the node cooperation mech-
anism in the opportunistic social network. In the same line, Ranadheera et al. [118] have
utilized a deep learning-based deep-Q algorithm with the game theory for fair and efficient
resource management in mobile edge computing. To achieve intelligence in the shared
environment with multiple agents, Lanctot et al. Further, Lu and Kai [78] have generalized
a multi-agent approach using reinforced deep learning and game theory. Dasgupta et al. [21]
have combined deep learning and game theory for cybersecurity approaches.

Rudral et al. [108] have used deep learning-based predictive modeling for football games to
result in multilayer perception. Wakatsuki et al. (2020) have used multi-player games for
decision making. Wang et al. [134] have used the Deep Neural Network (DNN) based deep
learning model and the game theory to provide a holistic framework of robot-human interac-
tion. Pinto et al. [104] have used self-supervised deep learning for the robotic adversary.
Moreover, they have designed adversarial training as a two-player zero-sum repeated game.
Balduzzi [22] has used gradient-based game theory and deep learning to optimize game
grammars. Shu et al. [44] have used DNN and game-theoretical approach for developing
Multi-granularity Network Representation Learning (MGNRL) framework for the latent
representation of nodes in the network. Game theory and deep learning concepts have been
widely used in the education field also. Vos et al. [95] have combined game theory and deep
learning to understand students’ motivation in education. Urbani [101] has combined game
theory and deep learning for music genre classification. Han and Jiequn [63] have concluded
that their approach of Deep Learning Approximation for Stochastic Control Problems should
apply to broad areas, including dynamic game theory with more than one agent, dynamic
resource allocation with several resources and demands, and properties management with large
portfolios. Woo [137] has used game-theoretic complex analysis for nuclear security by
addressing non-zero-sum algorithms. In the research, Woo has used deep learning for data
processing, where the neural network is used for wiretapping. Table 2 summarizes critical
game-theoretic models/concepts used to model various deep learning/artificial systems.
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4 Application of game theory in deep reinforcement learning

This section addresses several contributions to which game models are used to solve problems
in reinforcement learning.

Over the past 4–5 years, reinforcement learning has become an exciting area of research
[136]. Reinforcement learning has shown significant applications to develop intelligent oppo-
nents in computer games. In such applications, CNN plays a vital role in abstracting important
traits from grainy and complex data. Games are modeled for appropriate scenarios to test the
reinforcement learning algorithms as they provide an essential overview of how good an
algorithm can behave in isolated environments. Real-time strategy games are very complex,
and planning for short and long-term strategies is very challenging. The work in [4] addresses
the Deep Real-time strategy game for testing advanced artificial intelligence algorithms. It
deals with faster learning. It learns at a rate 50,000 times faster than existing real-time strategy
games. It is also helpful for moderately observable state spaces and map complexity. Applying
Real-time strategy outperforms micro Real-time strategy, StarCraft II, and ELFon advanced
system. It is shown that a Deep Q-Network agent outperforms random-play agents most of the
time (more than 70%) using the Deep Real-time strategy. In recent times, machine learning is
extensively being used for multi-agent systems. [31] discusses the related work on deep multi-
agent reinforcement learning, decentralized optimization, hierarchical reinforcement learning,
and GANs. Multiple learning agents cause training non-stationary and even lead to non-stable
training or unexpected results. A ‘Learning with Opponent-Learning Awareness’ (LOLA)
approach is explored in the paper where the agents try to learn by opponents’ learning. The
LOLA learning approach considers the effect of one agent’s policy on the other agents’ policy.
The results demonstrate that the interaction of two LOLA agents goes for tit-for-tat, and after
that, cooperation in the iterated prisoners’ dilemma (IPD). LOLA gains higher payoffs
compared to a naïve learner, and it is robust against the application of higher-order gradient-
based approaches. On the other hand, LOLA agents move towards the Nash equilibrium for
infinitely repeated matching pennies games. The LOLA update scheme can be effectively
applied using an advanced likelihood ratio policy gradient estimator and build the scheme
suitable for model-free reinforcement learning. Focusing on the learning of the opponent,
LOLA agents learn to coordinate out of self-interest.

Table 2 A summary of crucial approaches based on game-theoretic models to develop artificial intelligence and
deep learning systems

Deep learning/ Artificial
systems

Game-theoretic models/concepts used References

Neuronal Networks Rationality, Simultaneity and equilibrium, Mixed strategies, Nash
equilibrium, dynamic games

[112]

A cooperative game, Shapley value [122]
Adversarial deep

learning
Stochastic games, Sequential games [17]

Deep learning Nash equilibria [113]
A cooperative game, Shapley value [74]
Auctioning [119]
Minmax game [107]

Reinforcement learning Minority game [118]
Self-supervised deep

learning
Two-player zero-sum repeated game [104]
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AlphaGo was the first program to win the game Go against a world champion. AlphaGo
computed positions and moves in tree search with the help of deep neural networks. These
neural networks are trained using supervised learning depending upon the data of moves of
humans and by reinforcement learning achieved from self-play. Algorithms are developed
based on reinforcement learning without experimental data of humans, supervision, or level of
knowledge of the domain apart from game rules. AlphaGo is considered its own teacher. A
neural network is trained to predict the selection of moves forAlphaGo and find the games’
winner. This neural network improves tree search by enhancing quality move selection and
better self-play in the next iteration [120]. Tsetlin Automaton is a learning mechanism. A
single integer is assumed to be a memory element; the model learns the preferable action in
stochastic environments by decrement and increment operations. The Tsetlin is introduced to
solve complex pattern identifying problems with simple formulas formed by a set of Tsetlin
Automata. The Tsetlin Machine gives satisfying accuracy compared with Logistic Regression,
Random Forests, Naive Bayes Classifier, Decision Trees, SVMs, and Neural Networks. The
significant features like accuracy, interpretability, and computational complexity make the
Tsetlin Machine a prevalent tool [38]. Reinforcement learning is capable of representing
psychological and neuro-scientific features of animal behavior [136]. To apply reinforcement
learning in complex real-world situations, the agents have a difficult task: they need to
properly formulate the actual environment obtained from multi-parameters sensory inputs
and apply them to relate the past experience to new instances. A deep Q-network is used for
training deep neural networks to build an artificial agent. The agent learns rules from multi-
parameters sensory inputs by reinforcement learning. The agent has experimented on classic
Atari 2600 games. The performance of the model outperforms other existing algorithms [85].
To achieve intelligence in the shared environment with multiple agents, Lanctot et al. [69]
have combined unified game theory with deep reinforced learning. To mitigate societal
challenges in learning, education Fang [30] has used deep reinforced learning. Motivated by
the urgent need in green security domains such as protecting endangered wildlife from
poaching and preventing illegal logging, Yu et al. [144] have proposed game-theoretic and
deep reinforced based learning models to optimize patrols conducted by law enforcement
agencies. Xiao et al. [139] have used a game-theoretical deep reinforcement-based learning
technique to secure mobile crowd-sensing.

5 Application of game theory in GAN

This section addresses some contributions in which game models are used to solve problems in
GAN. Figure 5 shows a generalized architecture of GAN.

The contribution in [123] sets up a connection amidst a deep learning model and a game-
theoretic approach. This work introduces the application of deep learning to solve game-theoretic
problems. Some techniques have been addressed to speed up deep learning and gradient-based
approaches in actions with continuity for multi-agent adversarial games. On the other hand,
multiple GANs are developed as robust distributed games. A Bregman-based strategic deep
learning algorithm is introduced for finding robust distributed Nash equilibria, and it is also
checked upon in image synthesis and picture classification. GANs are modeled as a min-max
game, and a fast learning algorithm using Bregman divergence is explored. A comparative study
on the performance of the Bregman-based algorithm with six algorithms is also shown. Table 3
shows a mapping of components of a game with the components of the deep learning network.
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The work in [16] shows that deep learning is unsafe for changes in data distribution. So, a deep
learning network like CNN is dangerous for adversarial scenarios. An adversarial learning model
is designed for supervised learning. Adversarial scenarios are modeled by a game-theoretic
approach to the conduct of deep learning. A smart antagonist and a deep learning model interact
with each other. The interaction is represented as a two-person sequential non-cooperative
Stackelberg game, and stochastic payoff functions are formulated.

Nash equilibrium is determined for the Stackelberg game. It finds a pair of strategies
(genetic operations and weights of learners) by which either learner or antagonist can achieve
no better payoff by deviating strategies. The performance of the algorithm is determined under
various strategy combinations on the dataset of MNIST handwritten digits. The Nash equilib-
rium seems to be robust to adversarial environments. The outcomes show that game theory and
stochastic optimization methods can be applied to study susceptibilities in performance for
deep learning models.

Fig. 5 Generalized Generative Adversarial Network Structure

Table 3 Deep learning versus game theory terminologies [123]

Game Theory Deep Learning

Player/Agent Neuron unit
Action/Moves Weight
Objective function Objective function
Sub-goal Feature/Attribute
Measurement Output
Design of game Design of architecture
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In unsupervised learning, GANs have become one of the most effective techniques for self-
learning the given distribution of a specific dataset [36]. In [41], the tragedy is modeled as a
two-player zero-sum game between two players: a discriminator D and a generator G. The
generator’s objective are to generate fake images from random noise, and the objective of the
discriminator is to categorize on fake and real images correctly. The paper addresses applica-
tions of generalized zero-sum games or multi-player zero-sum games to formulate and train
GANs. The results signify that by applying a multi-player setup, the severity of the mode
collapse problem in GANs can be reduced to generate a diverse set of fake images. It is also
demonstrated on different fake toy distributions and real-world datasets like MNIST &
CIFAR10.

Several real-life scenarios can be represented as large-scale imperfect information games.
The Nash equilibria are initially computed to handle such problems. The authors in [47]
address a new, without prior knowledge-based, scalable and end-to-end method for learning
approximate Nash equilibria effectively. The technique integrates deep learning with fictitious
self-play. While implemented on Leduc poker, NFSP finds a Nash equilibrium; alternatively,
conventional reinforcement learning approaches diverge. In Limit Texas Hold’em, a large-
scale poker game, NFSP learns a strategy that determines the performance, superhuman
algorithms with the help of strong domain expertise.

Today, GAN is among the most popular frameworks in Deep Learning [36]. The research
on applications of game-theoretic techniques in developing deep learning algorithms has
received a great response from the research community. Generative Adversarial Network
Games (GANGs) are developed, and they are modeled as a finitely long zero-sum game
between a discriminator D and a generator G by applying mixed strategies. Resource-bounded
best responses (RBBRs) and source bounded Nash Equilibrium (RB-NE) are defined as a pair
of mixed strategies. By using these techniques, neither G nor D can achieve a better RBBR.
The RB-NE solution is better than the local Nash equilibria. It detects errors of gradient
descent-based escaping local optima and applies them to approximate best response compu-
tations. GANGs are solved with the parallel Nash Memory technique that slowly converges to
an RB-NE to validate this approach. The results show that it outperforms standard GAN setups
and demonstrate that it performs well with typical GAN problems [97].

A mixed Nash equilibrium of GANs is determined in [56] besides finding a pure optimal
strategy. The probability distributions over pure strategy are optimized for the network. This
paper also discusses well-known prox methods, which are applied to solve two-player games
with finite strategies. It can even be drawn out to continuously many strategies. Therefore, it is
suitable for training GANs. A proof is given to demonstrate the convergence rates to learning
the mixed Nash equilibrium. It is further shown that heuristic approaches significantly reduce
memory and computational costs. As a result, they become simple algorithms having com-
plexity per-iteration almost as cheap as SGD. The experimental results prove out that the
performance of the algorithms significantly improves, and they are better than popular
techniques such as Adam, SGD, and RMSProp.

GANs are used for generating images and learning in a semi-supervised way [19]. In two-
player games, a single discriminator plays a vital role in detecting fraudulent specimens and
determining labels, and it also guesses the data without the labels. A triple generative
adversarial net (Triple-GAN) is developed in [18] to solve the problems. Triple-GAN has
three players- a classifier, a generator, and a discriminator. The tasks of the generator and the
classifier are to determine the conditional distributions between labels and images. On the
other hand, the task of the discriminator is to detect fake image-label pairs. The paper
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addresses compatible utilities that characterize distributions by the generator and the classifier
and converge to the data distribution. The outcomes on different datasets show that Triple-
GAN is an improved model that can parallelly perform classification results among deep
generative models.

GAN can generate realistic images [19, 36, 130]. The visual presentation of objects is
affected by their shape geometry which is crucial information but not considered in existing
generative models. The work in [67] addresses the Geometry-Aware Generative Adversarial
Networks (GAGAN) that also accounts for geometric information into the image generation
technique. In GAGAN, the generator generates latent variables based on the probability
distribution of a statistical shape model. By mapping the outcome of the generator with a
coordinate table with the help of a differentiable geometric transformation, the geometry of the
objects is studied, and the relation from the priorly generated object is determined. The
outcomes on face generation show that the GAGAN can generate realistic pictures of faces
with random facial traits of superior nature to existing GAN-based models. This approach also
enhances the quality of the generated images.

In [129], a minimax game model is formulated for discriminative (classifier) training. In
this game, a generator is considered a player that tries to generate training samples. A different
player, the discriminator, has to classify the specimens generated by the generator correctly.
The generator detects the Bayes decision boundary and only chooses training samples from
there. Alternatively, the discriminator only performs random guesses. Rigorous research has
been going on GAN for the last few years, but it is still very challenging to conclude which
algorithm is most effective [80]. The authors discuss a neutral, multi-faceted large-scale
empirical study and also compare the results with existing models. The performances of
various models are similar under enough optimization of hyper-parameter and random restarts.
Different data sets are used to find the precision and recall to deal with certain limitations. The
experimental results show that the GAN research is moving towards more systematic and
objective evaluation approaches. The work also highlights that not a single tested algorithm
consistently outperforms the other algorithms.

Various training methods and architectural characteristics are developed for GANs. The
works in [109] highlight two utilizations of GANs, which are semi-supervised learning and
realistic image generation. The techniques discussed in the paper compares the outcomes in
semi-supervised classification on various datasets such as CIFAR-10, MNIST, and SVHN.
The quality of spawned images is of very superior quality, and the model generates MNIST
samples that are very hard to identify for humans. On the other hand, CIFAR-10 samples
produce a human inaccuracy rate of nearly 21.3%. The paper also shows that approaches
facilitate the model to learn significant features of ImageNet classes.

GANs exploit supervised learning to estimate a cost function. GANs can use a supervised
ratio estimation scheme to estimate multiple cost functions such as KL divergence applied for
maximum likelihood estimation. Training GANs is to find Nash equilibria in elevated
dimensional, continuous, non-convex games [35]. CNNs are helpful to identify objects in an
image, but it is tough to find the position of an object relative to others. A novel solution to this
problem is trusting “Capsules” – a logistic unit that confirms the object’s existence and
orientation. This work also highlights incorporating the Capsule into the Discriminator of
the GANs, which can yield a better classification loss and faster convergence. The results are
shown both qualitatively and quantitatively [33].

The graph representation learning techniques are divided into a couple of categories:
generative models that learn the connectivity relation in the graph and discriminative models
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that determine the probability of an edge between any two vertices. Graph representation
learning aims to store each vertex in a graph into a low-dimensional vector. A new learning
framework GraphGAN is introduced in [133]. GraphGAN represents the generative model and
discriminative model as a game-theoretical minimax game. The generative model generates
accurate connectivity distribution over all vertices and yields forge samples to confuse the
discriminative model for a given vertex.

On the other hand, the discriminative model aims to detect whether the sample vertex is real
or caused by the generative model. The generative model is implemented using a novel graph
softmax. Extensive investigations on real-world datasets confirm that GraphGAN performs
well in different applications, e.g., node classification, link prediction, and recommendation.

Lipschitz regularization theory and algorithmic technique for a new Loss-Sensitive Gener-
ative Adversarial Network (LS-GAN) are applied in [105]. It instructs a loss function to
differentiate original and fake specimens by precise margins, and a generator generates realistic
samples by reducing their losses. The LS-GAN regularizes its loss function by incorporating
Lipschitz regularity condition on the probability of actual data produces a regularized model,
which better generates new data from a fair number of training specimens as compared to
conventional GAN. A generalized LS-GAN (GLS-GAN) is discussed. Other GAN models are
compared with LS-GAN and GLS-GAN. LS-GAN is elaborated for supervised and semi-
supervised learning problems. In [58], a data-driven model is explored, known as generative
adversarial privacy (GAP). GAP helps the data holder to study the privacy policy from the
data. Determining the optimal privacy policy is modeled as a constrained minimax game
between a privatizer and an adversary. GAP offers privacy against robust information-theoretic
adversaries. GAP is applied for multi-dimensional Gaussian mixture models and large
datasets.

The work in [45] shows an approach for synthesizing a road network by applying GANs.
As per the suggested approach, the road network is first converted into a binary image in which
pixel intensities represent the presence or absence of streets. Then, the GAN is trained to
automatically synthesize the arbitrarily sized street networks, and the generator tries to
generate something similar to the original patch. A graph-based representation is extracted
from the generated images. The method shows that it can be applicable to synthesize large-
scale street networks. Many research articles have already applied recurrent neural networks
for music generation. A recent significant contribution, the WaveNet model, was invented by
DeepMind. It shows that CNNs can also be used to generate realistic musical waveforms. It
has also experimented with that CNNs can generate melody one bar after another in the
symbolic representation. GAN is applied in this scenario in which the generator and Discrim-
inator play their roles. A discriminator learns the distributions of melodies. A new conditional
approach is exploited based on available prior knowledge. As a result, the model can produce
melodies by following a chord sequence or by conditioning on the melody of the preceding,
among other capabilities. The proposed MidiNet can also be applied to generate music with
multiple MIDI channels. MidiNet and MelodyRNN models are compared, and the results
show that MidiNet performs similarly to MelodyRNN models. MidiNet’s melodies are
captivating [140].

Story Cloze Test is an intelligent machine comprehension tool to understand natural
language problems. The idea behind the device is too many story tests within the dataset that
develops common sense assuming capability. The training data is almost unsupervised in this
problem in which context documents having a single positive sentence that is understood from
the situation. To deal with the problem, GANs are applied to generate fake sentences. The
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work in [131] also develops Conditional GANs (CGANs) in which the situation influences the
generator. The experimental outcomes display the efficacy of the CGANs in the discriminating
sentence in practical story reading comprehension tasks. GANs can be modeled by a two-
player minimax game [36]. Durugkar et al. [27] presents the Generative Multi-Adversarial
Network (GMAN), which uses multiple discriminators. GMAN is trained with the original,
untampered objective. Numerous design perspectives are addressed in the paper in which the
Discriminator plays various roles ranging from formidable adversary to forgiving teacher. It is
shown that GMAN generates higher quality samples in a lesser number of iterations compared
to GAN.

Another significant work explores a novel training process, SGAN, in which multiple
adversarial local pairs of networks are trained independently to train a global supervising pair
of networks against them. The objective of this process is to train the international pair with the
corresponding opponent for better performances. This method tries to increase the chances to
continue learning for the global pair. It also prevents trapping in an unsatisfactory local
minimum and oscillations in results. In the SGAN training process, the global generator and
Discriminator are trained using the local discriminators and generators, respectively. Alterna-
tively, the local networks are trained with their fixed local opponents. The experimental results
based on a small scale and real-world problems show that this method outperforms existing
approaches [14]. Pfau and Vinyals [103] shows that GANs can be modeled as actor-critic
frameworks in a scenario wherein the actor cannot influence the payoff. The strategies are
formulated for balancing training for each class of models. GANs and reinforcement learning
algorithms are analyzed in-depth with more complicated information flow. The contributions
in the paper encourage both GAN and reinforcement learning research communities to develop
more efficient algorithms for multilevel optimization with deep networks.

Consider a scenario where learning properties from the behavior of an expert are required
without interacting with the expert or accessing a reinforcement framework. A solution is to
extract the payoff function of the expert with inverse reinforcement learning that leads to
extract a property [136]. The work in [53] shows that a specific instantiation of the model
relates to imitation learning and GANs from which a model-free imitation learning algorithm is
derived. The algorithm outperforms the existing model-free methods in imitating various
behaviors in real environments. The Discriminator in GAN works as a classifier with the
sigmoid cross-entropy loss function. It is observed that the loss function may struggle from the
vanishing gradients problem during the learning process. Least Squares Generative Adversar-
ial Networks (LSGANs) is introduced to solve this problem [82]. LSGANs embrace the least
squares loss function for the Discriminator. It is shown that the minimization of the objective
function of LSGAN minimizes the Pearson χ2 divergence. It experimented on LSUN and
CIFAR-10 datasets and observed that LSGANs could produce superior quality images than
GANs. LSGANs are more stabilized during the learning process. It is concluded from two
experiments that LSGANs are more stable than GANs.

GAN’s learning dynamics are not still well understood. To deal with GAN’s learning
dynamics, a model is explored to demonstrate various problematic convergence behaviors
such as vanishing gradient, mode collapse, diverging, or oscillatory behavior [73]. The model
also determines the first convergence bounds for parametric GAN dynamics. It is also shown
that a GAN with an optimal discriminator may converge while a first order approximation of
the discriminator steps becomes unstable GAN dynamics and mode collapse. The model finds
a particular challenge in GAN while training that is called discriminator collapse. The work in
[9] presents an equilibrium enforcing technique and a loss function byWasserstein distance for
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training auto-encoder-based GANs. This technique considers the role of generator and Dis-
criminator while training. It also finds an estimated convergence measure, fast and stable
training, and a high-quality sample. It is also controlled the trade-off between sample diversity
and quality.

Two information retrieval models: the generative retrieval predicting related documents
based on a query and the discriminative retrieval indicating relation based on a query
document pair, are addressed in [132]. A minimax game is modeled to optimize both models
iteratively. The discriminative model tries to differentiate samples from labeled and unlabelled
data. It helps to train the generative model for fitting the distribution of samples based on the
query. Alternatively, the generative model generates fake samples for the discriminative model
intending to minimize its discrimination objective. (i) the generative model learns to fit the
relational distribution of documents with the help of samples from the discriminative model,
(ii) the discriminative model can use the unlabelled data chosen by the generative model to
perform a better appraisal for document ranking. The experimental outcomes show the efficacy
of the model. GAN training may become prosperous, but the trained distribution may not
achieve excellent performance for target distribution. Generalization occurs for a weaker
metric, neural network length. It is demonstrated that an approximate pure equilibrium is
obtained from the Discriminator or generator game. The existence of equilibrium inspires the
MIX+GAN protocol [5].

The authors in [94] address a model to deal with the mode collapse problem in GAN. The
Kullback-Leibler (KL) and reverse KL divergences are combined into a unified objective
function. As a result, it can use various statistical properties from the divergences to properly
diversify the approximated density in capturing multi-modes. The contribution in this paper
includes dual Discriminators generative adversarial nets (DDGAN) having double discrimi-
nators and a single generator. In this model, one of the discriminators pays high scores for
samples obtained from data, whereas another discriminator supports data obtained from the
generator. Alternatively, the generator yields samples to fool both the discriminators. It is
shown that the maximal discriminators optimize the generator of DDGAN, which lessens to
minimizing KL and reverse KL divergences between data distribution and the distribution
from the data produced by the generator. Extensive experiments are managed on synthetic and
real-world large-scale datasets such as MNIST, CIFAR-10, STL-10, ImageNet. The experi-
mental outcomes show the efficacy of the model.

A method is explored in [52] for training GANs with discrete data that exploits the
estimated difference from the Discriminator to determine significant weights for generated
samples and supplying a policy gradient for training the generator. The significant weights
have a robust relationship to the decision boundary of the Discriminator. The name of this
method is aptly given boundary-seeking GANs (BGANs). The efficacy of the model is
demonstrated with a discrete image and character-based natural language generation. The
boundary-seeking objective is also applicable for continuous data shown on Celeba, Large-
scale Scene Understanding bedrooms, and Imagenet without conditioning. GANs are best to
converge to a local Nash equilibrium. Such a local Nash equilibrium is different from a Nash
equilibrium. The work in [98] models GANs as finite games with mixed strategies, and the
method ensures that every local Nash equilibrium is a Nash equilibrium. The authors also
introduce another way that monotonically converges to a resource-bounded Nash equilibrium
in which computational resources are increased to achieve better solutions. The model shows
its efficiency concerning typical GANs and MGANs.
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For GANs, the data distribution is learned by a two-player zero-sum game, played between
a generator and a discriminator, and both of them aim to optimize their payoffs [19, 36]. GANs
find Nash equilibrium in which no player can improve payoff by unilaterally deviating its
strategy. GANs shows that the training and model distribution difference is the minimum value
at an equilibrium point. The divergence has a vital part in the learning process, and each
learning step tries to decrease the divergence. We show that this view is overly restrictive. The
authors show that GANs can learn distributions when divergence minimization predicts failure
[29]. It is also demonstrated that gradient penalties are equally helpful when applied in other
cases in which the divergence minimization does not predict they would be beneficial. GAN
training may be more helpful in modeling Nash equilibria.

Structure Generative Adversarial Network (SGAN) has been explored for semi-supervised
conditional generative modeling to learn from a small set of separate instances to extract the
semantics of significant interest from others in the latent space. It is shown that SGAN has
improved extraction and controllability compared to primary frameworks. The model is
advantageous to apply to various problems. It outruns existing models regarding the inception
score and visual quality of controllable image generation [24]. GraphSGAN is proposed for
graph-based semi-supervised learning by applying GANs [25]. The scenario is represented as a
competitive game between generator and classifier. In the game, the generator generates
samples in density gaps at equilibrium. The loss terms cumulatively determine the expected
equilibrium. Experiments performed on three standard datasets show the efficacy of the
strategy. GraphSGAN model has been thoroughly analyzed. Generated samples minimize
the adjacent nodes in density gaps to find decision boundaries prominent. The GraphSGAN is
scalable. The experimental results on the DIEL dataset prove the model’s capabilities to
execute well on large graphs.

A holistic active learning model by the query synthesis method using GAN is introduced in
[149].

Table 4 summarizes critical game-theoretic models/concepts used to model various GAN
architectures. The algorithm adaptively synthesizes training samples for querying to enhance
learning speed. The queries are generated according to the uncertainty principle, but the model
performs well with other active learning principles. The results are obtained from a large
number of experiments to show the efficacy of the approach. In a few settings, the algorithm
outperforms existing pool-based methods. An approach for modeling the decision-making of
players through agents is introduced in [55]. The authors claim that artificial agents have the
capabilities to act like a human player’s decision-making processes. Such agents can mimic
human decision-making and effectively performing testing tools in the game design process.
This claim is proved in a crowdsourced decision-making experiment that shows the decisions
of human players in a small-scale dungeon-themed puzzle game. Human choices are correlated
to the findings of agents [127]. A decent amount of research has been performed on generative
models in computer vision and image classification. These generative models have been made
famous in a framework well known as Generative Adversarial Networks. The work in [51]
presents the original model proposed by Good fellow et al. and extensions of the original
model and compares these models.

The theory of mind model is introduced in [143]. The model discusses the intentions and
goals of opponents to optimize mutual interactions. Control theory and game theory are
applied to model the game theory of mind. The plans are represented as value functions, also
known as utility or rewards. The joint value functions are complex since the behaviors of the
players are optimized recursively. The joint functions find how player1 determines the value
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function of player2. Similarly, player2 determines the value function of player1, and so on. If
the degree of recursion is bounded, then the players/opponents need to estimate the degree of
recursion of the opponent to respond optimally. The contribution shows that it is possible to
deduce whether players infer about each other and quantify their value functions based on
selections in sequential games. Then, generative models of strategies with and without
inference are compared. The comparison is shown using simulated and real data from a
‘stag-hunt.’ It also shows that the same behavior can be found by optimizing the utility
function for altruistic agents.

Multiple decision-makers are usually involved in handling real-world problems. They fix
their own goals or destinations. Game theory has certain limitations; its applicability is
restricted by the intractability of determining equilibrium in large games. Other challenges
are that the parameters in the games are sometimes unknown, and the players in real-world
scenarios may not be entirely rational. The work in [120] addresses how learning with game
theory can solve societal challenges such as security and sustainability.

Table 5 outlines statistics on the number of articles of applications of game theory in deep
learning, reinforcement learning, and exclusively in GAN. Machine learning, reinforcement
learning, and deep learning have achieved tremendous responses in different fields and can be
applied to overcome the limitations of the game-theoretic models [76, 84, 136].

Table 6 gives statistics of the scientific works discussed in the paper based on the number of
articles published, average citations, and maximum citations of applications of game theory in
deep learning, reinforcement learning, and exclusively in GAN.

Table 4 A summary of critical approaches based on game-theoretic models to develop Generative Adversarial
Network models

Generative Adversarial
Network models

Game-theoretic models/concepts used References

Deep learning model Two-person sequential non-cooperative Stackelberg game, Stochastic
payoff functions

[16]

GAN Two-player zero-sum game [41]
Mixed Nash equilibrium [56]
Minimax game model [129]
Boundary equilibrium [9]
Local Nash equilibrium [98]
Nash equilibrium [29]

GANG A finitely long zero-sum game, Resource-bounded best responses
(RBBRs), source bounded Nash Equilibrium (RB-NE)

[97]

Triple-GAN Two-player games [18]
GraphGAN Minimax game [133]
GAP Minimax game [58]
MIX+GAN Approximate pure equilibrium [5]
GraphSGAN Expected equilibrium [25]

Table 5 A statistics on applications of game theory in deep learning and artificial intelligence, reinforcement
learning, and GAN

Classification of Articles Number of Articles %

Game theory in deep learning and artificial intelligence 39 41.93
Game theory in reinforcement learning 10 10.75
Game theory in generative adversarial network 44 47.31
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Figure 6 shows the statistics of Table 6 with the help of a bar chart that will give a clear
insight to the readers. Tables 5 and 6, and Fig. 6 individually show that game theory has more
applications in GAN over other deep learning models and reinforcement algorithms. GAN has
received tremendous responses from the scientific community.

The datasets used in most of the research articles in this study are as follows: MNIST,
CelebA, CIFAR-10, BBBC039, initial dataset, transfer dataset, SVHN, STL-10, ImageNet,
DIEL, etc.

6 Implementation environment

The current study mainly focuses on deep reinforcement learning and GAN models.
There are various real-time and business applications of GAN and reinforcement
learning. The current study addresses several diverse problems. Some significant
implementation environments of GAN and deep reinforcement learning models are
described in this section based on the existing literature. GAN is primarily used to
generate samples/images for various image datasets. GAN can be used to create
images of human faces, which are used for different purposes. GANs also help to

Table 6 A statistics on the types of articles and citations of applications of game theory in deep learning and
artificial intelligence, reinforcement learning, and GAN

Classification of Articles Number of
journal articles

Number of
conference articles

Other
articles

Average
citations

Maximum
citation

Game theory in deep learning and
artificial intelligence

13 15 10 246 4378

Game theory in reinforcement
learning

3 5 2 1461 10,058

Game theory in generative
adversarial network

6 17 18 843 19,348

Fig. 6 Average citations, maximum citations based on the articles discussed on applications of game theory in
deep learning, reinforcement learning, and exclusively in GAN
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create realistic images. The cartoon industry is a popular entertainment industry where
GAN is used to generate various cartoon characters. Another critical application of
GAN is image to image translation. Text to image translation is another vital
application of GAN. GAN can be used to generate new human postures which have
security, healthcare, and entertainment applications. Another exciting application is
generating emojis from typical images frequently used in various social network
platforms, mobile applications for entertainment purposes. Photos are edited using
GAN models. Photo blending is also done using GAN models. GAN is used for
video prediction and 3D object generation. GAN can be used for improving cyberse-
curity in various places and improving healthcare sectors. It can create artistic skills;
it can generate exact or similar images of a painting. It can even cause fake videos.
The quality of an image can also be improved using GAN that serves several
purposes. De-noising on images is also done using GAN. Alternatively, deep rein-
forcement learning has excellent application in real-time systems and industries. It is
used for the implementation of a self-driving car and industry automation. Deep
reinforcement learning is also used in NLP applications. The Healthcare system has
also adopted deep reinforcement learning as a tool. It successfully performs various
tasks such as automatic disease prediction etc. It has other robust applications in news
recommendation and gaming. It also has applications to build automated robots. It has
other significant applications such as resource management in computer clusters,
traffic light control, web system configuration, advertisement, etc. Reduction in energy
consumption, online recommendation systems are some industrial applications.

The performances of the proposed study can be evaluated through Sensitivity,
Specificity, recall. Specificity is defined as the proportion of actual negatives, which
got predicted as the negative. Sensitivity is a measure of the balance of real positive
cases that got expected as positive. The recall is the measure of our model correctly
identifying True Positives [87].

7 Future research direction and challenges

The previous sections of the present work discuss the linkages and applications of
game theory in deep learning. The current section aims to discuss future research
challenges related to the application of game theory in deep learning. To narrate and
list out all possible future challenges is a complex task as different literature uses
different simulation environments, simulation tools, different data sets, and different
experimental conditions. Nevertheless, the current section discusses some of the
critical representative future research directions. The future research direction is
described in Table 7 below. Table 7 also provides hints, literary way, and association
of game theory and deep learning to get the breakthrough in solving future research
challenges.

In conclusion, researchers and scientists have to do extensive developmental research and
efforts in the direction described above to overcome the problems and challenges faced by the
future of deep learning, such as genomics and medical imaging. Besides, more techniques and
further inspiration are required to develop new deep learning approaches. New methodologies
for complex and challenging problems would be necessary as collaborative efforts by various
research communities need to be carefully addressed.
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Table 7 Future research challenges and the association of deep learning and game theory

Sr.
no.

Future research challenges Association of deep learning and game theory

1. Some of the areas of deep learning, like deep games
[113], require training heuristics. So far, it has not
been investigated how training heuristics for deep
games on the recurrent model can be applied.

If the behavioral game theory is used, it may be
possible to design training heuristics for deep
games [83]. However, experimental results are
required to support these claims.

2. The reward design function plays a crucial role in
deep learning, e.g., to improve the Monte-Carlo
tree search. Combining more sophisticated deep
learning architectures with reinforced learning in
Learning Reward-bonus Functions (LRF) [40]
remains an important future work

Game theory is widely used for negotiations,
bargains, and arbitration [10]. If these concepts
are utilized for LRF, a step can be taken to solve
future research challenges.

3. Future work may develop and design algorithms to
leverage information-rich, better yet unstructured
data in healthcare [28].

Game theory can be utilized through verbal decision
analysis [70] for unstructured problem analysis. If
the same approach can experiment with
unstructured data, the solution may be achieved
for unstructured data in healthcare. Thus, verbal
decision analysis may provide a path to solve the
challenges.

4. First, in genomics, the challenge of designing and
developing deep learning systems that best
represent and complement human experience in
making medical diagnosis and decisions (for
example, genome representation) is crucial [150].
The second challenge is how to avoid biasing
entities in training sets and how to interpret
predictions. Robustness and interpretation are two
important directions for method development.
Lastly, there is a requirement for
iterative/recursive experimentation, in which deep
learning predictions can be checked and validated
by functional laboratory tests, experiments, or
formal clinical assessment [150]. The future
challenges related to genome data are also de-
scribed in [11] in detail.

A causal functional contribution analysis based on
game theory [81] may help solve the challenges
related to a medical decision and bias-less training
set.

5. In deep learning, so far, there is no significant
attempt to improve support for distributed
computation [102] by providing efficient
primitives for data parallelism.

In [1], an attempt has been made to relate distributed
computation and game theory. The details of this
attempt can be crucial in providing efficient
primitives for data parallelism

6. Deep learning has been widely used for medical
imaging tasks. However, major medical imaging
tasks are far from solved, and the optimal deep
learning method and architecture for each task
and application region have not yet been
established [42].

In [42], an algorithm to select feature subsets for
hyperspectral image classification using the
principle of coalition game theory is discussed. A
similar algorithm can be a starting point for
research in medical imaging.

7. Literature suggests that compression dynamics in the
information plane are not a common feature of
deep learning networks but are critically
influenced by the nonlinearities deployed by the
network. Research in this direction may reveal
new concepts related to deep networks and the
information plane [110].

[75, 138] described how game theory could be
associated with the network and related theory.
This feature of game theory can be utilized to
solve the challenges related to deep networks and
the information plane

8 In the future, there is a possibility of using deep
learning for robust meta-analytic estimation—in
conjunction with increased transparency and col-
laboration at the level of the meta--
analysis—revives the potential of meta-analysis

[7, 64] describe that game theory can be helpful in
estimation and meta-analysis. It can be a good
starting point towards the utilization of deep
learning for robust meta-analytic estimation
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8 Conclusions

Games play a vital role in the advancement of artificial intelligence. Games are frequently used as
training mechanisms in learning algorithms, such as reinforcement learning and imitation
learning. The paper highlights that AI-enabled and deep learning-enabled multi-agent systems
are also developed to compete or cooperate to complete a goal with the help of game theory. In
real-time scenarios, deep learning frameworks need to face situations with imperfect information.
Paper considers all 31 articles in which game theory and deep learning coincide described in
Table 1. It is discussed in the paper that DeepMind’sAlphaGo works with the help of partial
knowledge to strategically make superior to the world’s most efficient human in the game of Go.

The paper also puts ample light on the application of game theory to construct adversarial
networks. An essential property of an adversarial network is that a closed-form loss function is
not needed. Some networks have the capability of finding their loss function. A significant
disadvantage of adversarial networks is difficulties in training them. Adversarial learning
models find a Nash equilibrium for a two-player non-cooperative game. The paper addresses
applications of game theory in artificial neural networks, reinforcement learning, and deep
learning. The main focus is to focus on the construction of GAN by applying different game
models. The paper’s contribution may help the researchers in game theory, deep learning, and
artificial intelligence to acquire a large number of ideas about inter-domain research and
contribute holistic works in these domains. The paper also addresses various challenges and
future directions of the identified area that will help researchers explore. In the future,
behavioral game theory can be applied to model deep learning networks and mimic human
neural networks. The combination of the research areas will open several paths for the
researchers.
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