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Machine learning-coupled combinatorial
mutagenesis enables resource-efficient engineering
of CRISPR-Cas9 genome editor activities
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The genome-editing Cas9 protein uses multiple amino-acid residues to bind the target DNA.
Considering only the residues in proximity to the target DNA as potential sites to optimise
Cas9's activity, the number of combinatorial variants to screen through is too massive for a
wet-lab experiment. Here we generate and cross-validate ten in silico and experimental
datasets of multi-domain combinatorial mutagenesis libraries for Cas9 engineering, and
demonstrate that a machine learning-coupled engineering approach reduces the experi-
mental screening burden by as high as 95% while enriching top-performing variants by ~7.5-
fold in comparison to the null model. Using this approach and followed by structure-guided
engineering, we identify the N888R/A889Q variant conferring increased editing activity on
the protospacer adjacent motif-relaxed KKH variant of Cas9 nuclease from Staphylococcus
aureus (KKH-SaCas9) and its derived base editor in human cells. Our work validates a readily
applicable workflow to enable resource-efficient high-throughput engineering of genome
editor’s activity.

TLaboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China. 2 Centre
for Oncology and Immunology Limited, Hong Kong Science Park, Hong Kong, SAR, China. 3Department of Electrical and Electronic Engineering, The
University of Hong Kong, Hong Kong, SAR, China. 4 Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, SAR, China. ® School of
Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China. © Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science
Park, Hong Kong, SAR, China. 7 Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR, China. 8 Biotechnology and Health
Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China. “These authors contributed equally: Dawn G. L. Thean, Hoi Yee Chu.
Mamail: aslw@hku.hk

| (2022)13:2219 | https://doi.org/10.1038/s41467-022-29874-5 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29874-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29874-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29874-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29874-5&domain=pdf
http://orcid.org/0000-0002-1970-1259
http://orcid.org/0000-0002-1970-1259
http://orcid.org/0000-0002-1970-1259
http://orcid.org/0000-0002-1970-1259
http://orcid.org/0000-0002-1970-1259
http://orcid.org/0000-0003-0121-2788
http://orcid.org/0000-0003-0121-2788
http://orcid.org/0000-0003-0121-2788
http://orcid.org/0000-0003-0121-2788
http://orcid.org/0000-0003-0121-2788
http://orcid.org/0000-0002-2248-956X
http://orcid.org/0000-0002-2248-956X
http://orcid.org/0000-0002-2248-956X
http://orcid.org/0000-0002-2248-956X
http://orcid.org/0000-0002-2248-956X
http://orcid.org/0000-0003-2774-9188
http://orcid.org/0000-0003-2774-9188
http://orcid.org/0000-0003-2774-9188
http://orcid.org/0000-0003-2774-9188
http://orcid.org/0000-0003-2774-9188
http://orcid.org/0000-0003-2331-7011
http://orcid.org/0000-0003-2331-7011
http://orcid.org/0000-0003-2331-7011
http://orcid.org/0000-0003-2331-7011
http://orcid.org/0000-0003-2331-7011
http://orcid.org/0000-0003-4849-4903
http://orcid.org/0000-0003-4849-4903
http://orcid.org/0000-0003-4849-4903
http://orcid.org/0000-0003-4849-4903
http://orcid.org/0000-0003-4849-4903
http://orcid.org/0000-0003-1790-3233
http://orcid.org/0000-0003-1790-3233
http://orcid.org/0000-0003-1790-3233
http://orcid.org/0000-0003-1790-3233
http://orcid.org/0000-0003-1790-3233
mailto:aslw@hku.hk
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

he CRISPR-associated protein-9 (Cas9) protein has

become an important tool for genome editing. The speci-

ficity of Cas9 is guided by a single-guide RNA (sgRNA) to
the matching complementary genomic sites with a protospacer-
adjacent motif (PAM). Staphylococcus pyrogenes Cas9 (SpCas9) is
popularly used for genome editing due to its high editing effi-
ciency at most targeting sites and short 5-NGG-3’ PAM with less
sequence constraint for editing more sites. This comes with
concerns regarding the greater off-target effect of the nuclease
that dampens editing accuracy. Multiple studies have been con-
ducted to modify SpCas9 to optimize editing accuracy and reduce
constraints for PAM recognition!~19, However, the bulkiness of
SpCas9 limits its applications for in vivo genome editing as
adeno-associated virus, the delivery tool for clinical gene therapy,
has a cargo-packaging limit of ~4.4kb. Researchers have turned to
small Cas9 orthologs with comparable activity to SpCas9, such as
the Staphylococcus aureus Cas9 (SaCas9)!l. Although SaCas9 is
desirable in packaging for genetic therapeutics, its drawbacks are
its longer PAM 5-NNGRRT-3/, reducing genome coverage with
room for improvement in gaining higher activity and specificity.

Thus far, most of the optimized Cas9 variants possess 2-7
mutations scattering over multiple domains of the protein!-12-16,
Interestingly, each of the unique mutation combinations has con-
tributed to comparable performance and editing fidelity. For
example, >30 and >19 different amino-acid sites are engineered
among the >13 SpCas9 and >10 SaCas9 variants, respectively. Still,
they represent only a small proportion of amino-acid sites inter-
acting with the sgRNA-DNA complex!7!8, each site is a potential
candidate for optimization. A systematic experimental screen across
all the candidate amino-acid positions to identify the best-
performing Cas9 variants will be prohibitively labor-intensive and
expensive. Therefore, here we explored the use of a machine-
learning (ML)-guided approach to tackle the Cas9 optimization
problem.

Machine learning is employed in a wide range of protein
engineering tasks. In silico screens show great success in identi-
fying high-performance variants of enzymes!?, ion channels?0-2],
binders?2, and viral capsids®3. In particular, the ML-based
approach in the antibody maturation and viral capsid diversifi-
cation involved fully saturated mutagenesis from 9 to 28
amino-acid sites. The capacity to evaluate such a large number of
variants far exceeds what is feasible experimentally, even in
massively parallel experiments. The main attracting reason of
using ML is to reduce the burden of the experimental screen and
narrow down top-performing candidates for further character-
ization and engineering. Studies have shown that the ML
approach can reliably predict the fitness of the full virtual library
(10°-10!2 variants) using a small subsample of empirical fitness
data (103-10# variants or even less)?>?4. To minimize screening
efforts, ML-guided approaches such as machine-learning-assisted
approach to directed evolution (MLDE)2>2¢ extrapolate from the
experimentally determined fitness of a small sample of variants
from a combinatorial mutant library to predict the full variant
space covered by the multisite saturation mutagenesis library in
silico. ML is compatible with screening platforms, which use
fluorescence-activated cell sorting and next-generation sequen-
cing as readouts, to evaluate the functionality of protein variants
in a pooled library setting.

Here we describe how ML can be applied to a focused library
derived from the structure-guided design. Such a focused library
usually targets multiple sites (e.g., eight sites in our previous
SpCas9 optimizationd) key to the protein functionality with
deliberated mutations that are restricted to a few residues per site.
We show that ML-based in silico screens are efficient and accu-
rate in independent Cas9 optimization tasks, reducing the wet-lab
labor by as high as 95%. In this study, we aim to boost the activity

of SaCas9 while maintaining the broader PAM specificity. No
mutation has been reported in SaCas9 that increases its editing
activity before this work. We chose to base our modifications on
the E782K/N968K/R1015H SaCas9 variant (KKH-SaCas9), which
showed comparable activity with wild-type SaCas9 and recog-
nized an expanded PAM 5-NNNRRT-3'13. A prior study
emphasized modifications of the PI domain in modifying around
the PAM duplex region'4, however, no studies have looked at
modifying the WED domain, which is responsible for the sgRNA
scaffold recognition, of SaCas9 thus far. Combining ML-based
and combinatorial mutagenesis screens with downstream
structure-guided rational design and wet-lab validations, we
uncover insights to changes in the WED domain that could
provide stronger interactions with the PI domain, thereby
increasing the DNA-binding ability of KKH-SaCas9 protein. Our
results revealed that the modification on the WED domain may
come through more often in enhancing the protein’s activity
rather than the changes in the PI domain. In addition, we tested
the same mutation with a high-fidelity SaCas9 variant (KKH-
SaCas9-SAV2) and a KKH-SaCas9-derived cytosine base editor,
demonstrating that the mutations could be widely applicable to
increase editing activity. This work also sets up a useful workflow
and establishes parameters that can maximize ML usefulness in
succeeding screens and minimize wasted wet-lab resources for
engineering other components of the Cas9 system and gene
editing tools.

Results

Validating MLDE model for predicting SpCas9’s activity. The
vast combinatorial mutational space is an obvious challenge
for protein engineering. Utilizing machine-learning-based meth-
ods empowers us to efficiently explore the functional impact
brought by mutations and break through the experimental
limits of testing more combinatorial mutants. Here we tested
whether the ML-based in silico screen could be applicable on the
Cas9 optimization problem, using a small fraction of variants
with experimentally determined activities from a combinatorial
mutant library. Specifically, using our previously published
combinatorial mutagenesis data on SpCas98, we sought to find
out the minimal sample size sufficient to accurately predict which
variants possess top enzyme activities for the library. We used the
MLDE package that predicts activities of variants from multi-site-
saturated mutagenesis libraries from a small sample of variants.
The MLDE packages offer numerous embedding and model
parameters. We selected the simple Georgiev embedding?” and
the learnt embedding from Bepler et al.?® combined with more
complex neural network models (parameter 1) or with an
ensemble of more simple models such as random forests and
SVM (parameter 2) to model the activities of SpCas9.

We tested different input sizes (including 5%, 10%, 20%, 50%,
and 70% of randomly downsampled empirical data points) as the
training data for SpCas9 activity. We also explored whether using
a sample with higher diversity (see “Methods” on variant
selection) increases accuracy because a previous study showed
that sampling diverse samples improves the ML performance?’.
Deciding on which characteristic of the data is most useful as the
training data will help guide the library design for building
variants for empirical testing. To this end, we selected more
dissimilar variants by restricting the numbers of variants with
merely one and two mutations apart to be included in the input
dataset. Especially when there were few input data points (5%,
10%, and 20%), we observed that this selection scheme boosted
the number of variants harboring three, seven, and eight
mismatches from each other in the dataset (maximal increase
by 29.1, 8.4, and 0.5% for Sg5 on-target activity dataset and 32.2,
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9.89, and 12% for Sg8 on-target dataset, respectively) (Supple-
mentary Fig. 1; Supplementary Data 1). When the sample size
was increased to 50% empirical data, such a selection scheme did
not confer more dissimilarities among variants compared with
random selection, and thus we were only able to evaluate the
effect of increased sequence diversity with samples with smaller
sizes. We ran MLDE on all the datasets and calculated the
precision, specificity, and sensitivity on predicting variants with at
least 70% of wild-type activity. To ensure the prediction outcome
was not affected by overlapping of training and testing data, 20%
of variants in the library from the experimental dataset were
randomly subset and withheld a priori, and had never been fed to
the MLDE algorithm. Regardless of the little increase in diversity
described above, the diverse dataset ended up with similar
precision based on the four tested embedding and model
parameters over the Sg5 dataset, compared with randomized
selection (Supplementary Fig. 2; Supplementary Data 2). Upon
closer examination, predictions from diverse and randomized
training data led to similar results (Supplementary Fig. 3),
indicating again the limited benefits gained from increasing
sequence diversity in the training data. We used the randomized
selection scheme for the subsequent protein-optimization problem.

We also evaluated the MLDE performance with enrichment
score and normalized discounted cumulative gain (NDCG),
which reflects the likelihood of identifying top-performing
variants (see Methods). In our ML runs, we found that NDCG
and enrichment score were robust metrics for scoring models and
parameter performances (Supplementary Fig. 2), especially for
Sg8 on-target activity where only about 10 variants (1.15% of the
library) show activities comparable to WTS. NDCG and
enrichment score were thus used for subsequent scoring with
our objectives to isolate the top-performing Cas9 variants.
Looking into NDCG and enrichment score, all the embeddings
and model combinations performed well, while Bepler and
Georgiev embeddings with p2 parameter outperformed other
parameters when 5-20% of training data was fed to MLDE
(Fig. 1a).

Taking NDCG and enrichment score together into considera-
tion, we determined that 20% of input can be used as the input
threshold that gave a robust and consistent performance in
identifying top-performing candidates (Fig. 1a, b; Supplementary
Fig. 4). About 10% of input can also be used to further reduce the
experimental screening burden with the metric scores slightly
compromised (Fig. 1a). Using merely 10% of input was sufficient
to identify clusters of variants with high activity for the Sg5
dataset, and consistent identification of variants with at least 70%
of wild-type activity across 10%, 20%, 50%, and 70% of input was
observed (Supplementary Fig. 3). MLDE runs on the Sg8 dataset
again successfully identified the top-performing variants (Fig. 1b,
Supplementary Fig. 5), albeit that NDCG and enrichment score
were lower than those observed for Sg5 dataset (Fig. la; see
Supplementary Text). The top hits predicted from the Sg5 and
Sg8 datasets included Opti-SpCas9 that was experimentally
confirmed in our previous study to exhibit high on-target
activities for both Sg5 and Sg88. Using MLDE, the enrichment
in identifying top-performing variants reached about 8.6-fold for
Sg5 (and about 5.8-fold for Sg8) with 20% input compared with
the null model (Fig. 1a; Supplementary Data 2). The enrichment
reached about 7.5-fold with 5 and 10% input for Sg5 (Fig. la;
Supplementary Data 2). We further applied MLDE for off-target
prediction. We took the same set of variants used for on-target
activity prediction constituting 10, 20, 50, and 70% of empirical
data of Sg5 off-target activities as training data for MLDE. MLDE
achieved similarly high NDCG scores and about 5.5-fold
enrichment with 20% input in off-target activity prediction
(Supplementary Fig. 6; Supplementary Data 3).

PAM relaxation is another key research area on SpCas9
engineering, and thus, we explored whether MLDE could
facilitate screening on variants that cleave effectively on
noncanonical PAMs. Specifically, we tested MLDE on SpCas9
variants’ activities on noncanonical NGN PAMs from the
previously published High-Throughput PAM Determination
Assay (HT-PAMDA) experiment30. We run MLDE using 10,
20, 25, and 50% input (6, 12, 15, and 29 variants). Due to the
small size of the library, we were not able to calculate enrichment
(see Methods) since there were only 3 variants warranted to be
top 5% in the dataset. We focused on NDCG and again observed
high scores on MLDE’s prediction (Fig. 1c; Supplementary
Data 4). All the modeling parameters performed well when
supplied with 50% training data, while Bepler and Georgiev
embeddings with p2 parameter outperformed other parameters
when only 10 and 20% training data were fed to MLDE (Fig. 1¢).
Across the four PAMs tested, supplying 20% training data to
MLDE could achieve comparable performance to MLDE runs
using 25 and 50% training data. Thus, we used MLDE results
from 20% training data for the rest of the analysis. Looking into
the best runs for each PAM, SpG was detected correctly to be
among the top 20% variants with high activity at NGAT and
NGCC PAMs (Fig. 1d; Supplementary Fig. 7).

Taking together the accurate prediction and the ability to
isolate bona fide high-activity variants, we found that MLDE is
compatible with rational-design-guided library in various aspects
of SpCas9 engineering.

Experimentally validated MLDE prediction identifies activity-
enhanced KKH-SaCas9 variants. Using the parameters that
yielded a good prediction of SpCas9’s activity, we attempted to
apply MLDE to tackle the SaCas9 optimization problem. We
sought to augment the editing activity of KKH-SaCas9 and
speculated that introducing additional non-base-specific interac-
tions between KKH-SaCas9 and the PAM duplex of the target
DNA could increase the enzyme’s efficiency. Such a strategy was
shown to be effective in compensating the reduced DNA base-
specific interactions and restoring the activity of an engineered
SpCas9 variant with broadened PAM compatibility*. For SaCas9,
Nishimasu et al. have illustrated in the crystal structure (5CZZ)
its amino-acid residues that show direct contact with the target
DNA of the PAM duplex'8. Specifically, it was highlighted that
amino-acid residues at position 985, 986, 991, and 1015 on its PI
domain form water-mediated hydrogen bonds with the nontarget
DNA strand at the PAM duplex, while residues at positions 789,
882, 886, 887, 888, 889, and 909 on its WED domain interact with
the phosphate backbone of the PAM duplex. Mutations at posi-
tions 988 and 989 were also reported to alter SaCas9’s PAM
constraint!4. In this study, we focused on modifying eight amino-
acid positions (887, 888, 889, 985, 986, 988, 989, and 991)
that interact with and surround the PAM duplex for combina-
torial mutagenesis (Fig. 2a; Supplementary Data 5). Up to two
amino-acid alternatives to the wild-type residue were selected for
each site based on structural predictions. This could potentially
increase non-base-specific interactions between KKH-SaCas9 and
the DNA and relieve the PAM constraint. To facilitate the
changes, we selectively chose sites in the WED domain to rein-
force the protein binding to the DNA backbone (Supplementary
Data 5). This led to a total of 1,296 variant combinations,
including the wild-type residues (i.e., 12 mutation combinations
at WED domain x 108 mutation combinations at PI domain). We
did not modify residue position 1015 because this R1015H was
shown to be important for maintaining the high activity of KKH-
SaCas9 to act on NNNRRT PAM!3. Residue positions 789, 882,
886, and 909 were not included to confine the library size for
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combinatorial mutagenesis, while they are potential sites for functional variants that have comparable activities to wild-type

future engineering.

(at least 70%) from the full variant space. Parallelly, we sought to

We randomly picked 260 out of the 1,296 (20%) variants, confirm our in silico prediction results with the experimental
generated empirical data from a screening library (see below) as  screening data to validate the MLDE model that predicts KKH-
training set input, and run MLDE with combinations of Bepler or ~ SaCas9’s activity with high accuracy. We assembled a full-
Georgiev embeddings and modeling parameters 1 or 2 to predict coverage screening library of 1296 variants, and the library was
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Fig. 1 Performance of MLDE predictions on SpCas9’'s activities. a Performance of MLDE predictions on Sg5 and Sg8 on-target activities with SpCas9.
Enrichment score and NDCG of MLDE runs using a combination of embeddings (Bepler/Georgiev) and models (p1 and p2) are plotted against the size of
randomly selected training data. The best-fit line summarizes 3 replicates for each embedding and model parameter combination of MLDE runs using 5, 10,
20, 50, and 70% of training data. b Predicted versus empirical fitness of variants in the best-performing MLDE runs using 20% input training data, given
the different combinations of embeddings and model parameters. The predicted fitness by MLDE is plotted against the empirical fitness of the Sg5 and Sg8
on-target activity in the best-performing runs (ranked according to the NDCG and enrichment score). The top-5% hits in the prediction are highlighted in
red, while the top-5% variants from the empirical data are outlined in black. Wild-type SpCas9 and other previously characterized variants (eSpCas9, Opti-
SpCas9, and OptiHF-SpCas9) are labeled. ¢ Performance of MLDE prediction on SpCas9's activity at NGN PAMs. NDCG score of MLDE runs using a
combination of embeddings (Bepler/Georgiev) and models (p1 and p2) is plotted when 10, 20, 25, and 50% of training data was supplied (n=3
independent MLDE runs for each data size). d Predicted versus empirical fitness of variants in the best-performing MLDE runs using 20% training data for
each PAM (NGAT, NGCC, NGGG, and NGAT). The top 20% (12 variants) in the prediction are highlighted in red and the top 20% from the empirical data
outlined in black. The parental variant, VRQR, and the variant SpG are labeled. Source data are provided in the Source Data file.

delivered by lentiviruses into reporter cell lines that stably
expressed GFP and a sgRNA targeting the GFP gene sequence
(Fig. 2a). Variants that generate indel-mediated disruption of the
GFP sequence and its expression were enriched in the sorted bin
with low GFP fluorescence (i.e., Bin A) as compared with the
GFP-positive population (i.e., Bin B) (Fig. 2a, b). The mutated
sequences on KKH-SaCas9 were retrieved using Illumina
NovaSeq. The activities for the library of KKH-SaCas9 variants
were plotted based on their relative enrichment in the sorted bin
(Fig. 2¢; Supplementary Data 6). Our experimental screening
results revealed that variants harboring mutations at residues 888
and 889 of the WED domain and 988 and 989 of the PI domain
were frequently detected among the top-5%-ranked variants with
high on-target activities, while those carrying wild-type sequences
at 887 of the WED domain and 985 and 986 of the PI domain
more likely confer the enzyme with higher activity (Supplemen-
tary Fig. 8). From the library of variants, we identified that two of
them (harboring N888Q and N888Q/A889S) exhibited higher
activity than KKH-SaCas9 when paired with 2 out of 3 tested
sgRNAs (i.e., sgl and sg3); for the third sgRNA (i.e., sg2), the two
variants showed comparable editing efficiency to KKH-SaCas9
(Fig. 2c, d). When using other 3 sgRNAs targeting the GFP
sequence harboring nonpermissive PAMs for KKH-SaCas9 (i.e.,
NNNYRT), the library variants, including the N888Q and
N888Q/A889S variants, showed minimal effect on disrupting
GFP expression, indicating that the variants do not have relaxed
constraint at those PAMs (Fig. 2e; Supplementary Data 6).

Comparison between our in silico prediction results and
experimental screen data indicated that MLDE can be used to
predict KKH-SaCas9’s activity. Here, MLDE using the Georgiev
embedding with the ensemble of random forest and SVM
algorithm (parameter 2) showed the best performance (Fig. 3a,
Supplementary Data 7). The enrichment in identifying top-
performing variants reached about 6.7-fold for sgl, 9.2-fold for
sg2, and 5.1-fold for sg3 with 20% input, and about 5.1-fold for
sgl, 7.2-fold for sg2, and 4.1-fold for sg3 with 10% input
performance (Fig. 3a, Supplementary Data 7). Although using the
other parameters (i.e., Bepler.p1, Bepler.p2, and Georgiev.p1) also
achieved high enrichment scores (Supplementary Figs. 9-11), our
results indicated that these parameters gave more predicted
variants with high enrichment score that were not enriched in the
experimental datasets. Indeed, Georgiev.p2 parameter gave the
best prediction performance across most datasets used in our ten
in silico and experimental cross-validation work throughout our
study. Our findings indicate the importance to select the best-
performing embedding and modeling parameters for more
consistent predictions in succeeding screens.

In addition, we noticed that for certain datasets that lack high-
fitness variants in the training input could result in most variants
from MLDE being predicted as depleted. Specifically, when
training datasets only contained variants with poor activities

(<55% of the activity of the top experimentally validated variant),
MLDE performance was hindered (Supplementary Figs. 9-11).
Such condition was prominent in datasets of sg3 that 2 out of 3
training datasets failed to sample any high-fitness variants. Our
results are in line with the recommendation that we ought to
focus on surveying diverse sequence spaces believed to contain
functional variants for MLDEZ?®. Thus, the good performance of
MLDE requires the presence of variants with higher fitness in the
input training datasets.

Overall, with datasets that contained higher fitness variants for
MLDE runs, we found that the three independent sets of activity
measurements on KKH-SaCas9 variants using sgRNA sgl, sg2, or
sg3 yielded consistent predictions with the experimental screen
data, especially in MLDE predictions using the Georgiev
embedding and modeling parameter 2 (Fig. 3b; Supplementary
Fig. 8). This result is in line with our SpCas9 activity prediction
showing that MLDE identifies top-performing variants readily.
The top-5% hits predicted from the three sets included N888Q
and N888Q/A889S variants identified in our experimental screen
data (Fig. 3b). The high level of consistency, including the
identification of the common top-performing variants, between
the in silico and experimental screen data, confirms that the
MLDE model can be used to predict KKH-SaCas9’s variants with
high activity.

To further verify the editing efficiencies of the identified
variants with increased KKH-SaCas9’s activity, individual valida-
tion assays were performed. The validation results were consistent
with the screening data, from which we revealed that the N888Q
variant exhibited increased editing activities over KKH-SaCas9
when paired with sgl and sg3 sgRNAs (Supplementary Fig. 12).
Together, our screen identifies residues located proximal to the
PAM duplex that could be modified to increase KKH-SaCas9’s
on-target activity.

Structure-guided engineering of activity-enhanced KKH-
SaCas9-plus. Based on the above-identified activity-enhanced
variants, we explored using structure-guided engineering to fur-
ther improve the editing activity of KKH-SaCas9. Protein-
structure analyses indicated that N888 and A889 at the WED
domain of SaCas9 are positioned close to its PI domain and the
DNA backbone of the PAM duplex!®. Our modeling revealed that
while N888Q removes its contact with the DNA backbone of the
PAM duplex, it could have increased its proximity to and added
interaction with L989 at the PI domain (Fig. 4a)3!. We speculated
that this interaction may sandwich the PAM duplex more firmly
to facilitate unwinding of the target DNA and trigger base pairing
between the sgRNA and the DNA target, thereby explaining for
the greater editing activity observed for the N888Q variant.

We tested whether switching N888 and A889 to other residues
that could strengthen the interactions between WED and PI
domains also enhances KKH-SaCas9’s activity. We engineered
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four more combined mutation variants (i.e., N888H/A889Q,
N888S/A889Q, N888R/A889Q, and N888H/A88IN) on those
positions, which were selected based on predicted contact gains
with the PI domain via N986, D987, L988, and/or L989 (Fig. 4a;
Supplementary Fig. 13). Among the variants tested, the one
harboring N888R/A889Q mutations (hereafter designated as

KKH-SaCas9-plus) exhibited the greatest editing activity (ie.,
127% of KKH-SaCas9’s activity, averaged from 3 sgRNAs
targeting GFP) (Fig. 4b). Modeling showed that N888Q putatively
only added contact with the PI domain via L989, while A889Q
was predicted to interact with N986 and D987, as well as adding
contacts with the DNA backbone of the PAM duplex (Fig. 4a).
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Fig. 2 Experimental screening of the activity of KKH-SaCas9 variants. a, b Strategy for the profiling of the activities of KKH-SaCas9 variants in human
cells is illustrated in (a). A library of 1,296 KKH-SaCas9 variants was assembled by PCR-based mutagenesis and was cloned in tandem with a gRNA-
targeting GFP expressed from a U6 promoter. The library was delivered via lentiviruses to OVCARS8-ADR reporter cell lines in which the RFP and GFP
genes are expressed from UBC and CMV promoters, respectively. Fluorescent protein expressions were analyzed by flow cytometry (results are shown in
(b)). The activity of KKH-SaCas9 was measured using reporter systems in which the gRNA spacer sequence completely matched the GFP target site. Cells
with an active KKH-SaCas9 variant were expected to lose GFP fluorescence. Cells were sorted into bins, each encompassing ~5% of the population based
on GFP fluorescence, and their genomic DNA was extracted for quantification of the variant by Illumina NovaSeq. c-e Scatterplots comparing the barcode
count of each KKH-SaCas9 variant between the bin-A (GFP-negative) and the bin- B (GFP-positive) populations. Each dot represents a KKH-SaCas9
variant, and wild-type (WT) KKH-SaCas9 is labeled. Solid reference lines denote 2-fold enrichment, and the dotted reference line corresponds to no
change in barcode count in the bin-A as compared with the bin-B population. Three sgRNAs with permissive (sg1, sg2, and sg3) (c) and three sgRNAs with
nonpermissive (sg5, sgb, and sg7) (e) PAMs for KKH-SaCas9 were used. Bubble plot summarizing the enrichment scores determined for each KKH-
SaCas9 variant with the three sgRNAs with permissive PAMs is shown in (d).

We further confirmed that KKH-SaCas9-plus generated more
edits when targeting endogenous genes (i.e., showed 109% of
KKH-SaCas9’s activity, averaged from sgRNAs targeting 7 loci)
(Fig. 4c), while 3 out of the 7 loci showed 17-33% enhancement
of the editing activity (Fig. 4d). We verified that the increase of
editing activities observed was not due to the difference in the
variants’ protein expression (Fig. 4e). In addition, we observed
that grafting N888R/A889Q mutations onto the KKH-SaCas9-
derived cytosine base editor (BE4max) also increased its activity
on editing 4 tested endogenous loci (by 11-93% at the most
edited base within the target sites) (Supplementary Fig. 14),
suggesting that the increased editing activity brought by the
mutations is likely dictated at the DNA-binding level.

Modeling of KKH-SaCas9-plus showed that it contacts the PI
domain via all four residues (i.e., N986, D987, L988, and/or L989)
and has three contacts with the DNA backbone (Fig. 4a).
Whereas, the other variants carrying N888H/A889Q and N888S/
A889Q mutations could interact with the PI domain only via
N986/987, but not L988/L989, with an equal number or more
contacts with the DNA backbone (Supplementary Fig. 13).
Hence, this illustrates that the creation of new interactions
between the WED and PI domains at multiple locations within
the PAM duplex region appears to be effective in augmenting
KKH-SaCas9’s activity, and accounts for the greater enhancement
for KKH-SaCas9-plus.

Discussion

There have been tremendous efforts in designing Cas9 proteins to
boost gene editing efficiency at the same time purge undesired
off-target editing. The two qualities involved maintaining a
delicate balance of interacting and noninteracting amino-acid
side chains of the Cas9 protein with the sgRNA-DNA complex.
Dozens of variants possessing different mutation combinations
have been reported thus far, each representing one of the many
optimal solutions for the trade-off between Cas9 activity and
precision. Considering that any of the amino-acid sites of SaCas9
in spatial proximity to the sgRNA-DNA complex are potential
sites for optimization, which reaches over 40 sites!8, the number
of combinatorial variants to screen through for optimization is
too many (i.e., 240 = 1.1 x 10!2) for wet-lab experiment even if
each site is restricted to two (wild-type or mutated) amino-acid
residues.

We have previously shown that with rational design, we could
limit each site to 4-5 candidate residues and generate a targeted
mutagenesis library to reduce screening efforts. Using that
strategy, we successfully identified SpCas9 variants with both high
activity and fidelity in a combinatorial screen of 952 variants®.
Here, we explored how to facilitate such a rational-design-based
screen with machine learning in the optimization of Cas9 pro-
teins (Fig. 5). In particular, we sought to assess if ML can further
downsize the experimental screen via the extrapolation of handful

of variants with experimentally determined fitness values. We
found that ML-based in silico screen facilitates the search of more
efficient Cas9 variants. In the best MLDE run on the SpCas9/Sg5
dataset, using as little as 20% of variants as input training data, we
had a 51.5% chance of capturing the top variants according to
experimental data, compared with the chance in the null model.
The synthetic data, generated by MLDE trained with experi-
mental data of only 130 variants, allowed the identification of 17
top-performing (5%) variants, achieving a 3.8-fold increase in
resource efficiency to 0.131 (i.e., 17/130) compared with 0.035 of
the empirical approach (i.e., 33/952, 33 top-5% variants were
taken from the 650 available datapoints for comparison) where
the full library (with 952 variants) was screened (Supplementary
Data 8).

Shortlisting a few candidate residues on selected amino-acid
sites via structure-guided rational design of SpCas9 has already
enhanced our chances of finding better variants in our previously
published combinatorial mutant library. Likewise, MLDE
recommended that we ought to focus on surveying diverse
sequence spaces believed to contain functional variants (fftMLDE
mode?®). Thus, we tested how the MLDE performance would
differ when training data was selected randomly or selected to
maximize sequence diversity among variants. We found that the
training datasets with divergent variants conferred negligible
benefits on MLDE performance.

In an independent Cas9 optimization task, we further
demonstrated that MLDE exhibited surpassing performance in
the prediction of KKH-SaCas9 variants’ activities on three
sgRNAs and showed success in identifying useful variants in the
KKH-SaCas9 screen subsequently. In our best-performing ML
runs on the KKH-SaCas9 datasets, using 20% of variants (260 out
of 1,296 variants) as input training data resulted in a 40.0, 49.2,
and 44.6% chance of capturing the top-5% variants for sgl, sg2,
and sg3, respectively, according to experimental data (Supple-
mentary Fig. 8). Screening only 260 out of 1,296 variants for
generating the training dataset led to the identification of 26-32
top-performing variants using MLDE. The resource efficiency of
identifying the top-performing (5%) variants was increased by
2.0- to 2.5-fold to 0.100 (i.e., 26/260), 0.123 (i.e., 32/260), and
0.112 (i.e., 29/260) for sgl, sg2, and sg3 respectively, compared
with 0.050 (i.e., 65/1,296) in the null model. We combined
structure-guided design, targeted mutagenesis library screen, and
ML in this study to identify activity-enhanced KKH-SaCas9
variants, vastly shortening the path to identify these top variants.

The best-performing variant, KKH-SaCas9-plus, reported in
this work harbors N888R/A889Q mutations that improve its
editing activity. Our molecular modeling provides structural
insights that these mutations may have strengthened the inter-
actions between KKH-SaCas9’s WED and PI domains located
near the PAM duplex to anchor the target DNA in the
SaCas9-sgRNA-target DNA complex. While N888R/A889Q
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Fig. 3 MLDE predictions on KKH-saCas9's on-target activity with three sgRNAs. a Enrichment and NDCG of MLDE runs using a combination or
embeddings (Bepler/Georgiev) and models (p1 and p2) are plotted against the size of training data. The best-fit line summarizes 3 replicates for each
embedding and model parameter combination of MLDE runs using 5, 10, 20, 50, and 70% of training data. b Predicted versus empirical fitness of variants
in the best-performing MLDE runs using 20% input training data, given the different combinations of embeddings and model parameters. The predicted
fitness by MLDE is plotted against the empirical fitness of the on-target activity of KKH-SaCas9 with three sgRNAs (sgl, sg2, and sg3) in the best-
performing runs (ranked according to the NDCG and enrichment score). The values of maximum fitness in the training data are indicated at the bottom-
right corner of each panel. The top-5% hits in the prediction are highlighted in red, while the top-5% variants from the empirical data are outlined in black.
Wild-type KKH-SaCas9 (WT-KKH) and top-performing variants N888Q, N888Q/A889S, and A889S are labeled. The source data are provided as a
Source Data file.
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Fig. 4 Structure-guided engineering improves the editing efficiency of activity-enhanced KKH-SaCas9 variants. a Molecular modeling of N888Q and
N888R/A889Q mutations on WED domain of SaCas9 depicts their increased interactions with residues on its Pl domain and the DNA backbone. b KKH-
SaCas9 variants carrying mutations on residues 888 and/or 889 were individually constructed and characterized using GFP disruption assays with three
independent sgRNAs at 5 days post infection. The mean editing efficiency +/— SD (error bar) of the KKH-SaCas9 variants (n = 4 biologically independent
samples) was measured as the percentage of cells with depleted GFP fluorescence using flow cytometry. Statistical significance was analyzed by one-way
ANOVA with Tukey's test. The P-values of 0.016-0.024 indicate the comparisons with the wild-type variant's activity. ¢, d Assessment of KKH-SaCas9
variants' on-target editing with sgRNAs targeting endogenous loci. The percentage of sites with indels was measured using a T7 endonuclease-1 (T7E1)
assay in (¢) and deep-sequencing assay in (d). Mean and standard deviation are shown for the loci tested. Each locus was measured in n = 3 biological
independent samples. Statistical significance was analyzed by one-way ANOVA with Tukey's test. The P-values of <0.0001-0.048 indicate the
comparisons with the wild-type variant's activity. The ratios of the on-target activity of KKH-SaCas9 variants with N888Q and N888R/A889Q mutations
to the activity of KKH-SaCas9 were determined, and mean for the normalized activity is shown and highlighted by a red line (n =7, one-sample t-test). n.s.
indicates not significant. @ Western blot analysis on protein expression of the KKH-SaCas9 variants. This experiment was performed once. The source data
for figures (b-e) are provided as a Source Data file.
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Fig. 5 Machine-learning-integrated multidomain combinatorial mutagenesis screen for resource-efficient protein engineering. An overview of our
study procedures and outcomes. We started with structure-guided design to select sites and residues for mutagenesis and built multidomain combinatorial
variant libraries. We then run MLDE and tested embedding and model parameters to generate in silico predictions. We cross-validated experimental and
MLDE predictions, which established parameters for accurate prediction of Cas9's activity, fidelity, and targeting scope. The machine-learning-coupled
multidomain combinatorial mutagenesis screening approach facilitates the identification of top-performing variants with much reduced experimental
screening burden, increased hit enrichment, and enhanced resource efficiency.

increases the on-target activity of KKH-SaCas9, it may increase
off-target editing. Our GUIDE-seq results indicated that KKH-
SaCas9-plus showed a comparable on-to-off-target editing ratio
to wild type, albeit that there were alternative off-target sites
identified (Supplementary Fig. 15a, b). KKH-SaCas9-plus showed
more off-target edits at some of the target sequences with single-
base mismatches (Supplementary Fig. 16). We also tested whether
the addition of N888R/A889Q could improve the activity of the
more accurate variant of KKH-SaCas9 (i.e., SAV2)16. We found
that N888R/A889Q also enhanced the on-target activity of SAV2
(i.e., showed 121% of SAV2’s activity, averaged from sgRNAs
targeting 8 loci), while 5 out of the 8 loci showed 9-48%
enhancement of the editing activity (Supplementary Fig. 15c¢, d).
This combined mutant (KKH-SaCas9-SAV2-plus) generated
comparably few genome-wide off-target edits (Supplementary
Fig. 15a, b), while we observed increased edits at some of the
tested off-target sites with single mismatches (Supplementary
Fig. 16). These results indicate the feasibility to combine activity-
and specificity-enhancing mutations for further optimizing the
KKH-SaCas9’s performance. This result also affirms that the
abilities of KKH-SaCas9 to bind the DNA and distinguish base
mismatches between sgRNA and the DNA target probably act
through distinct mechanisms, and thus its activity and specificity
could be engineered independently. Furthermore, our data indi-
cated that the increased editing activity brought by the mutations
is likely dictated at the DNA- binding level, it is plausible that
N888R/A889Q may also be compatible with other dSaCas9-
derived genome-perturbation tools, including gene activators32-33,
base editor3*3>, and prime editor3® via increasing their abilities to
bind the DNA and thus their activities. The N888R/A889Q
mutations on the WED domain represent a useful building block
for further engineering of various genome-perturbation tools to
achieve both high activity and specificity. Future comprehensive
analyses using a large panel of sgRNAs paired with their target
sequences will help define the target-sequence dependencies and
sgRNA design rules for the KKH-SaCas9-plus variants.

10

To discover the activity-enhanced KKH-SaCas9 variants, we
initiated in this work a smaller pool of (about a thousand) var-
iants to be experimented with based on structure-guided design.
Except for the datasets that we generated previously on SpCas9,
other Cas9-engineering studies relied on methods, including
random and site-directed mutagenesis to select limited (often
only tens of) clonal isolates for characterization, and there is a
lack of large-scale experimental screening datasets available for
ML. To aid our evaluation of the ML methods for engineering
KKH-SaCas9, here we generated large-scale datasets for this. This
initial work is important because we unexpectedly noticed that
the selection of suitable sgRNAs (e.g., Sg5 for SpCas9 and sgl,
sg2, and s3 for KKH-SaCas9) could allow MLDE to generate
more reliable predictions in subsequent screens (see Supple-
mentary Text). We tested and validated the MLDE-based work-
flow based on our experimental screening data and defined the
required number and diversity of the input combinations for in
silico predictions. Our results set the groundwork to prepare for
succeeding screens of many more combinatorial mutations via
the creation of a directed library at a manageable experimental
scale. While MLDE was successful in predicting Cas9 variants
with high activity, it did not precisely inform which variant
among the predicted top-performing ones ranks best. A further
step is needed to experimentally characterize the shortlisted top-
performing candidates. Continual efforts in advancing ML
methods for protein-structure modeling, including incorporating
structural descriptors3” in addition to the learnt representation, to
improve the prediction on variants’ activities should further
enhance future in silico screens. Meanwhile, we only investigated
mutation combinations from selected amino-acid residues by
rational design and did not explore the performance of MLDE on
a virtual fully saturated mutagenesis screen. Creating a more
comprehensive screening strategy involves designing a library
enriched with diverse but not dysfunctional variants, this remains
a challenge to be addressed. One could examine possible struc-
tural changes of the designed variants predicted using other in
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silico tools such as DynaMut3!, Rosetta38:3%, and Pymol to further
filter for candidate mutations. For example, experimental
screening of a computationally designed library of ubiquitin
variants was shown to be more successful in identifying variants
with strong protein-binding ability40.

Another direction we would be eager to pursue is to increase
the number of amino-acid sites we can survey. It would be par-
ticularly useful for protein repurposing to use another substrate,
where the wild type has essentially no activity. An example would
be further pushing for a SaCas9 with much relaxed PAM con-
straint, which may involve engineering multiple sites beyond the
PI and WED domains. The number of targeted mutagenesis sites
to incorporate is still a confounding factor in combinatorial
library construction. For example, commercial oligo synthesis of a
100-bp DNA fragment at most accommodates 10 sites of NNN/
NNK degenerate codons or trinucleotide pool. MLDE has the
potential to transcend such physical limitations by building a
combined in silico screen supplied with empirical data from
multiple smaller focused libraries. One possibility is to perform
multiple focused screens with MLDE-converging sites with
modest overlaps that each library has mutagenesis of 5 amino-
acid residues per site, up to 6 sites with 1-2 sites in common to
another library (Supplementary Fig. 17a). Then, we can use
MLDE to combine all these experimental data in silico to predict
the optimal variants. Another possibility is performing iterative
rounds of targeted mutagenesis (Supplementary Fig. 17b). The
best variants we found at the end of each round seed the muta-
genesis library of the next round with a new set of amino-acid
sites subjected to mutagenesis. In both screening schemes, MLDE
and other ML-based methods will play an important role in the
search for high-performance variants and will serve as an
invaluable tool in the toolkit of protein engineering. Com-
plementary methods, including polymerase- chain reaction-based
mutagenesis and CombiSEALS*! that allow assembly of combi-
natorial mutations scattered over the entire protein, will facilitate
desirable targeted mutagenesis libraries to be built and
experimented.

Methods

Generation of data input for MLDE. We used the previously published SpCas9
data® surveying the on-target activity of Sg5 (650 empirical datapoints) and Sg8
(729 empirical datapoints) that target a red fluorescent protein (RFP) sequence as
the input data for the MLDE package. Specifically, we used the dataset of on- and
off-target activities measured from the same CombiSEAL library of SpCas9 variants
engineered at 8 amino-acid positions (R661, Q695, K848, E923, T924, Q926,
K1003, and R1060) that interact with the sgRNA-DNA complex. The on-target
activity was measured in screens where the sgRNA and target site have perfectly
matched protospacer sequences, while off-target activity was measured where the
sgRNA is targeting a site that bears an artificially introduced synonymous muta-
tion. We removed the extreme outliner by setting the minimal enrichment score
(E-score) as —2 for both Sg5 and Sg8 before the min-max normalized to the scaled
fitness score ranging between 0 and 1. First, we isolated 20% of the entire library
(190 SpCas9 variants) as test data; among these selected variants, 122 of Sg5 and
136 of Sg8 have empirical measurements. We then generated input training
datasets that do not overlap with the test data. The training datasets consist of 5%,
10%, 20%, 50%, and 70% of randomly drawn empirical measurements to test the
minimal input for effective selection of top variants from MLDE prediction, cor-
responding to datasets of 33, 65, 130, 325, and 445 empirically measured Sg5 on-
target activity and 37, 73, 146, 365, and 510 Sg8 on-target activity measurements.
We generated three replicates for each size, subjected to either randomized or
diverse selection schemes for variants. To generate the randomized dataset, we used
the sample_n() function from dplyr in R to randomly select the predefined number
of E-scores. Taking the above-mentioned 20% of the entire library as non-
overlapping test data allows the 70% randomly selected data not being the same for
all three replicates, while maximizing the variant numbers for evaluation. Using the
same method, we prepared the datasets of Sg5 off-target activities for MLDE. First,
we withheld 190 variants as the test set for the off-target activities. Then we
randomly sampled the remaining variants that consist of 5%, 10%, 20%, 50%, and
70% of the library to generate 3 replicates of training datasets for each size, cor-
responding to 41, 83, 165, 414, and 579 empirical measurements of Sg5 off-target
activity. The off-target activity was derived from min-max normalized E-score
after setting a lower bound of —2.5.

We sought to increase the sequence diversity of the input training data by
restricting the presence of variants, whose share only 1 or 2 mismatches (mutations
apart) with each other, to the minimum, given the data size. To do so, we kept
randomly sampling variants to size N with available E-scores until each variant
sharing no more than pl-mismatch neighbors and q2-mismatch neighbors in the
subgroup N. The thresholds p and q for each dataset are listed in Supplementary
Data 1. As N increases in size, it is more difficult to remove the 1- and 2-mismatch
neighbors in the input dataset and the overall sequence diversity of the diverse
dataset becomes similar to that of the randomly subsampled input datasets.
Consequently, we generated diverse datasets of four different sizes for Sg5 and Sg8
on-target activity that correspond to approximately 5, 10, 20, and 50% of the
empirical data. Because the 50% training datasets showed the same level of diversity
as randomly selected data, we only run MLDE on 5, 10, and 20% datasets. The
resultant diversity of the dataset, summarized as the total number of pairwise
sequences with N mismatches, is listed in Supplementary Data 1.

We also used the dataset with a total of 58 SpCas9 variants bearing rational
substitutions at five positions located in the PI domain that had their activities on
noncanonical NGN PAMs assessed by HT-PAMDA30. The on-target activity of the
variant against 4 sgRNAs representing NGAT, NGCC, NGGG, and NGTA PAMs
was min-max normalized in the training data. To avoid having too few variants in
the test set given the small dataset size, we withheld 29 variants (50% of the library)
as test data and performed MLDE with combinations of Bepler and Georgiev and
modeling parameters pl and p2 to predict on-target activity predictions using 10,
20, 25, and 50% input (empirical data of 29 and 15 variants).

The in-house SaCas9 dataset consists of 1,296 variants that were constructed
and tested in this study. Substitutions on 8 amino-acid positions (887, 888, 889,
985, 986, 988, 989, 991) that are widely scattered over the WED and PI domains
were rationally chosen based on protein-structure analyses (see Supplementary
Data 3 for details). The SaCas9 variants’ on-target activities against sgRNA 1, 2,
and 3 were measured as the E-score derived from the high-throughput fluorescent
protein disruption assay. We again withheld 20% of the empirical data (260
variants) as the test set. From the remaining variants, we generated 3 replicates of
randomly selected datasets that consisted of 65, 130, 260, 648, and 907 variants that
correspond to 5, 10, 20, 50, and 70% of the full library as training data for MLDE.
We run MLDE using the training data of different sizes and evaluate the MLDE
performance using the test-set variants.

We run MLDE according to the default parameters. Briefly, we applied the
Bepler and Georgiev embedding of the full-length amino-acid sequences of SpCas9
(UniProtKB—Q99ZW2 (CAS9_STRP1)) [https://www.uniprot.org/uniprot/
Q99ZW2] and SaCas9 (UniProtKB—J7RUA5 (CAS9_STAAU)) [https://www.
uniprot.org/uniprot/J7RUAS5] substituted with the designated variant’s amino-acid
residue combination. We modified the MLDE GenerateEncodings.py so that it
processed a customized input fasta file containing the protein sequences of all the
variants designed in the SpCas9 as well as the SaCas9 dataset rather than
generating the full set of saturated mutagenesis variants. We run the MLDE
ExecuteMlde.py with default parameters on the Bepler and the Georgiev
embeddings and with two different sets of parameters. We assigned them as
parameters 1 and 2: parameter 1 used the neural network models “NOHidden”,
“OneHidden”, “TwoHidden”, “OneConv”, and “TwoConv” available in MLDE,
each with 20 rounds of hyperparameter optimization, and parameter 2 used less
complex models “Linear-Tweedie”, “RandomForestRegressor”, “LinearSVR”, and
“ElasticNet”, each with 50 rounds of hyperparameter optimization.

We evaluated the performance of the ML algorithm parameters and
embeddings with precision, specificity, and sensitivity, using the withheld test-set
variants. More specifically, we assign variants with at least 70% of the wild-type
activity as positives and the rest as negatives. Thus, true positives are variants with
at least 70% activity of the wild type when empirically tested with the sgRNA.
Otherwise, they are true negatives. For each MLDE result, we also labeled the
positives and negatives using the 70% wild-type activity threshold. We then
counted the number of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) for each result and derived the performance metrics
according to the formula stated below:

TN

specificity = TN+ FP (1)
TP

sensitivity = TP+ FN 2)
TP

Precision = TP+ P 3)

We also applied another performance metric, enrichment, proposed by Sarfati
et al.#2. The enrichment reports the ratio of identifying true top 5% of hits when
using the ML prediction to random selection (the null background)

prediction
400 - I ;] 7 (4)
where N is the total size of the test set, here N is the number of all the variants in

the prediction. Enrichment provides us with an estimate of identifying high-fitness
variants when we select the top-5% variants by predicted fitness for downstream

. __ yprediction ;rrandom __
Enrichment = I /1Ig =
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experimental validation. When the larger fraction of highest-fitness variants is
captured in the top-5% prediction, enrichment increases from 1.

Finally, NDCG is also calculated to evaluate how well the model identifies top-
ranking variants

NDCG = (g i )/<§: fi ) 5)
i=ilog,(rel i+ 1)) \i=ilog,(i+ 1))’

where f is the true fitness value of the variant, i is the true rank (from highest to
lowest fitness), and rel i is the predicted rank from the model. NDCG compares the
predicted ranking to the actual ranking, aligns with the goal of MLDE to identify
high-fitness variants as top-ranking variants?42. If the predicted ranking and the
actual ranking is identical, NDCG reaches its maximum value of 1. Models that
misidentify low-fitness variants as top-ranking ones would result in low NDCG.

The input data handling, statistical analyses, and graph plottings are carried out
in R v4.1.2 using packages ggplot2 v3.3.5, tidyverse 1.3.1, readxl, Cairo, and
stringdist.

Plasmid construction. The plasmids generated from this study (Supplementary
Data 9) were done with standard molecular cloning techniques such as PCR,
restriction-enzyme digestion, ligation, one-pot ligation, and Gibson assembly.
Customized oligonucleotides were ordered through Genewiz. Vectors were trans-
formed into E. coli strain DH5a-competent cells and selected with ampicillin
(100 mg/ml, USB) or carbenicillin (50 mg/ml, Teknova). DNA was extracted and
purified by Plasmid Mini (Takara and Tiangen) or Midi preparation (QIAGEN)
kits. Sequences of the vectors were verified with Sanger sequencing.

Storage vectors AWp28 (Addgene #73850) and AWp112 were used to assemble
the sgRNA chosen to target a specific gene. The sgRNA sequences used are listed in
Supplementary Data 10. Oligonucleotide pairs of the sgRNA target sequences with
BbsI sticky ends were synthesized, annealed, and cloned into the BbsI-digested storage
vector using T4 DNA ligase (New England Biolabs). To prepare the lentiviral vector
for SaCas9 variant expression, AWp124 vector was modified via Gibson assembly to
remove all existing Esp3I enzyme sites. Esp3I sites were then reintroduced flanking
the PI and WED regions to incorporate the intended mutations, giving the DTp2
vector. To insert the sgRNA expression cassette, they were amplified from the storage
vector with flanking BamHI and EcoRI (Thermo Fisher Scientific) sites to and ligated
with the digested lentiviral vector DTp2. To generate the PI and WED mutations,
oligonucleotides with the WED-domain mutations were pooled in a 1:1 ratio as the
forward primer, and the same was applied with the PI domain for the reverse primer.
PCR amplifications were done using these pooled forward and reverse primers with
the original KKH-SaCas9 template to create the pooled mutations. Using a one-pot
ligation method, the pooled mutations were inserted into the Esp31 sites of DTp2. The
EFS promoter drives the SaCas9 expression, together with a fluorescent protein
expression from the downstream T2A-BFP. To create SaCas9-KKH-SAV2-plus
(DTp47A), we incorporated the Esp3I sites similarly done with DTp2 into SaCas9-
KKH-SAV2 (DTp52) via Gibson assembly, and then with one-pot ligation inserted
the ‘plus’ mutations that are the N888R/A889Q. All plasmids created in this study are
available from the authors.

Cell culture and transduction. HEK293T cells obtained from American Type
Culture Collection (ATCC), and MHCC97L-Luc cells gifted by S. Ma (School of
Biomedical Sciences, The University of Hong Kong), were maintained in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 1x antibiotic-antimycotic
and 10% FBS (Thermo Fisher Scientific). OVCARS-ADR cells gifted by T. Ochiya
(Japanese National Cancer Center Research Institute, Japan), were maintained in
RPMI 1640 medium supplemented with 10% FBS (Gibco). The HEK293T cells were
used for lentiviral production for KKH-SaCas9 variant expression and for generating
stable cell lines. OVCARS8-ADR cells were transduced with a pAWp9 vector
(Addgene #73851) expressing RFP and GFP gene, driven by the hUbCp and CMV
promoters, respectively, for the initial screening of KKH-SaCas9 pooled variants and
for further validation. OVCARS-ADR cells were also transduced with lentiviruses
encoding RFP and GFP genes expressed from UBC and CMV promoters, respec-
tively, and a tandem U6 promoter-driven expression cassette of sgRNA targeting the
GFP site. For the initial screening, the KKH-SaCas9 variants were expressed with
sgRNA targeting GFP using EFS and U6 promoters, respectively, followed by a T2A-
BFP to determine KKH-SaCas9 expression. The cells were sorted with a Becton
Dickinson BD Influx cell sorter. With the mutational screening, the KKH-SaCas9-
selected variants were transduced into the stable OVCARS8-ADR cell lines harboring
the GFP, RFP genes, and sgRNA. The MHCC97L-Luc cell lines were transduced to
create the stable expression of the selected KKH-SaCas9 variants for the T7E1 and
GUIDE-seq experiments. The cells were regularly tested and showed negative for
mycoplasma contamination. Lentivirus production and transduction were carried
out as previously described®.

Fluorescent protein disruption assay. Fluorescent protein disruption assays were
conducted to determine DNA cleavage and indel-mediated disruption at the target
site of the fluorescent protein, GFP, by the KKH-SaCas9 variants with the gRNA
expressions, resulting in loss of cell fluorescence. The stable cell lines integrated
with the GFP and RFP reporter gene, expressing the SaCas9 variants and sgRNA,
were washed, resuspended with 1x PBS supplemented with 2% heat-inactivated

FBS, and analyzed with Becton Dickinson LSR Fortessa Analyzer or ACEA
NovoCyte Quanteon. Cells were gated on forward and side scatter, and at least

1 x 10* cells were recorded per sample for each dataset. FlowJo v10.7 was used to
analyze data generated from flow cytometry experiments.

Immunoblot analysis. Immunoblots were carried out as previously described?.
Anti-SaCas9 (1:1000, Cell Signaling #85687) and anti-GAPDH (1:5000, Cell Sig-
naling #2118) primary antibodies were used, followed by HRP-linked anti-mouse
IgG (1:10,000, Cell Signaling #7076) and HRP-linked anti-rabbit IgG (1:20,000,
Cell Signaling #7074) secondary antibodies. The unprocessed scan of the immu-
noblots is available in the Source Data file.

T7 endonuclease-l assay. T7 endonuclease-I assay was performed as previously
described to quantify the Cas9-induced mutagenesis in endogenous loci®. The
targeted loci were amplified from 15 to 30 ng of genomic DNA extracted using
dNeasy Blood and Tissue Kit (QIAGEN) using the primers as listed in Supple-
mentary Data 11. Quantification was based on relative band intensities measured
using Image]J. Editing efficiency was estimated by the formula

100% (1 — (1= (b+0)/(a+ b+ c)'?), (6)

as previously described*3, where a is the integrated intensity of the uncleaved PCR
product, and b and c are the integrated intensities of each cleavage product.

GUIDE-seq. GUIDE-seq was performed as previously described®. Approximately
1.6 million MHCCI7L cells stably expressing the KKH-SaCas9 variants were
transduced with sgRNAs. After 72 h, electroporation was conducted according to
the manufacturer’s protocol using 1100 pmol freshly annealed end-protected
dsODN with 100 ul Neon tips (Thermo Fisher Scientific). The dsODN oligonu-
cleotides used were 5'-P-G*T*TTAATTGAGTTGTCATATGTTAATAACGG
T*A*T-3" and 5-P-A*T*ACCGTTATTAACATATGACAACTCAATTAA*A*C-
3/, where P represents 5’ phosphorylation and asterisks indicate a phosphorothioate
linkage. Electroporation voltage, width, and the number of pulses were 1100 V,
20 ms, and 3 pulses, respectively. Cells were harvested at day 7 post transduction of
the sgRNA. Genomic DNA was extracted using dNeasy Blood and Tissue Kit
(QIAGEN) according to the manufacturer’s protocol. The gDNA collected for the
SaCas9 variant and the sgRNA were sequenced on Illumina NextSeq System and
analyzed with GUIDE-seq software®4,

Deep sequencing. Deep sequencing was carried out as previously described*°. The
same gDNA samples used for the T7E1 assays were amplified for the region of edit
and sent for deep sequencing. About ~0.6 million reads per sample on average were
used to evaluate the genomic diversity of the >10,000 cells. HEK293T cells were
infected with sgRNAs and then transfected with KKH-SaCas9-derived BE4max
editor, together with a fluorescent protein expression from the downstream T2A-
BEFP. The cells harboring both base editor and sgRNA were sorted with a cell sorter
based on fluorescence. Amplicons harboring the targeted endogenous loci were
generated by PCR. About ~0.2 million reads per sample on average were used to
evaluate the genomic diversity of the >10,000 cells. Crispresso24® with default
setting was used to quantify indels and base editing outcomes from the deep-
sequencing data.

Molecular modeling. Molecular dynamic simulations were conducted on the
variants using DynaMut3!. The variant mutations were singly inputted into the
webserver, and the structural outputs were then aligned with the crystal structure of
SaCas9 (PDB: 5CZZ) [https://www.rcsb.org/structure/5CZZ] on PyMol. The pre-
dicted rotamer of the mutations as indicated by DynaMut was then used to replace
the amino-acid positions on the SaCas9 crystal structure. The predicted interac-
tions determined by DynaMut and Pymol were then indicated on the crystal
structure to provide a putative representation of the SaCas9 variants.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The deep-sequencing data generated in this study have been deposited in the NCBI SRA
database under accession code PRINA817034. The GUIDE-seq data generated in this study
have been deposited in the European Nucleotide Archive (ENA) database under accession
code PRJEB51773. For analysis on previously published datasets, Choi et al’s datasets®
(including SpCas9 variants activities on Sg5 on-target, Sg8 on-target, and Sg5 off-target
sites) were retrieved from Supplementary Table 2 at https://www.nature.com/articles/
$41592-019-0473-0#Sec24, and Walton et al’s datasets® (including SpCas9 variants’
activities on four noncanonical NGN PAMs) were retrieved from Supplementary Table S4
at https://www.science.org/doi/10.1126/science.aba8853. The previously released structural
data used in this study: SpCas9 (UniProtKB—Q99ZW2 (CAS9_STRP1)) [https://www.
uniprot.org/uniprot/Q99ZW2], SaCas9 (UniProtKB—J7RUA5 (CAS9_STAAU)) [https://
www.uniprot.org/uniprot/J7RUAS5], and SaCas9 (PDB: 5CZZ) [https://www.rcsb.org/
structure/5CZZ]. Source data are provided with this paper.
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Code availability
The customized MLDE code and instructions are stored in github [https://github.com/
AWHKU/RunMLDE_SpCas9].
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