TABLE 7.
Performance results on the external validation data.
Experiments using different gene levels (1–5–30–50) | Sensitivity | Specificity | Accuracy | F-measure |
---|---|---|---|---|
Random 1 gene | 0.43 | 0.58 | 0.51 | 0.44 |
Top 1 gene of mirModuleNet | 0.84 | 0.88 | 0.87 | 0.85 |
Random 5 genes | 0.46 | 0.61 | 0.55 | 0.48 |
Top 5 genes of mirModuleNet | 0.94 | 0.81 | 0.88 | 0.87 |
Random 30 genes | 0.57 | 0.91 | 0.76 | 0.68 |
Top 30 genes of mirModuleNet | 0.94 | 0.92 | 0.93 | 0.92 |
Random 50 genes | 0.76 | 0.94 | 0.86 | 0.83 |
Top 50 genes of mirModuleNet | 0.94 | 0.97 | 0.95 | 0.94 |
In all experiments, the model is trained on TCGA- LUSC data and tested on external data, which is LUSC_E.