Skip to main content
. 2022 Feb 2;7(4):708–719. doi: 10.1016/j.ekir.2022.01.1067

Table 3.

Final coefficient estimates of top regression models to predict incident heart failure

Predictor Clinical variables + cardiac biomarkers Clinical variables + cardiac biomarkers + ECHO variables
Age (yr) 0.00809 0.0107
Black race/ethnicity 0.165 0.141
Male sex −0.0811 −0.194
Heart rate (bpm) 0.00691 0.00422
Systolic blood pressure (mm Hg) 0.00777 0.00581
Antihypertensives 1.26 1.27
Diabetes 0.328 0.399
CHD 0.358 0.253
Current smoking 0.301 0.261
Former smoking 0.368 0.351
BMI (kg/m2) 0.0235 0.00762
NT-proBNP (pg/ml) −0.0000964 −0.00018
hsTnT (pg/ml) −0.0037 −0.00321
Log (NT-proBNP [pg/ml]) 0.379 0.338
Log (hsTnT [pg/ml]) 0.398 0.311
LV mass (g/m2.7) 0.0196
LV ejection fraction (%) −0.0302
Mean linear predictor 6.854 4.921

BMI, body mass index; bpm, beats per minute; CHD, coronary heart disease; ECHO, echocardiogram; hsTNT, high sensitivity troponin-T; LV, left ventricular; MLP, mean linear predictor; NT-proBNP, N-terminal brain natriuretic peptide.

Predicted 10-year risk of incident heart failure can be calculated as 1 – 0.84490e(ΣXβ - MLP), where β is the regression coefficient, X is the level for each risk factor, and MLP is the value of the mean linear predictor listed above.