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Abstract

Identifying genes that interact to confer a biological function to an organism is one of

the main goals of functional genomics. High-throughput technologies for assessment

and quantification of genome-wide gene expression patterns have enabled systems-

level analyses to infer pathways or networks of genes involved in different functions

under many different conditions. Here, we leveraged the publicly available,

information-rich RNA-Seq datasets of the model plant Arabidopsis thaliana to construct

a gene co-expression network, which was partitioned into clusters or modules that har-

bor genes correlated by expression. Gene ontology and pathway enrichment analyses

were performed to assess functional terms and pathways that were enriched within the

different gene modules. By interrogating the co-expression network for genes in differ-

ent modules that associate with a gene of interest, diverse functional roles of the gene

can be deciphered. By mapping genes differentially expressing under a certain condition

in Arabidopsis onto the co-expression network, we demonstrate the ability of the net-

work to uncover novel genes that are likely transcriptionally active but prone to be mis-

sed by standard statistical approaches due to their falling outside of the confidence

zone of detection. To our knowledge, this is the first A. thaliana co-expression network

constructed using the entire mRNA-Seq datasets (>20,000) available at the NCBI SRA

database. The developed network can serve as a useful resource for the Arabidopsis

research community to interrogate specific genes of interest within the network,

retrieve the respective interactomes, decipher gene modules that are transcriptionally

altered under certain condition or stage, and gain understanding of gene functions.

One-sentence summary

We present here an Arabidopsis gene co-expression network constructed using RNA-

Seq datasets, which will serve as a useful resource for the Arabidopsis research com-

munity to gain insights into Arabidopsis gene interactions and functions.

1 | INTRODUCTION

The exponentially growing availability of omics databases has

spawned opportunities to leverage the power of computational
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models to interrogate different databases and mine new information

that can illuminate complex molecular interactions underlying versatile

phenotypes. One goal of this analysis is to integrate information from

different types of omics data, for example, genomic, proteomic, and

metabolomic, to build interactomes that can reveal complex interac-

tions at a higher resolution. A combinatorial approach to understand-

ing the biomolecular interactions is a key to deciphering new systems-

level information. Within the last decade, a massive influx of high-

throughput sequencing data has necessitated new strategies to

unravel hidden information, and to this end, efforts have been made to

derive biomolecular networks, for example, protein–protein interaction

(PPI) networks, in various model organisms such as bacteria, yeast,

fruit-fly, and plants. The overarching goal of these efforts is to under-

stand an organism at a systems level by illuminating multi-scale inter-

actions within cellular systems. Different biomolecular interaction

networks have been constructed, including PPI networks, metabolic

networks, gene transcriptional networks, and signal transduction net-

works. Additionally, theoretical advances in the field of network sci-

ence have led to the elucidation of a number of features shared among

networks emanating from many different disciplines, such as, small-

world property, network transitivity, network motif, and community

structure, have enhanced our understanding of topological structure

of the biological networks (Albert, 2005; Girvan & Newman, 2002;

Joyce & Palsson, 2006; Kelley et al., 2003; Lee, 2004b; Wang

et al., 2006; Zhang et al., 2007).

A biological network is characterized by nodes and edges; the for-

mer represents biomolecules such as genes, proteins, or metabolites,

and the latter represents connections between nodes signifying inter-

actions between biomolecules, such as physical interaction, metabolite

flow, regulatory relationship, and/or co-expression relationships. Bio-

logical networks are often modular; biomolecules belonging to the

same module interact with each other to carry out a specific biological

function. Deciphering modules and their associated functions is one of

the primary goals in the studies of gene co-expression networks. Here,

we focus on the construction of a gene co-expression network of the

model plant, Arabidopsis thaliana. Arabidopsis gene expression net-

works have previously been primarily constructed and based mainly on

microarray data. These networks have been extensively used for

understanding biological pathways as well as their interactions in

plants (Aoki et al., 2007; Bergmann et al., 2003; Carlson et al., 2006;

Farahbod & Pavlidis, 2019; Freeman et al., 2007; Horvath &

Dong, 2008; Jen et al., 2006; Jordan et al., 2005; Jordan et al., 2004;

Lee, 2004a; Ma et al., 2007; Manfield et al., 2006; Mentzen, 2006;

Obayashi et al., 2007; Rahme, 2003; Roszik & Woodman, 2014;

Ruan & Zhang, 2006; Slonim & Yanai, 2009; Smith, 2018;

Stuart, 2003; Wei et al., 2006). In addition, gene co-expression in Ara-

bidopsis has been investigated using RNA-Seq data. For example, the

ATTED-II database provides an RNA-seq-based Arabidopsis co-

expression network that was derived using a mutual rank index

approach (Obayashi et al., 2018). A recent study inferred Arabidopsis

gene modules based on co-expression derived from RNA-Seq datasets;

the published tool, EXPLICIT, infers genes regulated by various tran-

scriptional factors in Arabidopsis (Geng et al., 2021).

In recent years, thousands of A. thaliana RNA-Seq datasets rep-

resenting many different conditions have been deposited into the

NCBI GEO repository of expression data. The availability of these pro-

vides an information-rich resource for an unbiased analysis that will

advance plant functional genomics. With this goal in mind and to

exploit the full extent of these datasets, we performed a gene co-

expression network analysis of A. thaliana by utilizing the RNA-Seq

data for this model plant.

We first constructed a co-expression network based on expres-

sion correlation between genes and then decomposed the network

into modules with genes cohesively linked within and sparsely

between. The Arabidopsis gene co-expression network constructed

based on entire collection of Arabidopsis RNA-Seq datasets at NCBI

thus represents a multitude of genotypes and conditions for

A. thaliana. Our investigation revealed a modular network comprised

of distinct functional components representing a range of biological

processes, including photosynthesis, stress, defense, and localization.

As genes belonging to a module co-expressed across thousands of

diverse conditions, the network illuminated distinct functional entities

in which the genes are strongly coupled by the same underlying co-

regulation mechanisms. The Arabidopsis gene co-expression network

developed provides a useful resource for the plant community, all-

owing researchers to interrogate the network with the genes of their

interest, examine the gene modules to infer the functions of yet

uncharacterized genes and uncover unknown pathways or networks

of pathways, and map differentially expressing genes from an experi-

ment onto the network to identify functional modules that are tran-

scriptionally activated under certain condition, which could spur

further investigations into novel regulatory pathways or yet unknown

aspects of regulatory mechanisms in plants.

2 | RESULTS

A gene co-expression network of A. thaliana was constructed using

weighted gene correlation network analysis (WGCNA) that allows

examining the co-expression patterns of genes from the entire col-

lection of mRNA-Seq datasets available at the NCBI Sequence Read

Archive (SRA). Modules within the network comprised of genes that

were found to be highly correlated in their expression under many

different conditions and could thus be participating collectively in

different biological processes. A gene module is considered to be

equivalent of the retrieved subnetwork itself (Aoki et al., 2007; Ma

et al., 2007; Manfield et al., 2006; Obayashi et al., 2007). Each mod-

ule was subjected to functional enrichment analysis to determine

enrichment of Gene Ontology (GO) terms in order to associate it

with biological function(s). Additionally, we used the Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) database and performed

KEGG pathway enrichment analysis of the modules to investigate

the roles of the constituent genes in different biological pathways.

We describe below results from each step of our analysis and also

emphasize the importance of network in gaining new insights into

genes and their interactions.
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2.1 | Network construction

We used over 20,000 non-redundant mRNA-Seq Arabidopsis datasets

from the NCBI SRA to construct a gene co-expression network. The

normalized gene expression values, quantified in terms of abundance

of reads mapping onto a gene, were imported into WGCNA for net-

work construction.

The Arabidopsis network is comprised of 21,332 nodes and

36,877,224 edges. Each node represents a gene, and each edge

between two nodes represents a connection or association between

the nodes (genes). The association is quantified based on the topologi-

cal overlap value, ranging from 0 to 1, taking into consideration both

the expression profile similarity, and the similarity of relationships each

node has with all other nodes (Figure 1). A WGCNA network is fully

interconnected, but each connection is weighted differently. Only

genes that fall into a cluster annotated “zero” are disconnected from

other genes in the network. Following a hierarchical clustering proce-

dure, a specific cut height was used to clip the resultant clusters (mod-

ules). This resulted in the generation of a large WGCNA network with

54 gene modules. Unfortunately, Cytoscape (Shannon et al., 2003)

was unable to import the entire network file and therefore, the visuali-

zation of the entire network could not be made. Additionally, annota-

tion of the modules with the entire network loaded onto Cytoscape

could not be accomplished. To circumvent this visualization challenge,

we used an in-house script to remove weak edges based on the net-

work density. This is based on an approach used earlier for uncovering

the modular structure of a network (Mao et al., 2009). Although a

WGCNA derived network differs in that it is derived based on a soft-

thresholding approach (in contrast to hard thresholding by Pearson

correlation coefficient; Mao et al., 2009), the network density

approach may still aid in identifying weakly correlated edges that can

be removed from the network only for the purpose of visualization

with Cytoscape. In an attempt to choose an appropriate cutoff of

topological overlap, in order to decide on edges to be included (greater

than cutoff) or excluded (less than cutoff), we examined the changes

in the number of nodes, and number of edges, as a function of the cut-

off (varied from 0 to 1 at an increment of .01). We observed that as

the cut off value increased, both the node number and the edge num-

ber decreased, and so did the network density, as expected

(Figure S1). However, as the decreasing rate of edges became slower

F I GU R E 1 Arabidopsis weighted gene correlation network analysis (WGCNA) network. Nodes with correlation >.12 are shown. Each node
(gene) is color-coded to its respective modules. Each modules is designated to have a specific function based on gene enrichment analysis. The
network topology is displayed using the Prefuse force directed layout algorithm in Cytoscape
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than that of the nodes, the network density increased beyond a certain

cutoff. We observed that the network density reaches a minimum

around .1 and increased thereafter. It would be appropriate to choose

a cutoff value greater than .1 since that would enable selecting the

edges that would densely connect a decreasing number of nodes.

After attempting to maximize the number of retained nodes in the net-

work, which can be imported and visualized in Cytoscape, we chose

the cutoff value to be .12. Note that there are multiple inflection

points (Figure S1), and we selected the first inflection point (of lowest

value among all) to include as many edges as could be into the Cyto-

scape visualization. At this cutoff, only 3% of all possible edges were

retained. If we allow a more relaxed threshold to include more edges,

Cytoscape inevitably fails to load the network and prevents further

processing. The resultant Arabidopsis network that could be visualized

with Cytoscape consists of 11,158 nodes and 1,162,948 edges. Note

that the aforementioned steps were performed to trim the network to

enable visualization. The edge/node reduction was thus purely cos-

metic, as the soft-threshold nature of the WGCNA network does not

lend well to traditional network visualization. All downstream analyses

were performed with the complete (untrimmed) WGCNA network.

2.2 | Module annotation

Genes constituting a module co-expressed under diverse conditions

and it is therefore important to characterize the functions or functional

pathways the modules represent. To this end, we performed GO term

enrichment analysis using the TopGO analysis package (Alexa &

Rahnenführer, 2009) to assess significantly enriched functional terms

across all three aspects—Biological Process (BP), Cellular Component

(CC), and Molecular Function (MF). The enrichment analysis was per-

formed on each of the 54 modules of the network. We shortlisted the

enriched GO-terms (FDR-adjusted p value < .05) for all categories for

each module. Based on the statistically significant BP, MF, and CC GO

terms, and enrichment analysis of pathways (KEGG), we annotated

each of the 54 modules as discussed below (Table 1). Refer to

supporting information for complete data from GO analysis, tree maps

and KEGG pathway enrichment analysis (Tables S1–S216 and

Figures S1–S162).

Below, we describe some of these modules.

2.3 | Module 4—Photosynthesis

The most significantly over-represented biological process GO terms

detected in Module 4 are related to photosynthesis, as shown in

Figure 2. We also observed that four of the five major GO terms are

related to photosynthesis. Additionally, the classic Fisher and FDR

adjusted p values were found to be very low for GO terms such as

electron transport chain, chloroplast organization, chlorophyll meta-

bolic process, and plastid membrane organization, highlighting the sig-

nificance of this module in the photosynthesis process. The other

significantly overrepresented processes such as cofactor metabolism,

protein biosynthesis, and vitamin metabolism are also strongly associ-

ated with photosynthesis. Molecular function GO terms such as chlo-

rophyll binding, heme binding, oxidoreductase activity, ADP binding,

and ATPase binding were also over-represented in this module. Addi-

tionally, the cellular component GO terms such as, chloroplast part,

plastid part, thylakoid, and photosynthetic membrane were found to

be over-represented in this module. We also performed the KEGG

pathway enrichment analysis. Among the enriched pathways, photo-

synthesis had the highest enrichment, closely followed by photosyn-

thesis related pathways such as carotenoid biosynthesis, carbon

fixation, Porphyrin and chlorophyll metabolism (Tables S13–S15).

Additionally, pathways such as glycolysis/gluconeogenesis, starch and

sucrose metabolism, pentose phosphate pathways, and thiamine

metabolism were also significantly enriched (Table S16). The presence

of all these related GO terms and the enrichment of associated KEGG

pathways point to direct physiological relationship/association with

photosynthesis and therefore we annotated Module 4 as the photo-

synthesis module.

2.4 | Module 12—Defense response

In Module 12, the most significantly over-represented biological pro-

cess GO terms are related to defense response. Additionally, GO terms

related to response to biotic stimulus, immune response, response to

bacterium, innate immune response, response to drug, fungus,

oomycetes, and so on were also found to be over-represented (FDR-

adjusted p value < .05), as shown in Figure 3. The corresponding

molecular function GO terms that were significantly enriched were of

kinase activity and transferase activity. Overrepresented GO terms

related to cellular component indicated enrichment of genes encoding

proteins in the cell periphery, plasma membrane, extracellular region,

Golgi transport complex, secretory vesicle/granules, and recycling

endosome (Tables S45–S47). KEGG pathway enrichment analysis rev-

ealed plant-pathogen interaction pathway as the significantly most

enriched pathway (Table S48). Based on GO term and KEGG pathway

enrichment, we annotated Module 12 as the defense response

module.

2.5 | Module 13—Localization

Module 13 is highly enriched with genes involved in localization and

transport, as shown in Figure 4. The top overrepresented GO terms

are related to intracellular transport, transport, and localization. Analy-

sis of the GO terms related to molecular functions revealed significant

over-representation of genes encoding proteins that are involved in

phosphorylation and phospholipase activation. Overrepresented GO

terms associated with cellular component indicate enrichment of

genes involved in the respiratory chain and thereby association with

the mitochondrial complex (Tables S49–S51). On performing KEGG

pathway enrichment analysis, the most enriched pathways were found

to be protein export, oxidative phosphorylation, endocytosis,
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T AB L E 1 Enriched GO terms and KEGG pathways in modules 1–54

Module
number Biological process Molecular function Cellular component

Enriched KEGG
pathway

KEGG fold
enrichment

1 RNA metabolic process Nucleic acid binding Nucleus Basal transcription

factors

4.47

2 Cell cycle Microtubule binding Cytoskeleton DNA replication 10.26

3 Secondary metabolic process Heme binding Extracellular region Flavonoid

biosynthesis

6.00

4 Photosynthesis Oxidoreductase activity Chloroplast Photosynthesis—
antenna proteins

15.19

5 RNA modification RNA binding Mitochondrion/

nucleolus

Ribosome biogenesis

in eukaryotes

8.52

6 Vesicle�mediated transport Transferase activity Endomembrane system Various types of N-

glycan

biosynthesis

9.71

7 Plastid organization Catalytic activity Chloroplast/plastid Porphyrin and

chlorophyll

metabolism

9.11

8 Translation Structural constituent of

ribosome

Ribosome Ribosome 10.37

9 Catabolic process Catalytic activity Endomembrane system/

Phagophore

assembly

Autophagy—other 10.71

10 Ubiquitin-dependent protein

catabolic process

Peptidase activity Proteosome complex Proteasome 21.85

11 Cytoskeleton organization Transferase activity Golgi apparatus/

cytoskeleton

One carbon pool by

folate

13.56

12 Defense response Kinase activity Plasma membrane Plant-pathogen

interaction

11.48

13 Localization Phospholipase/lipase activity Respiratory chain/

membrane protein

complex

Protein export 12.65

14 Purine metabolism Metal ion/cation binding Mitchondrial

membrane/envelope

Citrate cycle (TCA

cycle)

12.67

15 Protein modification Ubiquitin protein ligase activity Nucleus — —

16 Biotic stimulus Kinase activity Extracellular region Plant-pathogen

interaction

1.05

17 Protein catabolic process Ubiquitin conjugating enzyme

activity

Ruffle membrane SNARE interactions

in vesicular

transport

14.07

18 Cell wall organization or

biogenesis

Oxidoreductase activity Extracellular region — —

19 Pollen tube development Structural constituent of cell

wall

Pollen tube Ether lipid

metabolism

65.71

20 Response to stress ADP binding Plasma membrane/SMC

loading complex

Alpha-linolenic acid

metabolism

39.73

21 Regulation of DNA replication Sar guanyl-nucleotide

exchange factor

Telomere cap complex/

CST complex

— —

22 ATP metabolic process NADH dehydrogenase activity Mitochondrion/

nucleolus

Oxidative

phosphorylation

23.87

23 mRNA splicing Nucleic acid binding Nucleus Spliceosome 13.87

24 Pollination/development SNARE binding Cell projection/Pollen

tube

— —

(Continues)
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T AB L E 1 (Continued)

Module
number Biological process Molecular function Cellular component

Enriched KEGG
pathway

KEGG fold
enrichment

25 Response to water/chemical Sucrose synthase activity Monolayer-surrounded

lipid storage body

Glyoxylate and

dicarboxylate

metabolism

16.43

26 Chloropalst/plastid organization/

embryo development

DNA supercoiling activity Chloroplast/plastid — —

27 Phosphorylation Transferase/kinase activity Cell periphery Cyanoamino acid

metabolism

16.27

28 Protein phosphorylation Catalytic activity/protein

kinase activity/calmodulin

binding

Plasma membrane/

endosome

Plant-pathogen

interaction

8.97

29 Stomatal development Transferase activity Extracellular region Fatty acid elongation 37.96

30 Response to hypoxia Transcriptional regulation Nucleus/CCR4-NOT

complex

Plant-pathogen

interaction

11.17

31 Response to biotic stimulus Ligand-gated ion channel Extracellular region/

Apoplast

Tryptophan

metabolism

20.34

32 Protein amino acid modification ADP binding Extrinsic component of

plasma membrane

— —

33 Circadian rhythm/post-

embryonic development

Phosphorelay response

regulator activity

Lipid droplet/vacuole Circadian rhythm—
plant

41.07

34 Electron transport chain Chlorophyll binding/cofactor

binding

Thylakoid — —

35 Carpel development RNA polymerase II regulatory

region sequence

Nucleus Glycerolipid

metabolism

14.12

36 Immune system response Calmodulin binding Plasma membrane — —

37 Lipid metabolic process Hydrolase activity Endomembrane system — —

38 Callose deposition/localization Sucrose synthase activity Anchored component of

plasma membrane

Biotin metabolism 53.39

39 Fatty acid biosynthesis Fatty acid synthesis Chloroplast/plastid Phosphatidylinositol

signaling system

66.56

40 Protein phosphorylation Protein kinase activity Plasma membrane Lysine biosynthesis 53.39

41 Amino acid biosynthetic process Coenzyme binding Chloroplast — —

42 Vascular/phloem transport DNA binding transcription Plasma membrane Glucosinolate

biosynthesis

106.77

43 Glucosinolate biosynthesis Catalytic activity Chloroplast Protein export 23.73

44 Response to endoplasmic

reticulum stress

Unfolded protein binding Endoplasmic reticulum — —

45 Cellulose biosynthesis Cellulose synthase Trans-Golgi network — —

46 Pollen tube development Microfilament motor activity Myosin complex Endocytosis 32.44

47 Regulation of pollen

developement

Protein kinase activity Cell cortex Thiamine metabolism 48.81

48 Translation/peptide biosynthesis Structural constituent of

ribosome

Plastid ribosome Mismatch repair 46.17

49 Lactate catabolic process/

monocarboxylic acid

catabolic process/thiamine

diphosphate biosynthetic

process

Catalytic/transporter activity Intracellular part Starch and sucrose

metabolism

23.98

50 DNA repair Damaged DNA binding/DNA

insertion or deletion

Anaphase-promoting

complex

Sulfur relay system 43.80

51 Starch catabolic process Starch binding Chloroplast Inositol phosphate

metabolism

25.95

(Continues)
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phagosome (Table S52). All the significant GO terms along with

enriched KEGG pathways associated with this module indicate that

the genes in this module are likely involved in localization and export,

which led us to annotate Module 13 as localization module.

2.6 | Module 16—Biotic stimulus

Module 16 is comprised of genes that are associated with GO terms

related to response to biotic stimulus. GO terms such as response to

fungus, oomycetes, bacteria, and antibiotic were found to be signifi-

cantly over-represented in this module. In addition, genes involved in

defense response were over-represented, as expected. We therefore

noticed many of the GO terms are common among Module 12 (defense

response) and Module 16. The associated molecular function GO

terms that were significantly over-represented include kinase activity,

transferase activity, signal receptor activity, phosphotransferase activ-

ity, ion channel activity, and so on. The cellular component GO terms

that are significantly enriched are or relate to extracellular region,

plasma membrane, and cellular periphery (Figure 5 and Tables S61–

S63). The KEGG pathway enrichment analysis revealed plant-pathogen

interaction as the only significantly enriched pathway in the module

(Table S64). The presence of GO terms related to biotic stimulus and

enrichment of plant-pathogen interaction pathway led us to annotate

this module as biotic stimulus module.

2.7 | Module 20—Stress

The most overrepresented GO terms in Module 20 are related to

response to stress. Most of the genes constituting this module are

involved in response to either biotic (bacteria, chitin, other organisms)

T AB L E 1 (Continued)

Module
number Biological process Molecular function Cellular component

Enriched KEGG
pathway

KEGG fold
enrichment

52 RNA modification Zinc ion binding Mitochondrion — —

53 RNA splicing/gene expression mRNA binding Germ plasm — —

54 Embryonic meristem initiation/

phosphorus metabolic

process

Transferase/kinase activity Plasma membrane — —

F I GU R E 2 Functional analysis of Module 1. (a) Module 1 derived from the main Arabidopsis network showing genes associated with
photosynthesis. (b) Five major biological process Gene Ontology (GO) terms derived from module 1. The number following each GO term refers
to the number of genes that were found to be significant among the annotated to that category
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F I GU R E 3 Functional analysis of Module 12. (a) Module 12 obtained from the main Arabidopsis network showing genes associated with
defense. (b) Seventeen major biological process Gene Ontology (GO) terms derived from module 12. The number following each GO term refers
to the number of genes that were found to be significant among the annotated to that category

F I GU R E 4 Functional analysis of Module 13. (a) Module 13 procured from the main Arabidopsis network showing genes associated with
localization. (b) Seventeen major biological process Gene Ontology (GO) terms derived from module 13. The number following each GO term
refers to the number of genes that were found to be significant among the annotated to that category
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or abiotic stresses (oxygen, hypoxia, drug, and antibiotic). Several GO

terms associated with regulation of defense to external stimulus as

well as regulation of immune response were also found to be signifi-

cantly enriched. The GO term related to molecular function ADP bind-

ing was found to be most over-represented in the module.

Considering the GO terms related to cellular component, plasma mem-

brane raft and SMC loading complex were found most enriched

(Tables S77–S79). On performing KEGG pathway analysis of genes

comprising Module 20, alpha-Linolenic acid metabolism and plant-

pathogen interaction pathways were found to be highly enriched

(Table S80). Linolenic acid (Ln) released from chloroplast membrane

galactolipids is a precursor of the phytohormone jasmonic acid (JA).

The involvement of this hormone in different processes, such as

responses to abiotic and biotic stress conditions, has been extensively

studied (Wasternack, 2007). Seventy-seven of the 88 genes in this

module were found to be upregulated under high light stress

(Figure 6). To further investigate this, we queried databases and litera-

ture and found a high proportion of these genes are responsive to

many different abiotic stresses (e.g., cold, heat, excess light, salinity,

ozone, wounding, and pathogen infection), ABA, externally applied

ATP (eATP), methyl jasmonate, calcium, and singlet oxygen (Table 2)

(Blanco et al., 2009; Choi et al., 2014; Consales et al., 2011; Davletova

et al., 2005; Ding et al., 2014; Gadjev et al., 2006; Huang et al., 2008;

Ikeuchi et al., 2017; Kleine et al., 2007; Larkindale & Vierling, 2007;

Matsui et al., 2008; Nemhauser et al., 2006; Scarpeci et al., 2007; Tosti

et al., 2006; Truman et al., 2006).

2.8 | Gene-specific networks

The Arabidopsis gene co-expression network can also be interrogated

for interactors of a gene of interest. We considered here genes

encoding respiratory burst oxidase homolog D (RBOHD), A. thaliana

NEET (AtNEET), and Heat shock transcription factor A1D (HSF1D) and

extracted their direct neighbors from the Arabidopsis gene co-

expression network. We performed gene ontology and pathway ana-

lyses of each of these gene networks, and discuss below how this can

be exploited to characterize proteins of yet unknown functions.

2.9 | Respiratory burst oxidase homolog D
(AT5G47910; RBOHD)

RBOHs are highly regulated membrane-bound NADPH oxidases that

help in catalyzing the formation of superoxide radical at the apoplast

using the reducing power of NADPH at the cytosol (Lambeth, 2004;

Sumimoto, 2008). They are part of a large protein family known as

NOX and have been found to play a key signaling role in multiple

F I GU R E 5 Functional analysis of Module 16. (a) Module 16 computed from the main Arabidopsis network showing genes associated with
biotic stimulus. (b) Tree map representing the most statistically significantly overrepresented Biological Process (BP) GO terms. (c) Eight major

biological process GO terms derived from module 16. The number following each GO term refers to the number of genes that were found to be
significant among the annotated to that category
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developmental and stress response pathways via the regulated pro-

duction of ROS (Lambeth, 2004; Sumimoto, 2008). In Arabidopsis,

RBOHD (AT5G47910) has been shown to also be involved in medi-

ating rapid systemic signaling (Miller et al., 2009). We interrogated

the co-expression network to decipher yet unknown genes involved

in ROS signaling by identifying the interactors of RBOHD. In the

co-expression network, RBOHD is a part of module 36 and has

direct connections to 583 genes. These connections are with genes

that belong to 23 different modules (Table 1 and Figure 7), demon-

strating the broad functions of RBOHD. GO analysis of the 583 gene

set revealed that biological process terms related to stress, defense,

hypoxia, signal transduction, and signaling were among the most sig-

nificantly enriched terms. The GO cellular process terms related to

the plasma membrane and cell periphery were the most enriched.

The GO molecular function term protein kinase activity was found

to be the most over-represented (Figure 7). Furthermore, the KEGG

pathway analysis revealed these genes to be enriched in plant-

pathogen interaction and MAPK signaling pathway. Among these

583 genes, 25 genes were found to be hypothetical protein genes

(TAIR annotation) with functions yet not determined (Table S217).

We further investigated the GO terms associated with these pro-

teins and found that this set of genes has an enrichment in defense,

stress, and oxygen-related processes (Figure 7). To understand func-

tional associations, we searched these hypothetical proteins in the

STRING (Mering et al., 2003) database (along with RBOHD).

Although the protein–protein association network did not show any

high confidence link between these proteins and RBOHD, we

isolated two subnetworks of connected proteins (Figure 7). In the

smaller subnetwork (Figure 7), AT4G01090, a hypothetical protein

(DUF3133) of unknown function, expressed at higher levels in the

endodermis of the elongation zone of the root and the mature

xylem (Winter et al., 2007), was found to interact with AT5G05190

(enhanced disease resistance 4; EDR4) (Mukhtar et al., 2011). Both

of these proteins have also been found to modulate plant immunity

by regulating clathrin heavy chain 2 (CHC2)-mediated vesicle traf-

ficking (Wu et al., 2015). Next, in the larger subnetwork (Figure 7),

hypothetical protein AT1G32920 associate with proteins with

enrichment of GO terms associated with response to wounding and

stress (Figure 7). Additionally, both RBOHD (involved in oxidative

stress) and AT1G32920 were found to be differentially regulated in

shoots in the presence of whole soil microbial communities

(Carvalhais et al., 2013). The overexpression of AT3G01470 (ATHB-

1) has been shown to mediate a pre-adaption to hypoxic stress by

reducing the endogenous level of nitric oxide (NO) in seeds (Thiel

et al., 2011). Genes encoding transcription factors WRKY and

AP2/EREBP, and genes related to hormone metabolism, namely,

abscisic acid (ABA), salicylic acid (SA) and JA, have also been found

to be upregulated in ATHB-1 seeds (Thiel et al., 2011). Additionally,

genes involved in signaling processes, such as those encoding MAPK

kinases and receptor kinases, were also found to be strongly

induced (Thiel et al., 2011), consistent with our KEGG pathway anal-

ysis. These genes with yet unknown functions may serve as a

starting point for further analysis in deepening our understanding of

RBOH proteins.

F I GU R E 6 Functional analysis of Module 20. (a) Module 20 constructed from the main Arabidopsis network showing genes associated with
stress. (b) Thirteen major biological process Gene Ontology (GO) terms derived from module 20. The number following each GO term refers to
the number of genes that were found to be significant among the annotated to that category
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2.10 | A. thaliana NEET (AT5G51720; AtNEET)

Iron–sulfur (Fe-S) proteins play an integral role in various metabolic

and regulatory pathways in plants (Balk & Pilon, 2011; Balk &

Schaedler, 2014; Bernard et al., 2013; Hu et al., 2017; Lu, 2018;

Przybyla-Toscano et al., 2018). They likely originated under highly

reducing environments during early evolution and are sensitive to

damage by ROS (Andreini et al., 2017; Boyd et al., 2014; Lill, 2009;

Sengupta et al., 2018). These proteins are also known to play an

essential role as protein cofactors mediating diverse electron trans-

fer reactions. Due to their inherent tendency to interact with oxy-

gen to generate ROS that may inflict cellular damage, the

biogenesis of their clusters is tightly regulated (Balk & Pilon, 2011;

Balk & Schaedler, 2014; Bernard et al., 2013; Hu et al., 2017;

Lu, 2018; Przybyla-Toscano et al., 2018). In Arabidopsis, a single

gene encoding a NEET protein (AT5G51720; AtNEET) has been

previously proposed to play a significant role in maintaining iron

and ROS homeostasis (Nechushtai et al., 2012). In the co-

expression network, AtNEET is a member of module 4 (the photo-

synthesis module) and has direct connections with 1023 genes from

9 different modules (Table 1 and Figure 8). On performing GO anal-

ysis on this set of genes, we found enrichment of terms related to

photosynthesis, plastid, chloroplast, and vesicle organization

(Figure 8). Most of these genes belong to module 4, followed by

modules 6 and 13 that are associated with vesicle transport and

localization respectively. Among the enriched cellular component

GO terms were plastid, chloroplast, and thylakoid. AtNEET has pre-

viously been shown to be localized in mitochondria and chloroplasts

(Khan et al., 2018; Su et al., 2013). Among the enriched molecular

function GO terms were mRNA binding, oxidoreductase activity,

and RNA binding. Several of these genes have already been associ-

ated with AtNEET, for example, AT1G44446 (Chlorophyllide

a oxygenase), AT2G04700 (Ferredoxin thioredoxin reductase),

AT2G24820 (TIC55), and AT3G05345 (Chaperon DnaJ) were found

to have elevated expression when AtNEET was disrupted

(Zandalinas et al., 2020).

Further investigation of these genes revealed 23 of the 1024

genes (Table S218) to be of unknown function. Ten of the 23 genes

were found linked by STRING at a high confidence setting based

on expression data across a large number of experiments (Figure 8).

AT2G15020, a protein with unknown function, was found to be

upregulated in SuperFifty (SF, an extract from the seaweed

Ascophyllum nodosum) exposed Arabidopsis (Omidbakhshfard

et al., 2020). It was shown that SF exposure largely prevents

paraquat (PQ)-induced oxidative stress in Arabidopsis

(Omidbakhshfard et al., 2020). On lowering the confidence setting

in STRING, all 23 genes got connected by means of co-occurrence

patterns across closely related genomes. As expected, due to lack

of functional data for these genes, no GO terms were found to be

enriched in this gene set. However, their association with AtNEET

and strong connectivity among many of them as revealed by

STRING points to their broader functional roles related to photo-

synthesis and stress.T
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2.11 | Heat shock transcription factor A1D
(AT1G32330; HSFA1D)

High temperature stress has a detrimental impact on many aspects of

growth and development in plants (Lippmann et al., 2019). So far, his-

tone sensors, unfolded protein response sensors in the endoplasmic

reticulum (ER), plasma membrane channels, and phytochrome B are

some of the well characterized heat sensors recorded in plants (Jung

et al., 2016; Mittler et al., 2012; Vu et al., 2019). Recently, a class of

Heat Shock Factor (HSF) family transcription factors (e.g., HSFA1s),

was found to be involved in the cellular response to heat stress

(Cortijo et al., 2017; Ohama et al., 2017). In our network, AT1G32330

or HSFA1D was found in module 6 and had direct connections to

8741 genes assigned to over 80% of the modules (Figure 9). GO analy-

sis of these genes revealed enrichment of RNA metabolic process,

nucleic acid metabolic process, cellular component organization, bio-

genesis, etc. (Figure 9). Furthermore, cellular component GO terms

such as, protein-containing complex, non-membrane bound organelle,

organelle lumen, and endomembrane system and molecular function

GO terms such as, RNA binding, nucleic acid binding, small molecule

binding, and mRNA binding, were found to be enriched (Figure 9).

KEGG pathway analysis showed spliceosome, RNA transport, mRNA

surveillance pathway, and protein processing in ER to be most

enriched. These aforementioned enriched GO terms/KEGG pathways

along with the high degree of connectivity (>8000 first direct neigh-

bors) suggests the roles of HSFA1D in a plethora of system-wide bio-

logical processes.

Based on structural characteristics and phylogenetic analysis, Ara-

bidopsis HSFs have been classified into three major classes (A, B, and

C) and 14 groups as A1-9, B1-4, and C1 (Nover et al., 2001). Thus, the

large number of HSFs and the complex modulation of their activities

by hetero-oligomerization render the attribution of specific functions

very challenging. It has been shown previously that HSFA1D is

involved in oxidative stress tolerance (Liu & Charng, 2013). The role of

HSFA1D and HSFA1E in inducing HSFA2 expression under high light

(HL) and heat stress (HS) has been established. Furthermore, HSFA1D

and HSFA1E double knockout mutants showed impaired tolerance to

HS stress. These findings suggest the pivotal role of HSFA1D and

HSFA1E as a transcriptional regulator of HSFA2, and also as a key reg-

ulator for HSF signaling in response to environmental stress

(Nishizawa-Yokoi et al., 2011). The gene network of HSFA1D revealed

10 genes, namely, AT3G08970 (ATERDJ3A), AT5G28540 (BIP1),

AT5G42020 (BIP2), AT4G29330 (DER1), AT3G12580 (HSP70),

AT5G56030 (HSP81-2), AT5G56010 (HSP81-3), AT5G56000

(Hsp81.4), AT3G25230 (ROF1), and AT4G24190 (SHD) (Figure 9),

which have been consistently shown to be involved in the response to

stress and in protein folding (Bokszczanin et al., 2013; Dos Reis

et al., 2012; Dossa et al., 2016; Guo et al., 2016; Jacob et al., 2017; Lu

et al., 2016; Moumeni et al., 2011; Ohama et al., 2016; Shah

et al., 2020; Swindell et al., 2007; Tiwari et al., 2020; Virdi et al., 2015;

Wang et al., 2020, 2016; Wen et al., 2017; Yamada et al., 2007;

Yamada & Nishimura, 2008; Zhang et al., 2015). Additionally,

AT1G18080 (RACK1A), AT1G48630 (RACK1B), and AT3G18130

(RACK1C) have been shown to be involved in plant development

F I GU R E 7 Gene specific network of respiratory burst oxidase homolog D (RBOHD). (a) Network represented using the first direct neighbors
of RBOHD gene. Genes are color-coded according to module assigned. (b) Enriched Gene Ontology (GO) terms in gene set constituting the first
direct neighbors or RBOHD. The number following each GO term refers to the p-value. (c) STRING-DB network constructed out of hypothetical
genes interacting with RBOHD. (d) GO terms found to be enriched in sub-network of hypothetical genes
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(Chen et al., 2006) and abscisic acid (ABA) response, as well as in the

interaction with eIF6, a key regulator of ribosome assembly (Guo

et al., 2011). Along with the aforementioned genes, we also identified

174 novel genes (Table S219) with yet unknown functions (annotated

as hypothetical proteins in the TAIR database). Analysis of these genes

using the STRING database identified AT3G49490 as one of the

downregulated stage 1 proteins that are involved in translation and

protein folding during early leaf growth, along with AT2G04030

(HSP90.5) and AT1G18080 (RACK1A) (Baerenfaller et al., 2012).

AT2G28330 was shown to bind with CYCB2;4 and CDKB1;1, which

are associated with SMR1 and SMR2 proteins in the cell cycle inter-

actome (Van Leene et al., 2010). Our analysis provides therefore new

insights into the function of several different proteins with unknown

function, associated with HSFA1D.

Together, these results demonstrate the ability of the network

approach presented here to not just decipher functional modules but

also derive gene-specific networks with connections spanning multiple

functional modules. Our analysis also uncovered many genes of

unknown functions with connectivity to well characterized genes, thus

helping understand their potential roles in different biological

processes.

3 | IDENTIFICATION OF MODULES
ENRICHED IN DIFFERENTIALLY EXPRESSING
GENES UNDER STRESS CONDITIONS

Balfag�on et al., 2019 recently published a study investigating the

response of Arabidopsis plants to a combination of high light (HL) and

heat stress (HS). Combined HL + HS led to irreversible damage to pho-

tosystem II (PSII), decreased D1 (PsbA) protein levels, and an enhanced

transcriptional response indicative of PSII repair activation. Several

unique aspects of this stress combination were identified, including

enhanced accumulation of JA and JA-Ile, elevated expression of over

2200 different transcripts that are unique to the stress combination

(included many that are JA-associated), and distinctive structural

changes to chloroplasts. Differentially expressing genes (DEGs) were

determined based on statistical hypothetical testing by DESeq2. Here,

we revisited this list and asked if our network approach can decipher

genes that were likely altered in expression and therefore potentially

biologically significant but were not deemed statistically significant by

DESeq2. DEGs were identified by comparing plants exposed to HL,

HS, and HL + HS with control (Balfag�on et al., 2019). These DEGs

were mapped onto the gene modules of the co-expression network,

F I GU R E 8 Gene specific network of AtNEET. (a) Network represented using the first direct neighbors of AtNEET. Genes are color-coded
according to module assigned. (b) Enriched Gene Ontology (GO) terms in gene set constituting the first direct neighbors or AtNEET. The number
following each GO term refers to the p value. (c) STRING-DB network constructed out of hypothetical genes interacting with AtNEET
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for each of the HL, HS, and HL + HS experiments. Prior to mapping,

genes with very low or no expression were removed to minimize

potential artifacts. Gene modules enriched in DEGs were determined

by performing Fisher’s test (those with p value < .05 were deemed sig-

nificantly enriched). For HL, we found 52 of the 54 modules had vary-

ing number of DEGs mapped onto them. Thirteen among these

52 modules harbored a large majority of genes (over 60%) that were

DEGs or were upregulated or downregulated by two-fold (equiva-

lently, log2foldChange of 1) or more but not deemed significant in the

Balfag�on et al. (2019) study. Seven of these modules contained many

genes that were two-fold or more elevated or attenuated in expression

level but were deemed insignificant by the (Balfag�on et al., 2019)

study. For HS and HL + HS, we found 6 and 10 such modules respec-

tively (Table 3). Interrogating these modules of interest for each of the

three stress conditions, we found three previously missed genes of yet

unknown functions, that is, with expression fold-change of two or

more yet deemed insignificant. Since these genes lie within the DEG

enriched modules, we posit that they are likely upregulated or down-

regulated and play significant roles in the plant response to stress.

These genes are AT3G38630 (module 16; in HL, HS, HL + HS),

AT3615518 (module 12; in HL), and AT2G07787 (module 22; in HS).

These novel genes are harbored by modules associated with defense

response (module 12) and biotic stimulus (module 16) and, therefore,

are likely contributing to the response to stress in Arabidopsis.

Among the modules with over 60% genes differentially expressing,

five were identified across all three stress conditions—module

12 (defense response), module 16 (biotic stimulus), module 27 (phos-

phorylation), module 32 (amino acid modification), and module

53 (RNA splicing) (Table 1). Three of these contained genes with two-

fold or more expression change but deemed insignificant in the previ-

ous study (module 12, defense response; module 16, biotic stimulus;

and module 27, phosphorylation). Our study therefore highlights the

power of the co-expression network in deciphering novel genes that

are otherwise missed by the standard approach; indeed our approach

identified many “insignificant” genes (Balfag�on et al., 2019) study that

are likely biologically significant and playing key roles in the stress

response in Arabidopsis.

4 | DISCUSSION

Although a number of methods have been developed for the construc-

tion of gene co-expression network, there are computational chal-

lenges abound considering the vast amount of expression (RNA-Seq)

F I GU R E 9 Gene specific network of HSFA1D. (a) Network represented using the first direct neighbors of HSFA1D. Genes are color-coded
according to module assigned. (b) Enriched Gene Ontology (GO) terms in gene set constituting the first direct neighbors or HSFA1D. The number

following each GO term refers to the p value. (c) STRING-DB network constructed out of hypothetical genes interacting with HSFA1D
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T AB L E 3 Enrichment analysis of genes in network modules expressing differentially under high light (HL), heat (HS), and combination of high
light and heat (HL + HS) stresses

Stress Module
DEG
count

Up & down

regulated
non-DEG count

Total DEG
count

Module
gene count

DEG percent
in module

DEG Pval percent
in module

Enrichment
fold change

Enrichment
fisher test

HL 5 833 21 854 1,188 71.89 70.12 2.0 4.3E�237

8 455 1 456 584 78.08 77.91 2.3 2.4E�157

12 149 9 158 242 65.29 61.57 1.8 3.4E�32

16 71 14 85 124 68.55 57.26 1.7 8.6E�14

17 77 0 77 116 66.38 66.38 1.9 3.5E�20

20 36 19 55 89 61.80 40.45 1.2 2.2E�03

26 61 0 61 69 88.41 88.41 2.6 6.3E�28

27 56 2 58 68 85.29 82.35 2.4 1.6E�22

32 40 0 40 57 70.18 70.18 2.0 2.3E�12

41 35 0 35 41 85.37 85.37 2.5 1.6E�15

52 18 5 23 29 79.31 62.07 1.8 3.8E�05

53 16 0 16 25 64.00 64.00 1.9 6.0E�05

54 18 0 18 25 72.00 72.00 2.1 1.6E�06

HS 12 141 7 148 242 61.16 58.26 1.3 8.3E�18

15 97 0 97 144 67.36 67.36 1.5 8.7E�19

16 101 7 108 124 87.10 81.45 1.8 1.4E�30

20 46 15 61 89 68.54 51.69 1.1 7.9E�05

22 40 8 48 79 60.76 50.63 1.1 3.8E�04

23 53 0 53 78 67.95 67.95 1.5 4.2E�11

27 49 3 52 68 76.47 72.06 1.6 6.6E�12

32 37 0 37 57 64.91 64.91 1.4 2.1E�07

40 26 0 26 42 61.90 61.90 1.4 7.1E�05

44 30 0 30 35 85.71 85.71 1.9 4.2E�11

51 19 1 20 29 68.97 65.52 1.4 1.8E�04

53 15 0 15 25 60.00 60.00 1.3 3.9E�03

HL + HS 4 886 12 898 1,417 63.37 62.53 1.2 1.0E�104

8 406 0 406 584 69.52 69.52 1.3 1.9E�66

10 294 1 295 447 66.00 65.77 1.2 6.2E�41

11 224 0 224 336 66.67 66.67 1.3 8.5E�33

12 139 7 146 242 60.33 57.44 1.1 6.9E�13

13 145 2 147 241 61.00 60.17 1.1 8.1E�16

14 139 0 139 193 72.02 72.02 1.4 7.2E�26

16 95 9 104 124 83.87 76.61 1.4 2.3E�21

17 72 0 72 116 62.07 62.07 1.2 3.1E�09

27 51 6 57 68 83.82 75.00 1.4 2.3E�11

28 47 0 47 67 70.15 70.15 1.3 6.6E�09

29 43 0 43 63 68.25 68.25 1.3 7.5E�08

30 37 1 38 62 61.29 59.68 1.1 7.7E�05

32 38 0 38 57 66.67 66.67 1.3 1.0E�06

33 47 1 48 55 87.27 85.45 1.6 1.1E�14

34 29 5 34 54 62.96 53.70 1.0 6.0E�03

39 37 0 37 44 84.09 84.09 1.6 2.2E�11

40 33 0 33 42 78.57 78.57 1.5 7.8E�09

(Continues)
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datasets to handle, particularly for model organisms such as Ara-

bidopsis. Even before the application of a network building tool, this

vast amount of data needs to be downloaded, quality checked,

preprocessed, and then aligned against the reference genome. We uti-

lized the services of High-Performance Computing (HPC) of the Uni-

versity of North Texas to store the data in a custom local database.

We could download terabytes of data from NCBI SRA using a para-

llelized version of the sra-tools’ fastq-dump utility with the default

prefetch utility. We were also apprehensive that the alignment may

require extensive CPU and memory and therefore, we assessed com-

putational efficiency of several alignment tools. We selected Salmon

due to it being ultrafast with low memory requirement; Salmon could

quickly align an RNA-Seq dataset in less than 10 min on average with

very low memory requirements, which, in turn, enabled us to para-

llelize the workflow over more CPUs than possible with popular

aligners like STAR (Dobin et al., 2013). In addition, custom iteration

scripts were written to iterate through the data for analysis rather than

relying on packages like Numpy or Pandas that instead require loading

the entirety of data at once. Although slower, it allowed us to use

moderately powerful desktop workstations to process large data

matrices. Similar pipelines for the analysis of RNA-Seq data and subse-

quent generation of co-expression network have previously been

established, for example, LSTrAP (Large-Scale Transcriptome Analysis

Pipeline) that combines all essential tools to construct co-expression

networks based on RNA-Seq data into a single, efficient workflow

(Proost et al., 2017). We chose to develop our own workflow that has

several components common to LSTrAP but also has distinct compo-

nents such as Salmon for read alignment. We have chosen to utilize

only those tools that have been extensively tested previously and have

frequently been used for similar analysis.

Large amount of data collected from many different experiments

does bring in additional challenges such as the batch effect. We

attempted a few normalization methods to address the batch effect,

such as TMM normalization (edgeR; Robinson et al., 2010) and

variance-stabilization (DESEq2; Love et al., 2014), but the lack of reli-

able annotation for many datasets made it difficult to apply batch cor-

rection properly. Our pre-processing entailed removal of datasets with

reads covering less than half of the TAIR10 transcriptome in the align-

ment and those that had more than 20% of their reads classified as

unmapped, thereby providing us with only high-quality datasets to

render a robust network. Visualization of this large network using

Cytoscape was another bottleneck, which we circumvented by using a

density-based metric to trim our network to a viewable form in Cyto-

scape. GO enrichment was exploited to optimize WGCNA’s parametric

setting or thresholds for our network, which was made possible by

running a batch script over TopGO.

The Arabidopsis network revealed genes that were coupled by

expression under many different conditions, and their organization

into functional modules. Functional coupling, revealed in such net-

works, could be across tissues or could be specific to a tissue. Of

course, tissue-specific networks may reveal additional information

(e.g., Burks & Azad, 2016), which can be investigated in follow-up

studies. The modules are an important feature of a co-expression net-

work and can be visualized at both coarse-grained and fine-grained

resolutions. The module configurations can be retrieved from a wide-

range of inflation parameter in WGCNA. Note that the inflation

parameter setting used in our analysis yielded fewer modules, with

many of them large (coarse-grained configuration), which could likely

be representing many different pathways that are cross-talking during

a certain biological process. For this study, we annotated the modules

based on only the most enriched GO BP term; however, it is plausible

to have a module represented by multiple GO terms as genes harbored

by the module might be participating in multiple processes or confer-

ring multiple functions. In addition to this coarse-grained configuration

data, we have also made available an additional dataset in our project

GitHub repository representing a fine-grained module configuration

(>250 clusters). This facilitates visualization of the modules at different

resolutions.

T AB L E 3 (Continued)

Stress Module

DEG

count

Up & down
regulated

non-DEG count

Total DEG

count

Module

gene count

DEG percent

in module

DEG Pval percent

in module

Enrichment

fold change

Enrichment

fisher test

41 33 0 33 41 80.49 80.49 1.5 2.5E�09

44 27 0 27 35 77.14 77.14 1.4 3.7E�07

51 27 1 28 29 96.55 93.10 1.7 7.2E�11

52 29 0 29 29 100.00 100.00 1.9 4.8E�14

53 21 0 21 25 84.00 84.00 1.6 5.8E�07

Note: Differentially expressed genes (DEGs) from a previous study dataset (Balfag�on et al., 2019) were mapped onto the gene modules generated using

WGCNA. The gene modules that were enriched in genes expressing differentially during stress conditions were thus identified. Modules that are enriched

with DEGs were determined by performing Fisher test; modules with p value ≤ .05 were deemed significantly enriched. Furthermore, modules with large

majority of genes (over 60%) significantly differentially expressed and otherwise two-fold or more upregulated or downregulated were identified. Stress:

stress under consideration; Module: Modules with over 60% DEGs; DEG Count: Genes that are considered differentially expressing as per the study; Up &

Down Regulated Non-DEG Count: Genes that are 2-fold or more up/down regulated but had p value > .05; Total DEG Count: DEG Count + Up & Down

Regulated Non-DEG Count; Module Gene Count: Number of genes in the module; DEG Percent In Module: Percentage of genes in Module that are

considered as differentially expressing as per the study as well as genes that are 2-fold or more up/down regulated but has p value > .05; DEG p value

Percent In Module: Percentage of genes in Module that are considered as differentially expressing as per the study; Enrichment Fold Change: Fold

enrichment of DEGs in a Module; Enrichment Fisher Test: p value generated using Fisher test to indicate the significance of DEG enrichment in a Module.

16 of 22 BURKS ET AL.



In addition to extraction of gene modules from the network, gene-

specific networks were by derived by extracting direct neighbors of

specific genes of interest, such as of RBOHD, AtNEET, and HSFA1D.

We observed that, in addition to being well-connected with other

genes within their own modules, these genes were also directly associ-

ated with some genes from one or more other modules. This is not

unexpected as due to functional relatedness or dependency, they

might be connected to genes belonging to other modules as well. This

could signify the relevance of a gene in many different processes;

some genes could act as “hubs” in the network, they could not just

have connections within their own modules but also many connections

with genes from other modules, highlighting their functional signifi-

cance in regulating many different processes or acting as mediator for

enabling cross-talks between different processes; on the other hand,

some genes could have more specific roles and those could have con-

nections only within their module or much fewer connections outside

of their own module.

In addition to the innovations mentioned above that helped realize

the network of this scale, we developed innovative approaches to

interrogate the network to obtain biologically important information.

For example, our approach to map differentially expressing genes from

an experiment onto the network and then identify modules enriched

in differentially expressing genes helped decipher putative transcrip-

tionally altered genes by virtue of their association with differentially

expressing genes within the enriched modules. These genes were two-

fold or more elevated or depressed in expression yet were deemed

statistically insignificant in the original studies; network analysis pro-

vided support to these novel discoveries and close examination of

known functions or associations of some of these genes rendered

even more confidence over the novel predictions. Of course, more

follow-up analyses are needed to further validate these genes. Fur-

thermore, the unbiased network approach has made possible identifi-

cation of both known and unknown pathways or networks of genes

that are regulated under certain conditions or stages, shining a light on

molecular processes at a scale that is not possible to realize based on

standard gene-focused studies.

5 | CONCLUSIONS

This study advances our knowledge of Arabidopsis functional genomics

by constructing a new gene co-expression network that leverages

information from thousands of Arabidopsis RNA-Seq datasets available

for interrogation in public databases. The high amount of trans-

criptomics data rendered a robust network that can be a valuable

resource for the Arabidopsis community to interrogate for genes, path-

ways or datasets of interest. The modules identified by our study rep-

resent pathways or networks of pathways that interact to confer

certain biological functions. In addition to identifying differentially reg-

ulated genes by performing expression studies, researchers may use

the network for an unbiased assessment of pathways or networks of

pathways, both known and unknown, that are differentially regulated

during different stages or conditions. In addition to providing the

complete datasets as a supplement to this paper, we have made them

available at https://doi.org/10.6084/m9.figshare.16752733.v4. All

associated source codes are provided at the GitHub site: https://

github.com/sohamsg90/WGCNA_Arabidopsis-main.

6 | MATERIALS AND METHODS

6.1 | Data collection and filtering

The entire collection of mRNA-Seq A. thaliana datasets available at the

NCBI SRA was retrieved and converted to FASTQ format using the

prefetch and fastq-dump utilities of SRA-Tools v2.92 (Leinonen

et al., 2010). Single and paired-end read data representing a variety of

experiments were processed and reads from each dataset were aligned

to the TAIR10 transcriptome of the Ensembl Plants release

46 (Berardini et al., 2015; Bolser et al., 2016). Transcriptome indexing

and alignment was performed using the v.12.0 release of the

pseudoalignment program Salmon (Patro et al., 2017).

Datasets with reads covering less than half of the TAIR10 trans-

criptome in the alignment and those that had more than 20% of their

reads classified as unmapped were removed from further analysis. For

a gene with multiple isoforms (transcripts), the normalized expression

values for transcripts of the gene were summed and log2 transformed.

A 18,122 by 21,460 matrix representing the log transformed normal-

ized expression values (log2 TPM), with rows corresponding to

A. thaliana genes and columns to experiments, was imported into

WGCNA for gene co-expression network construction (Langfelder &

Horvath, 2008).

6.2 | Network construction

The aforementioned expression matrix was inputted into WGCNA

with the blockwiseModules function to generate a signed network

under a soft-thresholding power of 12, minimum module size of

10, and merged cut height of .005. Gene associations, based on the

underlying Pearson correlation and topological overlap of all gene to

gene pairs, were generated directly from the expression matrix using

the TOMsimilarityFromExpr function. Module assignments were

exported using the exportNetworktoCytoscape function.

6.3 | Enrichment analysis

Each cluster produced by WGCNA was assessed for gene ontology

(GO) term enrichment using a batch script of the TopGO analysis pack-

age (Alexa & Rahnenführer, 2009). GO term enrichment was examined

across all three categories, namely, Biological Process (BP), Cellular

Component (CC), and Molecular Function (MF). Unadjusted p-values

for GO terms were FDR-adjusted using the p.adjust function of R. All

enrichment tests within TopGO were based on “classic” algorithm with

the statistics parameter set to “fisher”. GO annotations were imported
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from the org. At.tair.db package of the Bioconductor release v3.11

(Reimers & Carey, 2006). KEGG pathway enrichment was performed

using the clusterProfiler R Bioconductor package (Yu et al., 2012).

6.4 | Module annotation

The RNA-Seq based Arabidopsis gene co-expression network com-

prised of 54 gene modules. Genes within a module co-express under

diverse conditions, and therefore, functional coupling among the mod-

ule members is expected. To annotate these modules, we performed

enrichment analysis for BP, CC, and MF ontology terms in all of the

54 modules. We assigned labels to each module pertaining to the most

significant GO terms for each module. This was performed primarily by

construction of Tree Maps of GO terms using TopGO with the top

10 most significant terms (based on the p-value and highest enrich-

ment). The network provided a comprehensive insight into the rela-

tionships among genes in different functional modules.
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