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Abstract

Segmentation of cardiac images is a variable component of many patient specific computational 

pipelines, yet its impact on simulated results are still not fully understood. A hurdle to to exploring 

the impact of the segmentation variability is the technical challenge of building a statistical shape 

model of the ventricles. In this study, we improved open our previous shape analysis by creating 

a unified shape model including both the epicardium and endocardium. We tested four techniques 

within ShapeWorks to generate a ventricular shape model: standard, multidomain, hybrid 

multidomain, and geodesic distance. The multidomain and hybrid multidomain generated a shape 

model using all eleven segmentations, and the geodesic distance method generated a shape model 

using a subset of four segmentations. Each of the shape models captured spatially dependent 

characteristics of the segmentation variability, including wall thickness, annular diameter, and 

basal truncation. While each of the three methods have benefits, the hybrid multidomain approach 

provided the most accurate shape model with fewest points and may be most useful in a majority 

of applications.

1. Introduction

The growing relevance of patient-specific cardiac simulation as a research and clinical tool is 

a result of its promise to accurately predict arrhythmias and guid treatments. The prevailing 

simulation methods, such as heart propagation models [1], ECG forward simulation, and 

Electrocardiographic Imaging (ECGI)[2, 3], extract geometric and parametric data from 

clinical sources, especially medical images, into computer models. Although the emergence 

of many of these pipelines into clinical use is eminent, uncertainty from the variable 

interpretation of clinical inputs remains largely unquantified for many approaches.
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The interpretation of clinical data into a tractable cardiac models requires a compilation of 

many assumptions and estimations, leading to multiple possible sources of uncertainty. One 

such source, often overlooked, is the segmentation of the geometric model, particularly the 

heart. Segmentation of cardiac images is largely viewed as a solved problem, yet it usually 

requires manual input and user judgements. We have previously shown that experts from 

multiple research groups generate segmentations of the the same patient geometry that vary 

widely, especially the cardiac surface [4]. This variability likely affects the ECGI solutions 

[5], and we have used statistical shape analysis to quantify the variability of segmentation 

of a patient geometry [6] and incorporate the statistical shape model an ECGI pipeline 

to quantify the uncertainty due to segmentation variability [7]. However, previous shape 

models did not incorporate the epicardium and the endocardium together, limiting their 

possible applications.

In this study, we improved open our previous shape analysis of ventricular segmentation 

variability by creating a unified shape space including both the epicardium and 

endocardium. We used the collaborative framework of the Consortium for ECG Imaging 

(CEI) to generate multiple segmentations of the same patient to provide sufficient data for 

computing shape variability of cardiac segmentations, and used a correspondence-based 

shape analysis to calculate shape statistics in a parameterized shape space. We found that 

multiple strategies enable the production of shape models that could be used in multiple 

cardiac simulation pipelines and with uncertainty quantification techniques.

2. Methods

We used the statistical shape analysis on multiple segmentations to quantify the 

segmentation variability of patient. Researchers within the Consortium for ECG Imaging 

(CEI, ecg-imaging.org), supplied eleven ventricular segmentations from a single patient CT 

scan and ShapeWorks [8] (https://www.sci.utah.edu/software/shapeworks.html) was used to 

compute correspondence points on all surfaces then to compute the shape space for each 

set of correspondences using Principal Component Analysis (PCA). We employed four 

strategies within ShapeWorks to generate a unified shape model for use in cardiac simulation 

pipelines: standard, multidomain, hybrid multidomain, and geodesic distance.

ShapeWorks’ approach to shape analysis involves finding correspondence points across all 

input geometries using a particle system optimizer. The optimization attempts to maximize 

distance between points while minimizing the number of modes of variation across the 

cohort of geometries. In the standard application of ShapeWorks the segmentations of 

the heart, including both the endocardium and the epicardium, are used as a single 

region in the particle optimizer (Figure 1). Due to the relatively thin walls and concave 

geometry of the ventricles, ShapeWorks cannot always place correspondences consistently 

across segmentations. In the multidomain approach, the epicardium, left ventricular (LV) 

endocardium, and the right ventricular (RV) endocardium are separated into three domains 

which are optimized simultaneously, but each domain uses separate correspondances. 

This approach utilizes the mostly convex shapes of each of the surfaces to improve 

correspondence optimization. The hybrid multidomain approach uses the same three 

domains as multidomain, but the domains are optimized separately, then a single shape 
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space is generated from the PCA. The advantage of this strategy over multidomain is 

a simplified parameter set for the ShapeWorks optimization, yet this approach doesn’t 

necessarily minimize the axes of variation for the unified space. The final approach used 

in this study uses geodesic distance, or distance along the surface, instead of euclidean 

distance in the particle optimization, allows the algorithm to better differentiate endocardium 

and epicardium points. Each of the four strategies were evaluated qualitatively, and by the 

variability captured with each axis.

The medical images used in this study were collected by Sapp et al. [9] and are available for 

open use on the EDGAR database (http://edgar.sci.utah.edu) [10] a shared resource of the 

CEI.

3. Results

The four ShapeWorks strategies tested in this study displayed varied levels of success 

in generating shape models of segmentation variability (Figures 2, 3, 4, & 5). Only 

multidomain and hybrid multidomain were able to generate a coherent shape model with 

all eleven segmentations. The geodesic distance strategy was able to generate a shape model 

by using a subset of four segmentations that were most similar. The standard approach did 

not generate coherent correspondences nor a sensible shape model from the full set or a 

subset of the segmentations. Shape models generated by the multidomain (Figure 3), hybrid 

multidomain (Figure 4), and the geodesic distance methods (Figure 5) each captured similar 

spatially dependent characteristics of the segmentation variability, including wall thickness, 

annular diameter, and basal truncation. Each of these three methods had difficulty capturing 

the thin walls of the ventricles in the extremes of the shape space (±2σ). However, each 

axis avoided holes or crossing wall surfaces ≤ ∣1.5σ∣. Shape models generated from the 

multidomain and hybrid multidomain also captured variable valve openings within the shape 

space (Figures 3 & 4).

The total variability of the shape models generated by each of the four methods varied 

in magnitude and distribution. The total variation captured by each method was: 21,000 

mm2 standard, 30,700mm2 multidomain, 18,200 mm2 hybrid multidomain, and 6,200 mm2 

geodesic distance. The standard and geodesic distance required three modes capture 90% 

of the total variability of the model. An important note is that three was the maximum 

number of possible modes of variation because these shape models used only four input 

segmentations. The multidomain and hybrid multidomain methods generated shape models 

that captured 92% of the total variability with 5 modes of variation (with 10 total modes). 

The total variation captured by the standard approach was more than 3 times higher than the 

variability captured by geodesic distance. This discrepancy is likely from artificial variation 

from poor correspondences in the standard model. Similarly, the multidomain approach also 

captured nearly double the total variation captured by the hybrid multidomain approach. An 

important note is that the multidomain approach required more correspondences than the 

hybrid multidomain (1,536 compared to 1,024), which likely caused much of the difference 

in the total variation between the two methods.
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4. Discussion and Conclusions

The results of this study provide support for three different techniques to use ShapeWorks 

to generated unified shape models of ventricular segmentation variability. Additionally, we 

demonstrated that computation meshes can be generated from these shape models, although 

the utility of the meshes from each method may be application specific.

The multidomain and hybrid multidomain approaches were far more versatile in their 

use of input data than the geodesic distance method. The use of the full set of 

supplied segmentations enable ShapeWorks to capture a wider range of variability, such 

a variable number of valve annuli, with greater accuracy. However, the geodesic distance 

method provided a model with a constant number of correspondence points in contact 

with the ventricular surface; a feature that simplifies registration, mesh warping, and 

other applications. However, despite reducing the input data for the geodesic distance 

method, it was much more computationally expensive and much more challenging to find 

the appropriate ShapeWorks parameters than the multidomain and hybrid multidomain 

approaches. Furthermore, the multidomain and hybrid multidomain approaches generated 

more consistent correspondence points and were more qualitatively accurate.

We have created unified ventricular shape models capturing segmentation variability of a 

patient using ShapeWorks with three techniques. While each of the three methods have 

benefits, the hybrid multidomain approach provided the most accurate shape model with 

fewest points, which is likely to be most useful in a majority of applications. These shape 

models will be instrumental in estimating the effect of segmentation variability on the 

uncertainty of cardiac modeling pipelines of different types, including isolated heart models 

and ECG forward simulations.

Acknowledgments

This project was supported by the National Institute of General Medical Sciences of the National Institutes 
of Health under grant numbers P41GM103545, R24GM136986, U24EB029012, U24EB029011, R01AR076120, 
and R01HL135568. Data used in this study was made available by Drs. John Sapp and Milan Horáček and 
their research collaboration with Dalhousie University. Thanks to Sophie Giffard-Roisin, Eric Perez-Alday, Laura 
Bear, Beáta Ondrušová, Jana Svehlikova, Machteld Boonstra, Martim Kastelein, and Maryam Tolou for providing 
segmentations for this study.

References

[1]. Vigmond E, Hughes M, Plank G, Leon L. Computational tools for modeling electrical activity in 
cardiac tissue. J Electrocardiol 2003;36 Suppl:69–74. [PubMed: 14716595] 

[2]. Barr R, Ramsey M, Spach M. Relating epicardial to body surface potential distributions by 
means of transfer coefficients based on geometry measurements. IEEE Trans Biomed Eng Jan. 
1977;24:1–11. [PubMed: 832882] 

[3]. Gulrajani R Bioelectricity and Biomagnetism. 1 edition. New York, NY, USA: John Wiley & Sons, 
1998.

[4]. Ghimire S, Dhamala J, Coll-Font J, Tate JD, Guillem MS, Brooks BH, MacLeod RS, Wang L. 
Overcoming barriers to quantification and comparison of electrocardiographic imaging methods: 
A community- based approach. In Computing in Cardiology Conference (CinC), 2017, volume 
44. 2017; 1–4.

[5]. Tate JD, Zemzemi N, Good WW, van Dam P, Brooks DH, MacLeod RS. Effect of segmentation 
variation on ECG imaging. In Computing in Cardiology, volume 45. September 2018;

Tate et al. Page 4

Comput Cardiol (2010). Author manuscript; available in PMC 2022 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[6]. Tate JD, Pilcher TA, Aras KK, Burton BM, MacLeod RS. Validating defibrillation simulation in 
a human-shaped phantom. Heart Rhythm J 2020;17(4):661–668. ISSN 1547-5271. URL https://
www.sciencedirect.com/science/article/pii/S154752711931032X.

[7]. Tate JD, Good WW, Zemzemi N, Boonstra M, van Dam P, Brooks DH, Narayan A, MacLeod 
RS. Uncertainty quantification of the effects of segmentation variability in ecgi. In Functional 
Imaging and Modeling of the Heart. Palo Alto, USA: Springer-Cham, 2019; 515–522.

[8]. Cates J, Meyer M, Fletcher P, Witaker R. Entropy-based particle systems for shape 
correspondence. In Workshop on Mathematical Foundations of Computational Anatomy, 
MICCAI 2006. October 2006; 90–99. URL http://www.sci.utah.edu/publications/cates06/Cates-
miccai2006.pdf.

[9]. Sapp JL, Dawoud F, Clements JC, Horáček BM. Inverse solution mapping of epicardial potentials: 
Quantitative comparison with epicardial contact mapping. Circ Arrhythm Electrophysiol October 
2012;5(5):1001–1009. ISSN 1941-3149. URL http://circep.ahajournals.org/content/5/5/1001. 
[PubMed: 22923272] 

[10]. Aras K, Good W, Tate J, Burton B, Brooks D, Coll-Font J, Doessel O, Schulze W, Patyogaylo D, 
Wang L, van Dam P, MacLeod R. Experimental data and geometric analysis repository: EDGAR. 
J Electrocardiol 2015;48(6):975–981. [PubMed: 26320369] 

Tate et al. Page 5

Comput Cardiol (2010). Author manuscript; available in PMC 2022 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.sciencedirect.com/science/article/pii/S154752711931032X
https://www.sciencedirect.com/science/article/pii/S154752711931032X
http://www.sci.utah.edu/publications/cates06/Cates-miccai2006.pdf
http://www.sci.utah.edu/publications/cates06/Cates-miccai2006.pdf
http://circep.ahajournals.org/content/5/5/1001


Figure 1. 
Shape analysis pipeline. ShapeWorks generates the shape model, which can be used in 

simulation pipelines.
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Figure 2. 
Variation on each mode of variation using the standard method.
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Figure 3. 
Variation on each mode of variation using the multidomain method.
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Figure 4. 
Variation on each mode of variation using the hybrid multidomain method.
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Figure 5. 
Variation on each mode of variation using the geodesic distance method.
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