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Abstract

Background.—Robots designed for rehabilitation of the upper extremity after stroke facilitate 

high rates of repetition during practice of movements and record precise kinematic data, providing 

a method to investigate motor recovery profiles over time.

Objective.—To determine how motor recovery profiles during robotic interventions provide 

insight into improving clinical gains.

Methods.—A convenience sample (n = 22), from a larger randomized control trial, was taken 

of chronic stroke participants completing 12 sessions of arm therapy. One group received 60 

minutes of robotic therapy (Robot only) and the other group received 45 minutes on the robot 

plus 15 minutes of translation-to-task practice (Robot + TTT). Movement time was assessed using 

the robot without powered assistance. Analyses (ANOVA, random coefficient modeling [RCM] 

with 2-term exponential function) were completed to investigate changes across the intervention, 

between sessions, and within a session.

Results.—Significant improvement (P < .05) in movement time across the intervention (pre vs 

post) was similar between the groups but there were group differences for changes between and 

within sessions (P < .05). The 2-term exponential function revealed a fast and slow component 

of learning that described performance across consecutive blocks. The RCM identified individuals 

who were above or below the marginal model.
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Conclusions.—The expanded analyses indicated that changes across time can occur in different 

ways but achieve similar goals and may be influenced by individual factors such as initial 

movement time. These findings will guide decisions regarding treatment planning based on rates 

of motor relearning during upper extremity stroke robotic interventions.
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Introduction

Analyzing the effects of a stroke rehabilitation intervention is typically achieved through 

comparing post- to pretraining values on outcome variables, but are there other clinically 

relevant analyses? Motor learning research has provided additional methods of interest. 

One relatively new method involves the continuous tracking of recovery profiles that can 

provide insight into rates of change of motor performance during an intervention.1–5 Here 

we investigate the continuous tracking of recovery using upper extremity robotic training as 

the intervention.

Robotic interventions have generally been classified as having beneficial effects for 

survivors of stroke, particularly for the arm.6–8 While some of these studies have 

demonstrated similar outcomes to concentrated conventional therapy,9–11 robots offer an 

unparalleled ability to deliver repetitive movements at high rates compared to conventional 

therapy. One such robot is the MIT-MANUS, which, in addition to providing a progressive 

target reaching training paradigm, also generates kinematic data through digital movement 

encoders that may provide insight into how the quantity of this robotic intervention affects 

motor recovery during the course of robot-aided therapy. It does this by requiring robot-

unassisted evaluations periodically during the training that can be used to investigate the 

continuous time-course of the unassisted kinematic data generated by the MIT-MANUS 

across training.5 By examining changes during an intervention, we can assess when the 

maximum benefit from robot training is gained and related questions regarding dosage and 

individual differences in recovery profiles.

The purpose of the study was to investigate how the kinematic data, specifically movement 

time, obtained during a MIT-MANUS robotic intervention, could characterize motor 

performance changes. Given our study sample, a parallel, but secondary, purpose was 

to assess whether a within-session regimen of 45 minutes of repetitive reaching training 

followed by 15 minutes of transition-to-task practice produced the same timeline of 

kinematic changes as a regimen of 60 minutes of repetitive robotic training. For both groups, 

we explored whether changes occurred within versus between sessions, and also when the 

progress of movement times changed, that is, reached a plateau. Better understanding of the 

time-course of improvements during an intervention will help guide clinical practice and 

prescription of robotic interventions for stroke survivors, as well as future clinical trials.
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Methods

Participants

A convenience sample of 22 consecutively enrolled participants in a study of chronic stroke 

rehabilitation were included in this exploratory study. Participant demographics are included 

in Table 1. Participants met inclusion criteria if they were at least 6 months poststroke, had 

a Fugl-Meyer score between 7 and 38, and had adequate arm mobility to move a robotic 

manipulandum to target locations. The Joint University of Maryland/Baltimore Veterans 

Affairs Medical Center Institutional Review Board and the MIT Committee on the Use 

of Human Subjects as Experimental Subjects approved study procedures. All participants 

provided written informed consent.

Procedure

As part of a larger 12-week randomized-control trial, participants completed 3 days of 

therapy per week for 4 weeks. Each session consisted of 60 minutes of therapy; one group 

(n = 11) received 60 minutes of robotic training (Robot only) and the other group (n = 11) 

received 45 minutes of robotic training followed by 15 minutes of transition-to-task practice 

(Robot + TTT). All of the robotic therapy was on the InMotion2 Arm robot (Interactive 

Motion Technologies, Cambridge, MA). Participants sat comfortably at a table with their 

stroke-affected arm resting in a molded cradle with the hand around the manipulandum 

handle. Participants moved the handle across a horizontal plane to control the position of a 

cursor in a 2D workspace to hit 8 equidistantly spaced targets around a circle. During the 

therapy, the robots were in the “active-assist” mode such that the robot provided assistance 

as necessary if the participant was unable to reach a target. The therapy consisted of 320 

movement repetitions per block, and the robot graded the task difficulty by changing the 

time allocated to complete the reaching movement and the movement guidance by altering 

the amount of wall-stiffness during the treatment.

The TTT practice consisted of 15 minutes of therapist-guided practice of patient-specific 

tasks that involved use of the whole arm in 3D space. These functionally based activities 

were performed in a sitting position and included weight bearing activities to promote 

stabilization and table-top activities to promote bilateral and unilateral dexterity. Examples 

of tasks included lifting a cup, reaching with a brush, and wiping a countertop. Activity 

progression was based on objective measures such as independence with lifting, distance 

of reach, and number of repetitions completed in the set activity time. A stop watch was 

used to time each of the 2 prescribed TTT activities for 7.5 minutes of task training; manual 

assistance was provided as necessary. The same therapist provided all of the robotic and the 

TTT sessions.

Data Analysis

Before the start of the initial training block and after each block of 320 movements, an 

evaluation was completed without robot assistance in the center-out task to 8 targets. 

The robot recorded the position of the cursor at a sampling frequency of 200 Hz, and a 

customized MATLAB program was used to process the data offline. Data were filtered with 

a Butterworth low pass filter (7 Hz cutoff). Movement time was defined as the amount of 
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time elapsed to reach within 1 cm of the target. An average movement time for completed 

reaches at each evaluation was calculated. The number of blocks varied individually since 

time, not repetition, was held constant, which resulted in some instances when a participant 

did not conclude the intervention time with an evaluation. In these cases, the previous 

evaluation was used as the last block. The number of blocks also varied across groups 

given the 45- versus 60-minute schedule on the robot. For all participants, a minimum 

of 2 evaluations per session were completed, which indicates a minimum of at least 320 

repetitions per session.

A repeated measures 2 × 2 ANOVA (time [pre, post] by group [Robot only, Robot + TTT]) 

was used to determine pre-post changes and differences between groups. To look more 

closely at when and how the kinematic performance changes were occurring, we employed 

2 strategies. First, we assessed whether changes tended to occur during a treatment session 

(online gains) or between sessions (offline gains).12,13 Online gains were calculated as the 

rate of change within a session, and offline gains were calculated as the absolute change 

between sessions. Online and offline gains were compared using a one-way ANOVA to 

determine differences between groups. Second, we assessed the recovery profiles across 

blocks with random coefficient modeling (RCM). This analysis focused on evaluating the 

overall time spent on the robot such that the blocks of completed intervention on the robot 

were numbered sequentially for each participant over the entire study of 12 sessions. Our 

initial visual inspection revealed that there was a rapid reduction in movement time followed 

by a gradual improvement in movement time at a slower rate. The RCM facilitates the 

analysis of repeated measures in which the degree of change may not be linear;14 motor 

learning literature suggests that such a learning process is best fitted by a 2-term exponential 

function.1–4 As such, we used a 2-term exponential function with random effects. The 

RCM statistically identifies both individuals that have different learning rates and whether 

group differences exist between the marginal models. This step accounts for between-subject 

variability by representing the performance trajectory when all individuals are identical, that 

is, when R(i,j) = 0.15,16 As part of the model development, a likelihood ratio test confirmed 

that the 2-term exponential function with random effects (ie, RCM on a 2-term exponential 

function) fit the data better compared to the 1-term exponential function with random effects 

(χdf = 5
2 = 29, P < .0001). In addition, a likelihood ratio test suggests the RCM (Equation 1) 

rather than a 2-term exponential function with only fixed effects is a better fit of the data 

(χdf = 3
2 = 1592, P <.000001).

The model is as follows:

MT i, t = (βI + γI ⋅ gi + Ri, 3) + β1 + γ1 ⋅ gi ⋅ e (β2 + γ2 ⋅ gi + Ri, 1) ⋅ t

+ β3 + γ3 ⋅ gi ⋅ e (β4 + γ4 ⋅ gi + Ri, 2) ⋅ t + errori, t
(1)

where MTi,t is the movement time at block t for individual i; βI, β1, β2, β3, β4 represent the 

fixed effects for the Robot only group; γI, γ1, γ2, γ3, γ4 are the adjustment to β1, β2, β3, 

β4 and thus represent the fixed effects for the Robot + TTT group; g = 0 or 1 for the Robot 

only or Robot + TTT group; Ri,1, Ri,2, Ri,3, are the random effects; and errori, t ∼ N μ = 0, δ2

is the residual at block t for individual i. All 3 random effects were assumed to follow 
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normal distributions, Ri, j ∼ N μj = 0, δj
2 , j = 1, 2, 3. Specifically, βI represents the plateau of 

movement time (when t → ∞). β2 and β4 are the decay rates of the 2 exponential terms 

in Equation 1. Our analyses revealed that β4 had a larger magnitude than β2, suggesting 

that β4 represents the decay rate of the fast learning component while β2 represents the 

decay rate of the slow learning component. Correspondingly, β2 and β3 are the coefficients 

of the slow and fast learning components, respectively. The summation of βI, β1, and β3 

characterizes the movement time at t = 0. Meanwhile, the magnitudes of β1 and β3 also 

affect the learning rate because the change of movement time (ie, the derivative of Equation 

1) relies on β1 and β3. The γ parameters represent adjustments to the corresponding β 
parameters. Thus, the analysis facilitates differentiation between groups if the γ parameters 

are statistically different (P < .05). Additionally, the analysis on the parameters R allows for 

statistical comparisons between participants with regard to whether an individual participant 

does or does not show the same learning profile as the group. For example, participants may 

respond faster to the intervention whereas others may respond slower to the intervention. 

This statistical approach controls for large between-subject variability and can identify 

which participant displays a different course of change in motor performance over time.15,16 

This will be valuable in evaluating clinical trials where clinical gains are often modest. To 

facilitate how the results from the RCM relate to initial motor function in survivors of stroke, 

we conducted a Pearson’s correlation between the generated random coefficients for each 

individual with initial FM scores and movement time.

Results

The 2 groups were similar at the start of the intervention for age (P = .8) and level of 

impairment (P = .3). See Table 1. Movement times significantly decreased over the course of 

the intervention, F = 35.4, P < .001, and this was not different between groups (Robot only 

and Robot + TTT), F = 1.9, P = .18, as depicted in Figure 1A. The average movement time 

per block over the course of the intervention is illustrated in Figure 1B with the size of the 

data point indicating the number of individuals within the average. The Robot only group 

typically completed more blocks of robotic training compared to the Robot + TTT group. 

The groups were then compared to determine if changes within a session (online gains) or 

between sessions (offline gains) were different. The groups had significantly different rates 

of change within a session, which was quantified as the slope of change. The Robot + TTT 

group had a significantly greater rate of movement time improvement during the treatment 

session (average slope = 0.05) compared to the Robot only group (average slope = 0.004, P 
= .002). The absolute changes between sessions were significantly different (P = .001) with 

the Robot only group having a small improvement in movement time between sessions (0.08 

seconds), whereas the Robot + TTT group had on average 0.2 seconds slower movement 

times at the start of the following session.

The results of the RCM are depicted in Figures 2 and 3. The variances δj
2, j = 1, 2, 3, of 

random effects Ri, j ∼ N μj = 0, δj
2 , j = 1, 2, 3, were all significantly larger than zero (P < 

.05 for all δj
2, j = 1, 2, 3). This result confirmed that all 3 random effects are necessary 

to model the data set. The marginal models for the groups are depicted in Figure 2A. 
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Two different components of learning were included in the 2-term exponential model to 

account for the nonlinearity of changes in movement time over the intervention. Both 

components were found to significantly contribute to the change of movement time (β2 and 

β4 are significant). The initial “fast” component of the trajectory profiles were significantly 

different between the 2 groups (see Table 2 for parameter estimates). The slow component 

of learning, however, had the same magnitude between the 2 groups. This can be observed 

in Figure 2A, where there was a transition between the fast and slow components. This 

transition was more apparent in the Robot + TTT group, which tended to occur between 10 

and 30 blocks (or approximately 4 and 6 sessions). The transition is not as pronounced for 

the Robot only group.

One unique feature of the RCM is that it can control for high intersubject variability and 

identify individual subjects who are significantly different from the group. These results are 

provided in Table 3 for the 3 random coefficients that were included in the model including 

slow component, fast component, and initial movement time. Four subjects had significant 

deviations for the slow component of learning, whereas 9 subjects had deviations for the 

fast component of learning. Three subjects had significantly faster initial movement times 

(2.4, 2.5, and 1.7), whereas 1 subject had a significantly slower initial movement time (5.9 

seconds), which were taken into account by the model. Figure 2B and C illustrates the 

variance in individual learning curves for each subject in relation to the group marginal 

models. The fast component and the initial MT coefficients positively correlated to the 

movement time (both were r = .7, P < .01). All other correlations were not significant (P > 

.05).

Figure 3 depicts individual prediction curves plotted against the marginal model. The top 2 

plots illustrate 2 subjects whose individual curve does not differ from the marginal model. 

The middle 2 plots depict smaller fast learning components compared to the marginal model. 

The bottom 2 plots depict how a faster initial movement time generally just shifted the 

prediction curve lower, yet these 2 subjects did not have different fast or slow learning 

components, that is, the lines have the same shape.

Discussion

Profiles of movement time during unassisted multidirectional reaching, recorded by a 

robotic device, were investigated during a 4-week intervention on a shoulder-elbow robot 

with chronic stroke survivors. Improvements in movement times were similar after 12 

sessions for both groups; the expanded analysis, however, determined that these gains were 

achieved differently. Generally, the Robot + TTT group had a greater rate of improvement 

during the session, which was not maintained between sessions, whereas the Robot only 

group had smaller gains within a session, but had a small gain in performance between 

sessions. Across all blocks an RCM with a 2-term exponential model demonstrated that 2 

components of learning (fast and slow components) significantly contributed to the learning 

profiles. The RCM analysis also identified participants who were significantly different from 

the group, and the coefficients of the fast component were related to initial movement time. 

Taken together, these are important considerations for future rehabilitation studies because 
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of the implications for dosing studies and opportunities to employ sophisticated statistical 

analyses in rehabilitation interventions.

The results of the initial pre-post analysis suggested that changes in movement time were 

not different between groups. These changes are similar to previous pre-post kinematic 

reports.17 However, a premature conclusion would be that gains were achieved similarly 

across all participants. The between- and within-session analysis provided an approach to 

investigate when changes were occurring and may provide an opportunity to investigate 

characteristics related to an intervention. In this proof-of-concept analysis, the between-

session data suggested that the Robot only group may have an advantage in consolidating 

their gains between sessions. This advantage could be because the longer session on the 

robot led to fatigue, causing slower movement times at the end of the session. Alternatively, 

the TTT component of the intervention could have interfered with consolidation between 

sessions for the combination group because more complex, integrated movements were 

practiced. The latter explanation is more likely since it explains the greater within-session 

learning by the Robot + TTT group such that they start each session slower than their last 

performance but quickly regain and slightly exceed their previous session’s last value.

We wanted to obtain a detailed picture of the changes in movement time over the 

intervention by investigating the rates of performance changes with the RCM analysis. 

This analysis demonstrated that 2 components were significantly contributing to changes in 

movement time over the course of the intervention. There was a significant fast component 

of learning that occurred early during the intervention, which was followed by a slower 

component of learning. This phenomenon of rapid learning tapering off has been previously 

demonstrated,3 yet the current study applied this contemporary approach to data collected 

within an extended intervention. The clinical implication from this analysis revealed a 

critical period where performance changes were slower. This effect was apparent in both 

intervention groups, and was slightly more pronounced in the Robot + TTT group. Most 

of the gains were attained during the first 20 blocks of robot training (each block includes 

320 movements) with a subsequent diminished rate of gain. Each participant would have 

completed 20 blocks of training during different sessions given that the time in the robot 

therapy was held constant rather than number of repetitions. Clinically, this suggests that 

the first 20 blocks of cumulative training (about 5-6 sessions) promotes a faster rate of 

gain, which is followed by slower improvements over the additional sessions. This result 

is similar to Volpe and colleagues who observed the biggest improvement in the first 9 

sessions.18 However, it is in contrast to those of Kahn and colleagues,19 who suggested 

improvements of speed from robotic training were gradual and continuous over the course 

of the intervention. The difference in our results may be due to the type of robotic training 

used, the fact that they had a very low number of movements per session (80 movements 

vs a range of 320 to 960 in ours), the fact that they did not use a combination training 

but tested robot alone versus task-practice alone, the density of their assessments (less than 

ours), and the overall time frame (longer than ours). It may also be due to our use of the 

RCM analysis. We observed a change in the rate of improvement that would not be detected 

with a linear model. This highlights the importance of using different statistical approaches 

and the potential limitations of using a linear model over repeated sessions. The results 

from the current study suggest that this shift in fast to slow gains is an opportunity to 
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explore and study different dosing strategies with robotic interventions and highlights the 

importance of continuous monitoring of performance. For example, the robot could require 

greater challenges as changes in motor performance slowed. The decreased rate of gains and 

differences in learning between subjects over the course of the intervention may be possible 

explanations for why clinical gains from robot studies are often limited. Analyses like the 

RCM, with a 2-term exponential function, offer rehabilitation scientists new avenues for 

analyzing data from studies that have measures that are repeatedly collected (eg, movement 

time on a certain task).

One clear advantage to the RCM approach is that it allows for the detection of individuals 

whose pattern of performance over time differs from that of the group. As such, this analysis 

controls for intersubject variability, which is critical for populations such as stroke that have 

inherent variability. The traditional option to control for variability in clinical trials is to have 

strict inclusion/exclusion criteria, but this is statistically inefficient, increases recruitment 

burden, and decreases external validity.20,21 More novel approaches implement appropriate 

statistical analyses that can control for inherent variability, as was done in the current study. 

The RCM identified a number of participants in each group who exhibited similar profiles 

over time whereas a few had different patterns (see Tables 2 and 3). The individual curves 

suggest that robotic treatment should be evaluated during the first 20 blocks of training to 

establish if patients are following the typical trajectory, as some patients may have a slow or 

no response at all to treatment (example participant 22 in Figure 2C) or are responding more 

quickly (see Figure 2). Statistical identification of subjects is a significant step for clinical 

research and generates new avenues for determining the factors that influence response 

to treatment. Further developing these performance profiles provides clinicians with better 

options to modify treatment plans, which should increase effectiveness of robotic treatments.

Finally, we explored the relationships between the generated coefficients from the RCM and 

individual initial motor severity (FM scores and movement time). The fast phase and initial 

MT coefficients were significantly related to the movement time (seconds). This analysis 

suggests that an individual with a slower movement times at the start of the intervention had 

decreased fast learning rates without achieving a strong plateau. For example, see Subjects 

4, 5, and 8 in Figure 2B. These relationships and relationships with functional change and 

final performance need to be explored more fully with a robotic dosing related study.

Conclusions

By using sophisticated statistical analyses to more fully understand how performance 

changes over time, we demonstrated different rates of learning during the intervention (fast 

and slow components) that were not apparent with a more traditional pre-post statistical 

approach. The RCM highlighted a critical period within the intervention where motor 

performance appeared to reach a plateau and potential differences between groups in terms 

of when improvements become consolidated. The RCM approach also allowed for analysis 

at the individual level, which can assist to identify individuals who may not be responding 

to the intervention like other participants. These areas of discussion provide avenues for 

implementation with future robotic intervention studies and have implications for the clinical 

use of robotic training.
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Figure 1. 
(A) Changes in movement time were similar between the 2 groups between the start and end 

of the 4-week intervention. (B) The average for each block on training separated by sessions 

over the course of the intervention.

TTT, translation-to-task practice. The size of the data point indicates the number of 

participants within that average because the number of blocks completed at each session 

was different for each participant. Generally, the Robot only group completed more robotic 

intervention compared to the Robot + TTT group, which is observed with larger data 

points at higher block numbers within each session. The rate of change within the session 

was different between the groups, as was the absolute change in movement time between 

sessions.

Note: Color version of the figure is present with the online version of this issue at 

www.nnr.sagepub.com.
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Figure 2. 
(A) Group effects of the exponential analysis and random coefficient modeling prediction 

curves. There was a significant difference between groups in the fast component of learning 

but the slow component was similar. (B) Individual predictive curves for the Robot only 

group. (C) Individual curves for the Robot + TTT group. TTT, translation-to-task practice.

Note: Color version of the figure is present with the online version of this issue at 

www.nnr.sagepub.com.
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Figure 3. 
Exemplar data from both groups illustrating the individual data points that were used for the 

analysis and how the prediction curves are similar or different than the group prediction.

Note: Color version of the figure is present with the online version of this issue at 

www.nnr.sagepub.com.
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Table 2.

Parameter Estimates for the Nonlinear Model
a
.

Parameter Estimate t Value p Value

β1   1.8 14.7 <.0001
b

γ1   0.15   0.8   .4

β1   0.9   9.1 <.0001
b

γ1 −0.3 −1.9   .07

β2 −0.0326 −4.0   .0009

γ2   0.0092   0.7   .5

β3   1.2   5.7 <.0001
c

γ3   0.7   2.7   .01
c

β4 −0.5 −2.9   .01

γ4 −0.12 −0.5   .7

a
Bolded parameters (β2 and β4) indicate that the 2 components of learning (slow and fast) significantly contributed to changes in movement time.

b
Indicates that the component significantly contributed to the model but was not different between groups.

c
Indicates that a significant difference between the Robot only and Robot + TTT groups was detected for the fast component of learning.
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