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Abstract Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) is a technique widely
used to investigate genome-wide chromatin accessibility. The recently published Omni-ATAC-seq protocol substantially
improves the signal/noise ratio and reduces the input cell number. High-quality data are critical to ensure accurate analysis.
Several tools have been developed for assessing sequencing quality and insertion size distribution for ATAC-seq data;
however, key quality control (QC) metrics have not yet been established to accurately determine the quality of ATAC-seq
data. Here, we optimized the analysis strategy for ATAC-seq and defined a series of QC metrics for ATAC-seq data,
including reads under peak ratio (RUPr), background (BG), promoter enrichment (ProEn), subsampling enrichment
(SubEn), and other measurements. We incorporated these QC tests into our recently developed ATAC-seq Integrative
Analysis Package (AIAP) to provide a complete ATAC-seq analysis system, including quality assurance, improved peak
calling, and downstream differential analysis. We demonstrated a significant improvement of sensitivity (20%—60%) in
both peak calling and differential analysis by processing paired-end ATAC-seq datasets using AIAP. AIAP is compiled into
Docker/Singularity, and it can be executed by one command line to generate a comprehensive QC report. We used
ENCODE ATAC-seq data to benchmark and generate QC recommendations, and developed g4TACViewer for the user-
friendly interaction with the QC report. The software, source code, and documentation of AIAP are freely available at
https://github.com/Zhang-lab/ATAC-seq_QC_analysis.
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Introduction chromatin must remain in an accessible state to allow
binding of transcription factors and initiation of transcrip-
To regulate the transcription of a eukaryotic genome, tion activation [1-4]. Several sequencing-based methods
have been developed to assess chromatin accessibility and
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isolation of regulatory elements with sequencing (FAIRE-
seq) [6], micrococcal nuclease digestion with deep se-
quencing (MNase-seq) [7], and the recently developed
Assay for Transposase-accessible Chromatin with high-
throughput sequencing (ATAC-seq) [8]. ATAC-seq can
detect the accessible regions of a genome by identifying
open chromatin regions (OCRs) using a prokaryotic Tn5
transposase [8,9], and the technology features an easy ex-
perimental protocol, a reduced requirement of input mate-
rial, and a high signal/noise ratio. These unique advantages
have propelled ATAC-seq technology to quickly become a
widely-used method to define chromatin accessibility,
especially in several large consortiums focusing on func-
tional genomics profiling, including ENCODE [10],
TaRGET II [11], and IHEC [12].

The ATAC-seq analysis strategy is primarily adopted
from ChIP-seq data analysis. After aligning sequencing
reads to the genome, peak calling tools, such as
MACS?2 [13], are commonly used to identify highly en-
riched ATAC-seq signals across the genome. Unlike ChIP-
seq, an ATAC-seq experiment does not normally require
input control. Thus, accurately assessing the quality of
ATAC-seq data is a critical step influencing downstream
analysis. Several software packages were developed for
ATAC-seq quality control (QC) and data analysis [14-16].
These tools provide general QC metrics of sequencing data,
including read quality score, sequencing depth, duplication
rate, and library insert fragment size distribution. Many
tools also provide analysis functions, including footprinting
analysis, motif analysis, and library complexity analysis.

Here, we present ATAC-seq Integrative Analysis
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Package (AIAP), a software package containing an opti-
mized ATAC-seq data QC and analysis pipeline. Along with
general QC metrics, such as library insert fragment size
distribution, we specifically introduced a series of QC
metrics for ATAC-seq, including reads under peak ratio
(RUPr), background (BG), promoter enrichment (ProEn),
subsampling enrichment (SubEn), and other measurements.
By applying AIAP, we demonstrated a significant im-
provement in both peak calling and differential analysis by
processing the paired-end sequencing data in single-end
mode: more than 20% of ATAC-seq peaks can be identified
using AIAP, and over 30% more differentially accessible
regions (DARSs) can be identified by AIAP in downstream
analysis. We applied AIAP to reanalyze 70 mouse
ENCODE [17] ATAC-seq datasets and determined the
general QC recommendations for ATAC-seq data analysis.
We also developed gATACViewer, a visualization tool in-
cluded in AIAP, for user-friendly visualization of QC re-
ports. AIAP is compiled into a Docker/Singularity image to
allow maximized compatibility on different operating sys-
tems and computing platforms. The software, source code,
and documentation are freely available at https://github.
com/Zhang-lab/ATAC-seq_QC analysis.

Method

Here, we describe AIAP for processing and analyzing
ATAC-seq data. The AIAP workflow typically consists of
four steps, as shown in Figure 1: 1) Data Processing; 2) QC;
3) Integrative Analysis; and 4) Data Visualization. Below,
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Pre-alignment Quality Control: duplication, sequencing score, library complexity, GC bias

Post-alignment Quality Control: mapping summary, chromsome distribution,
chrM contamination, insertion length distribution, library complexity

Post-peak-calling Quality Control: peak length distribution, RUPr, background,
promoter enrichment, subsampling enrichment, saturation analysis

I
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Figure 1 Schematic representation of AIAP

The schema reports the four analytical steps, namely, Data Processing, Quality Control, Integrative Analysis, and Data Visualization. AIAP, ATAC-seq
Integrative Analysis Package; RUPr, reads under peak ratio; DAR, differentially accessible region; TFBR, transcription factor binding region.


https://github.com/Zhang-lab/ATAC-seq_QC_analysis
https://github.com/Zhang-lab/ATAC-seq_QC_analysis

Liu S et al | AIAP for ATAC-seq QC and Analysis 643

we introduce the technical details of AIAP. Detailed doc-
umentation is available at https://github.com/Zhang-lab/
ATAC-seq QC analysis/.

ATAC-seq data processing

The data processing step first configures the working path.
The ATAC-seq paired-end (PE) raw-read FASTQ files are
trimmed by Cutadapt and aligned to the reference genome
by BWA [18]. The BAM file is further processed by me-
thylQA [19] in the ATAC mode. The methylQA first filters
unmapped and low-quality mapped PE reads and then
identifies the Tn5 insertion position at each read end by
shifting +4 bp/—5 bp on the positive/negative strands. me-
thylQA further extends 75 bp in both directions around the
Tn5 insertion position to create two pseudo single-end (SE)
mapped reads with the length of 150 bp in PE as SE (PE-
asSE) mode. Next, AIAP compiles different files for
downstream analysis (.bed files) and normalized visuali-
zation (.bigWig files). The bed file is used to perform peak
calling by MACS2 [13] with a q value cut-off of 0.01 and
the following setting: --keep-dup 1000 --nomodel --shift 0
--extsize 150.

In PE-noShift mode, AIAP first filters unmapped and
low-quality mapped PE reads and then identifies the Tn5
insertion position at each read end by shifting +4 bp/—5 bp
on the positive/negative strands, then isolates the whole
fragment between two insertion positions to create one PE
mapped fragment for downstream analysis (.bed files) and
normalized visualization (.bigWig files). The bed file is
used to perform peak calling by MACS2 [13] with a q value
cut-off of 0.01 and the following setting: --keep-dup 1000
--nomodel --shift 0 --extsize 0.

ATAC-seq data QC

AIAP performs a series of quality checking steps before
and after alignment. AIAP calls FastQC to check the se-
quencing quality, duplication rate, and GC bias before
alignment. After alignment, AIAP generates the mapping
statistics summary, chromosome distribution of uniquely
mapped reads, mitochondrial genome (chrM) con-
tamination rate, library insert fragment size distribution,
and library complexity. AIAP also performs a series of
post-peak calling quality checks, including peak width
distribution, RUPr, BG, ProEN, and SubEn. AIAP also
provides saturation analysis, promoter peak distribution,
and signal ranking analysis. AIAP reports the quality
metrics in a JSON file, which can be visualized using
qATACViewer. The default QC standard of AIAP is de-
termined by the QC metrics of mouse ATAC-seq data
generated by ENCODE consortium (Good standard:
Mean; Acceptable standard: Mean—SD). We defined the

key QC metrics below.

Alignment QC

There are 5 QC metrics for alignment. 1) Non-redundant
uniquely mapped reads refer to the reads that are uniquely
mapped to the reference genome after removing re-
dundancy. 2) The second is chromosome distribution/
chrM contamination rate. The former describes the dis-
tribution of uniquely mapped reads across all chromo-
somes, while for the latter, the number of uniquely mapped
reads on chrM is used as a QC metric to measure the
quality of the ATAC-seq library. 3) Library insert fragment
size distribution is measured as the length of DNA frag-
ment defined by non-redundant uniquely mapped read-
pairs. 4) Library complexity is estimated in both duplica-
tion rate and predicted yield of distinct reads generated by
preseq (https://github.com/smithlabcode/preseq). 5) To
obtain the total number of useful single ends, each end of a
non-redundant uniquely mapped read pair will be shifted
+4 bp/—5bp on the positive/negative strands and then
further extended 75 bp in both directions around the Tn5
insertion position.

Peak calling QC

RUPr

RUPr is defined as the percentage of all useful ends (£,,,,;)
that fall into the called peak regions with at least 50%

overlap (E ). RUPr is calculated as follows.

under_peaks

E under_peaks ( 1 )

RUPr=
E total

Background

In total, 50,000 genomic regions (500 bp each) are ran-
domly selected from the genome outside of ATAC-seq
peaks. The ATAC-seq signal in each region is calculated as
reads per kilobase per million mapped reads (RPKM). The
percentage of all such regions with the ATAC-seq signal
over the theoretical threshold (RPKM = 0.377) is con-
sidered high-background and used as a QC metric to in-
dicate the background noise.

Background 2)
_ number of regions with high background

B 50,000

ProEN

The promoters, the regions +/— 1 kb around transcription
start sites (TSSs) of active genes, provide a positive control
for OCRs. The ATAC-seq useful ends enriched on detected
promoters (ATAC-seq peaks) are used as a QC metric to
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measure the signal enrichment calculated as follows.

E under_promoter _peaks/ Leng th total_promoter_peaks (3)

ProEn =
E tutal/ Leng th genome

SubEn

The ATAC-seq signal (useful ends) enriched on the detected
ATAC-seq peaks is used as a QC metric to measure the
signal enrichment at the genome-wide level. To avoid
sequencing-depth bias, 10 million useful ends are sampled
from the complete dataset, and peak calling is performed to
identify the OCRs. SubEn is calculated after 10 million
pseudo counts are added into the calculation as background,
which can avoid calculation failure caused by the low
sequencing depth of testing ATAC-seq library.

SubEn (4)

Eunderjeak.v + 10 million
Length Lengthgem)me

total_peaks

B (Ettnderjeaks+ 10 leZZOI’l) / (Lengthgenome_l‘ength totaljeaks)

Saturation analysis

MACS?2 is used to call narrow peaks for a series of sub-
sampling from complete useful ends with a step of 10% of
total sequencing depth. The length of identified peaks cove-
ring genomic regions at each subsampling are used to cal-
culate the recovery (percentage) of complete peaks cove-
ring genomic regions when using complete useful ends.

Signal ranking analysis

The ATAC-seq peak signals are ranked, and the percentage
of promoter peaks in each quantile is determined.

ATAC-seq data integrative analysis

AIAP includes two downstream analysis components: 1)
analysis of DARs between two groups of samples and 2)
discovery of transcription factor binding regions (TFBRs).
AIAP calculates the read counts for all peaks identified
under all conditions after peak calling, and a pair-wise
comparison is performed by querying the R package DE-
Seq2 [20] based on the design table. AIAP will further
identify potential TFBRs under ATAC-seq peaks by im-
plementing the Wellington algorithm [21].

ATAC-seq data and QC report visualization

AIAP generates a collection of files for visualizing the
ATAC-seq data on a genome browser [22-24], including the
normalized signal density file (normalized to 10 million
total reads) in bigwig format, the Tn5 insertion position file

in bigwig format, the peak file in bed format, and the
footprint position file in bed format. AIAP generates a
JSON QC report that can be visualized with the embedded
qATACViewer (Figure S1).

Calculation of DNase I hypersensitive sites and histone
modification signal

The raw data FASTQ files for ATAC-seq and histone ChIP-
seq were downloaded from ENCODE data portal (https://
www.encodeproject.org/), and listed in Table S1. The
ATAC-seq FASTQ files were processed by AIAP as de-
scribed above. The ChIP-seq FASTQ files were aligned to
the mouse genome (mml0 assembly) and were further
processed by methylQA. Methylation calling of whole-
genome bisulfite sequencing (WGBS) data was down-
loaded from the ENCODE data portal. The averaged signals
of ATAC-seq, ChIP-seq, and WGBS were calculated at
100-bp windows within 5 kb around the center of the
ATAC-seq peaks and were plotted in R. The processed
DNase I hypersensitive site (DHS) data were downloaded
from the ENCODE data portal.

DAR identification

The DARs of each tissue were identified between different
mouse developmental stages, embryonic day 11.5 (E11.5)
and postnatal day 0 (P0), to evaluate the performance of
AIAP. The ATAC-seq peaks generated by AIAP were used
as test regions, the read counts were calculated in both PE-
asSE and PE-noShift modes, and the DARs were identified
as described above with adjusted P < 0.01 and absolute
log, FC > 1. In PE-asSE mode, two TnS5 insertion events of
one read-pair were considered independent of each other,
and one read-pair was divided into two SE fragments to
represent two TnS insertion events. In PE-noShift modes,
one read-pair was used as one single fragment for down-
stream analysis.

Results

Defining the QC metrics of ATAC-seq data

Conducting QC checks at different steps of data processing
and correctly interpreting QC metrics are crucial to ensure a
successful and meaningful analysis. Different QC metrics
report important information regarding different aspects of
genomic data; thus, it is essential to define the key QC
metrics for ATAC-seq data before performing an analysis.
In addition to the traditional QC metrics shown in Figure 1,
we specifically chose RUPr, BG, and ProEn as key QC
metrics to measure the quality of ATAC-seq data. RUPr is
an essential QC metric for ChIP-seq experiments [25] and is
widely adopted to measure ATAC-seq data. The ENCODE
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consortium recommends that at least 20% of non-redundant
uniquely mapped reads be located in peak regions. A higher
RUPr usually indicates a high signal-to-noise ratio. Similar
to RUPr, a higher ProEn also indicates a high signal-to-
noise ratio. ProEn is calculated to indicate the enrichment of
the ATAC-seq signal over gene promoters, which are
usually in open chromatin across different tissue and cell
types. We used the ENCODE ATAC-seq data as a bench-
mark, and we determined that RUPr and ProEn directly
reflect the quality of ATAC-seq at comparable sequencing
depths (Figure 2A). The ATAC-seq peaks are sharper and
stronger when the ATAC-seq data have high RUPr and
ProEn values, suggesting better signal enrichment and

Figure 2 Key QC metrics of ATAC-seq data

better quality in the ATAC-seq experiments.

We further defined BG to directly measure the back-
ground noise level in the ATAC-seq experiments. We ran-
domly selected 50,000 genomic regions (size: 500 bp) from
regions of the genome that do not overlap with ATAC-seq
peaks after peak calling. The ATAC-seq signals over each
region are calculated as RPKM, and the regions with an
ATAC-seq signal over a theoretical threshold (RPKM =
0.377) are considered high-background regions. The per-
centage of high-background regions within 50,000 ran-
domly selected genomic regions is used as a QC metric to
measure the background noise of the ATAC-seq data. We
noticed that different background noise levels were directly

A. Forebrain ATAC-seq datasets (sequencing depth normalized to 10 million reads) with distinct RUPr and ProEn (top to bottom: high to low) were
visualized on the WashU Epigenome Browser. B. Forebrain ATAC-seq datasets (same as A) with distinct background values (top to bottom: low to high) in
the heterochromatin regions highly enriched with repressive H3K9me3 histone modification in the mouse forebrain. C. Relationship between the number
of non-redundant uniquely mapped reads and RUPr in ENOCDE mouse ATAC-seq datasets. D. Relationship between ProEn and RUPr in ENOCDE mouse
ATAC-seq datasets. E. Relationship between background and RUPr in ENOCDE mouse ATAC-seq datasets. QC, quality control; RUPr, reads under peak
ratio; ProEn, promoter enrichment; E12.5, embryonic day 12.5; PO, postnatal day 0.
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reflected by the QC metric of background, especially in the
heterochromatin regions, which are enriched with
H3K9me3 signals (Figure 2B).

To further explore the QC metrics, we used AIAP to
process 70 ATAC-seq datasets generated by the ENCODE
consortium (Table S2). We specifically checked the key
metrics, including RUPr, ProEn, SubEn, and BG. We no-
ticed that these metrics were not dependent on sequencing
depth (Figure 2C, Figure S2). RUPr was positively corre-
lated with ProEn, proving an accurate measurement of signal
enrichment in the ATAC-seq data (Figure 2D). BG was
negatively correlated with RUPr, providing a measurement
of the noise level in the ATAC-seq data (Figure 2E).

AIAP improves the sensitivity of discovering ATAC-seq
peaks

To define ATAC-seq peaks, peak calling strategies adopted
from ChIP-seq analysis are widely used to analyze ATAC-
seq data. However, unlike ChIP-seq data, an ATAC-seq
experiment does not have input control and is usually se-
quenced with the PE sequencing method to profile the size
of DNA fragments. The uniquely aligned PE reads have
been used to call open chromatin peaks after alignment in
many studies [26-32]. After detecting the distribution of
reads with different lengths under the peak regions, we
noticed that the medium fragments and long fragments have
similar distributions across the genome in ATAC-seq ex-
periments (Table S3). Such evidence indicates that most of
the captured fragment represents the open chromatin signal
that can be derived from the Tn5 insertions in ATAC-seq
experiments. To better represent the Tn5 insertion event, we
shifted each end of the non-redundant uniquely mapped
read pair +4 bp/—5 bp on the positive/negative strands to
define the Tn5 insertion position and then further extended
75 bp in both directions around the TnS5 insertion position.
By applying this strategy, one non-redundant uniquely
mapped read pair is divided into two SE fragments [PE-
asSE], and the sequencing depth doubles compared to that
of traditional analysis methods that manage PE fragments
without shifting (PE-noShift) (Figure 3A).

To validate the sensitivity of our analysis strategy, we
downloaded published ATAC-seq data of GM12878 cells
generated by the Greenleaf laboratory with the Omni-
ATAC-seq protocol [31]. We first processed the data by
following the classical method based on non-redundant
uniquely mapped PE reads (PE-noShift) and performed
peak calling. In PE-noShift mode, we identified 92,058
narrow peaks. In parallel, we applied AIAP to process the
same data in PE-asSE mode and performed peak calling
with identical parameters (see Method), and 112,848 peaks
were identified. Compared to PE-noShift mode, PE-asSE
mode reported ~ 99.9% of PE-noShift peaks and identified

~ 23% additional peaks (20,918) (Figure 3B). By visually
inspecting the signal density on the genome browser, we
noticed that most of the PE-asSE-specific peaks overlapped
with known ENCODE DHSs (Figure 3C). We examined the
ATAC-seq peaks and known GM12878 DHSs obtained
from the ENCODE data portal. We noticed that PE-asSE
mode identified more ATAC-seq peaks at different se-
quencing depths (Figure 3D). When analyzing the full
GM12878 Omni-ATAC-seq dataset, PE-noShift mode
identified ~ 80% of DHSs, and PE-asSE mode identified
~ 85% of DHSs (Figure 3E). We further used merged DHSs
of 95 cell lines to measure the specificity of identified
ATAC-seq peaks. We found that nearly 98% of common
peaks identified by both PE-asSE and PE-noShift modes
overlapped with known DHSs. A total of 19,040 out of
20,918 peaks identified only by PE-asSE mode overlapped
with known DHSs, and 112 out of 128 peaks identified only
by PE-noShift mode overlapped with known DHSs (Figure
3F). We also used DHS data to estimate the Type-I and
Type-I1 errors of AIAP. The ATAC-seq peaks that cannot be
validated by known DHSs are considered as potential false
positive. In total 3575 out of 112,848 ATAC-seq peaks in
AIAP PE-asSE mode and 1713 out of 92,058 ATAC-seq
peaks in AIAP PE-noShift mode are considered as potential
Type-I errors (false discovery rate: 3.17% and 1.86%, re-
spectively). However, considering the relatively lower
sensitivity of DNase-seq when comparing to ATAC-seq
assay, we believe the Type-I error calculated here was
overestimated. We further defined the 39,205 GM12878
DHSs that were commonly identified in two independent
replicates as true positive DHSs. AIAP PE-asSE can iden-
tify 38,078 of them, and 1127 DHSs were considered as
negative (Type-II errors) with a false negative rate of
2.87%. Meanwhile, AIAP PE-noShift mode predicted 1827
DHSs as negative (Type-II errors) with a false negative rate
of 4.66%. These results suggest that PE-asSE mode can
greatly improve the sensitivity of the OCR discovery.
ATAC-seq peaks are generally considered regulatory
elements that are enriched for specific histone modifica-
tions. We downloaded ChIP-seq data of GM 12878 histone
modifications (H3K4me3, H3K4mel, and H3K27ac) that
are associated with promoter and enhancer activities to
validate the functionality of PE-asSE-specific ATAC-seq
peaks. Compared to randomly selected genomic regions, the
PE-asSE-specific ATAC-seq peaks were highly enriched in
all active histone modifications (Figure 3G-I). These results
suggest that the PE-asSE-specific ATAC-seq peaks are
functional regulatory elements rather than false positives.
We further utilized AIAP to analyze the ATAC-seq data of
multiple tissues. Compared to the classic PE-noShift mode,
the PE-asSE mode resulted in a 28%—55% increase in
sensitivity when processing the ATAC-seq data (Table S4).
These results indicate that AIAP can dramatically enhance
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Figure 3 AIAP data processing strategy (PE-asSE) performs better than classic method (PE-noShift) in OCR identification

A. Schematic representation of PE-noShift and PE-asSE data processing strategy. PE-noShift representing the one complete DNA fragment insertion was
generated as in previous studies [26-32]. PE-asSE representing two DNA fragment insertions was generated by AIAP. B. Venn diagram showing ATAC-
seq peaks identified with PE-noShift and PE-asSE in the GM 12878 cell line. C. ATAC-seq data of GM 12878 cell line were independently processed as PE-
asSE (red) and PE-noShift (blue), and visualized together with DHSs of GM 12878 cell line (green) on the WashU Epigenome Browser. Five regions were
randomly selected that contain the peaks identified only in PE-asSE mode but not in PE-noShift mode. D. Number of ATAC-seq peaks identified with PE-
noShift mode and PE-asSE mode at different sequencing depths by randomly sampling the Omni-ATAC-seq data of GM 12878 cell line [31]. E. Discovery
rate of DHSs of GM 12878 cell line by PE-asSE and PE-noShift at different sequencing depths (randomly sampling same as in D). F. Percentage of shared,
PE-asSE-specific, and PE-noShift-specific ATAC-seq peaks validated by DHSs of GM 12878 cell line identified by ENCODE. PE-asSE-specific ATAC-seq
peaks were highly enriched with active histone modifications H3K4me3 (G), H3K4mel (H), and H3K27ac (I), when compared to 20,000 regions
randomly selected from the genome (green). DHS, DNase I hypersensitive site.

the sensitivity of OCR discovery with high specificity.

AIAP improves the sensitivity of DAR identification

Chromatin accessibility is dynamically associated with
cellular responses to developmental cues, disease progres-
sion, and environmental stimuli. The identification of DARs
has become an important approach to monitor the activity
changes of regulatory elements [33]. Since AIAP dramati-
cally increased the sensitivity of OCR discovery, we further
tested the sensitivity of AIAP in identifying DARs. We
downloaded ATAC-seq dataset of mouse liver E11.5 and PO
stages from the ENCODE data portal and processed these
data in both PE-asSE and PE-noShift modes. As expected,
PE-asSE mode identified 30% more ATAC-seq peaks than
PE-noShift mode (Table S4). To test the sensitivity of DAR
identification, we used the complete set of ATAC-seq peaks
identified in PE-asSE mode and calculated the read counts
based on both PE-asSE and PE-noShift modes (see Method).

A total of 11,040 EI11.5-specific and 9584 PO-specific
DARs were identified by both modes (shared DARs). We
also identified 4213 El11.5-specific and 2819 PO-specific
DARs by using only PE-asSE mode (Figure 4A). Corre-
spondingly, only 107 E11.5-specific and 72 PO-specific
DARs were found by using only PE-noShift mode. Com-
pared to PE-noShift mode, PE-asSE mode resulted in an
~ 35% increase in the number of DARs identified. We
further tested AIAP on other tissues at two developmental
stages and found that AIAP identified 32%-168% more
DARs in different tissues (Table S5).

We examined the genomic distribution of DARs and no-
ticed that the distribution of PE-asSE-specific DARs had a
similar distribution as shared DARs, that is, most DARs were
located in intergenic and intronic regions, which is consistent
with their potential enhancer functionality (Figure 4B).
Because dynamic changes in chromatin accessibility
accompany the alteration in epigenetic modification
synchronously [1,8,28,34], we further used epigenetic data
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Figure 4 AIAP data processing strategy (PE-asSE) performs better than the classic method (PE-noShift) in DAR identification
A. Venn diagram showing DARs identified with PE-noShift mode and PE-asSE mode when comparing ATAC-seq data collected from mouse liver at E11.5
and those from PO. B. Genomic distribution of 20,624 shared, 7032 PE-asSE-specific, and 179 PE-noShift-specific DARs. C. Enriched epigenetic
modifications (left to right: ATAC-seq, H3K27ac ChIP-seq, H3K4mel ChIP-seq, H3K4me3 ChIP-seq, and DNA methylation) on the PE-asSE-specific
DARs from mouse liver at E11.5 (top) and PO (bottom). D. The expression of genes associated with PE-asSE-specific E11.5 DARs (left) and PO DARs
(right) in proximal (2 kb around TSSs) and distal (2-20 kb around TSSs) at the two developmental stages. TSS, transcription start site.

from the same samples to validate the accuracy of the
DARs. We first checked the epigenetic modifications
around PE-asSE-specific DARs. Compared to PO-specific
PE-asSE-specific DARs, the E11.5-specific DARs recruited
highly active histone modifications associated with reg-
ulatory elements specifically at the E11.5 stage but not the
PO stage, including H3K27ac, H3K4mel, and H3K4me3
(Figure 4C, top). In contrast, the PO-specific PE-asSE-spe-
cific DARs recruited highly active histone modification
H3K27ac specifically at the PO stage but not H3K4mel or
H3K4me3 modification (Figure 4C, bottom). We also no-
ticed that the E11.5-specific DARs were much less me-
thylated at the E11.5 stage, but PO-specific DARs remained
methylated at the E11.5 stage. However, E11.5-specific
DARs were still un-methylated at the later postnatal stage.
The observation of the loss of DNA methylation on regu-
latory elements during embryo development is consistent
with that of a previous study [35]. The epigenetic

modifications of shared DARs showed very similar patterns
to the PE-asSE-specific DARs (Figure S3). We further exa-
mined the expression of genes around the identified DARs.
The DARs were assigned to the nearest gene based on dis-
tance and were classified into a proximal group (2 kb around
the TSS) and a distal group (2-20 kb around the TSS). We
noticed that the expression of genes around PE-asSE em-
bryonic DARs was downregulated during liver develop-
ment. In contrast, the expression of genes around postnatal
DARSs was upregulated at the same time (Figure 4D).

Discussion

AIAP is a new tool to perform quality assurance and
downstream analysis of ATAC-seq data. Comparing with
other tools (Table S6), AIAP provides a rapid and reliable
data processing solution for ATAC-seq data. Using public
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datasets, we systematically tested the QC metrics of ATAC-
seq data and established key QC metrics of ATAC-seq data.
We determined that RUPr, ProEn, and BG were important
measurements to estimate the quality of ATAC-seq data. All
three QC metrics directly reflect the quality of library pre-
paration, and the failure of these QC metrics reflect the low-
quality of the ATAC-seq data, which cannot be corrected by
merely increasing sequencing depth. We found that the
RUPr and ProEn reflect the ATAC-seq signal enrichment,
and BG indicates the overall background noise of the data.
By combining these QC metrics, we obtained an accurate
estimation of the quality of ATAC-seq data. We used AIAP
to process 54 mouse ATAC-seq datasets to test and evaluate
the QC metrics and generate the range of the QC metrics
(Table S2). These ranges of QC metrics can be used as a
reference to evaluate the success of ATAC-seq experiments.

We optimized the widely used classic analysis metho-
dology and specifically used PE-asSE mode to process the
PE sequenced ATAC-seq data. AIAP aligns the PE ATAC-
seq data in PE mode to increase the alignment accuracy, and
the BAM file is further processed in SE mode for down-
stream analysis. In PE-asSE mode, AIAP doubles the se-
quencing depth and dramatically increases the sensitivity of
OCR identification. In our test, AIAP identified 20%—40%
more ATAC-seq peaks than the widely used classic analysis
methods. We further used corresponding DHS data and
histone modification data to validate the specificity of
newly identified ATAC-seq peaks by AIAP; most of the
novel ATAC-seq peaks identified by AIAP were in-
dependently validated with DHSs and enriched for active
histone modifications. Such a result indicates the high true
positive rate resulting from the AIAP analysis strategy.

We also suggest that the PE-asSE strategy can improve the
sensitivity of discovering DARs, which are wildly used to
measure chromatin dynamics [36]. By using ENCODE
ATAC-seq data of liver embryo development, we found that
AIAP can identify 32%—-168% more chromatin DARs than
the classic PE-noShift mode. We further indicated that the
novel DARs identified by AIAP were enriched in active
histone modifications at different developmental stages. The
E14.5-specific DARs were lowly methylated, and the
H3K27ac signals were significantly enriched only in the
E14.5 stage but not in the PO stage. In contrast, the PO-specific
DARs were highly methylated in the E14.5 stage without
active histone modifications and became minimally methy-
lated and recruited strong active H3K27ac signals in the PO
stage. We also noticed that the expression of genes around the
developmental stage-specific DARs was associated with the
openness of DARs, as other studies reported [37,38]. These
results suggest that AIAP can greatly improve the sensitivity
to identify DARs with high specificity.

Finally, we compiled AIAP into a Docker/Singularity
image to facilitate the easy operation of AIAP on

high-performance computing clusters. AIAP can complete
QC checking and file processing in ~ 2 h for one typical
ATAC-seq dataset, of 37 million PE reads (Table S7). Be-
sides the high performance, AIAP also has a much better
sensitivity and higher specificity (Figure 3F) when
comparing to other tools, including ENCODE pipeline (Ta-
ble S8). AIAP supports multiple genome assemblies, in-
cluding human (hg19 and hg38), mouse (mm9 and mm10),
and rat (rn6). Additionally, each step for QC and data pro-
cessing is componentized and can be called by advanced
users to build pipelines for specialized applications, and
different genome assemblies can be easily and directly
compiled for ATAC-seq data processing in other species.

Code availability

The software, source code, and documentation of AIAP are
freely available at https://github.com/Zhang-lab/ATAC-
seq_QC analysis.
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