Skip to main content
. 2021 Jul 3;19(4):590–601. doi: 10.1016/j.gpb.2021.06.001

Table 1.

Properties of involved computational tools

Tool Modeling approach Model feature Output Website Refs.
FunSeq2 Knowledge-based Evolutionary parameters; ENCODE summaries; PWMs; likely target genes; biological networks; recurrent elements across cancer samples Cancer driver mutations http://funseq2.gersteinlab.org/ [14]
CADD Supervised learning Evolutionary parameters; ENCODE summaries; population frequencies; transcript information; protein-level scores Functional variants https://cadd.gs.washington.edu/ [16]
GWAVA Supervised learning Evolutionary parameters; ENCODE summaries; population frequencies Disease-related variants https://www.sanger.ac.uk/science/tools/gwava [17]
Eigen Unsupervised learning Evolutionary parameters; ENCODE summaries; population frequencies Functional variants http://www.columbia.edu/∼ii2135/eigen.html [18]
DeepSEA Supervised learning (DL) Local sequences; evolutionary parameters Functional variants http://deepsea.princeton.edu/ [20]
EnsembleExpr Ensemble-based Including features used by DeepSEA, DeepBind, KSM, and ChromHMM Expression-modulating variants http://ensembleexpr.csail.mit.edu/ [21], [23], [24]
ExPecto Supervised learning (DL) Local sequences Expression-modulating variants https://hb.flatironinstitute.org/expecto/ [22]

Note: ENCODE, Encyclopedia of DNA Elements; PWM, position weight matrix; DL, deep learning; KSM, k-mer set memory.