Table 3.
Mechanisms of action attributed to the bioactivities associated with C. japonica extracts
Bioactivities | Mechanisms of action | References |
---|---|---|
Antioxidant activity | Free-radical scavenging activity | (Kanth et al., 2014, Lee et al., 2011, Moon and Kim, 2018, Piao et al., 2011, Zhang et al., 2011) |
Metal chelation | (Moon & Kim, 2018) | |
Reducing power | (Moon & Kim, 2018) | |
ROS quenching | (Moon and Kim, 2018, Piao et al., 2011) | |
Induction of antioxidant enzymes: SOD, CAT, GPx | (Piao et al., 2011) | |
Antimicrobial activity | Bacteriostatic activity against a wide range of foodborne bacteria and pathogens: Enterobacter spp., S. epidermidis, B. subtilis, K. pneumoniae, E. coli, S. aureus, P. aeruginosa, S. Typhimurium, L. monocytogenes | (Kharchenko, 2019, Kim et al., 2001, Lee et al., 2005, Moon and Kim, 2018) |
Antiviral activity against porcine epidemic diarrhea virus and HIV-1 | (Park et al., 2002, Yang et al., 2015) | |
Antifungal activity via inhibition of conidia germination | (Nagata et al., 1985) | |
Anti-inflammatory activity | Reduction of oxidative stress | (Akanda & Park, 2017, Lee et al., 2016) |
Reduction of LPS-induced NO production by RAW 264.7 macrophages | (Akanda & Park, 2017, Kim et al., 2012) | |
Reduction of pro-inflammatory cytokines levels: PGE2, TNF-α, IL-1β, IκBα | (Kim et al., 2012, Nam et al., 2021) | |
Reduction of pro-inflammatory enzymes: iNOS, COX-2 | (Kim et al., 2012, Nam et al., 2021) | |
Anticancer activity | Cytotoxicity assessed against different in vitro-cultured cancer cell lines: B16 melanoma 4A5 cells, MCF-7 human breast adenocarcinoma cells, Calu-6 human lung adenocarcinoma cells, SNU-601 gastric adenocarcinoma cells, LLC1 Lewis lung carcinoma cells, HL-60 human promyelocytic leukemia cells | (Hwang et al., 2006; Kim et al., 2010; Nakamura et al., 2012, Thao et al., 2010) |
Antidiabetic activity | Decrease of glucose blood levels | (Chereddy et al., 2011) |
Inhibition of advanced glycation end-products synthesis | (Sato et al., 2017) | |
Anti-obesity activity | Cholesterol-lowering effects: decrease of serum TC, TAG and LDL-C levels and increase of serum HDL-C levels | (Lee et al., 2016) |
Decrease of body weight and regulation of hepatic lipid profiles | (Ochiai et al., 2018) | |
Increase of fecal fat excretion | (Ochiai et al., 2018) |
Abbreviations: CAT, catalase; COX-2, cyclooxygenase; GPx, glutathione peroxidase; HDL-C: high density lipoproteins-cholesterol; HIV-1, human immunodeficiency virus 1; IL-1β, interleukin 1β; iNOS, inducible nitric oxide synthase; IκBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; LDL-C, low density lipoproteins-cholesterol LPS, lipopolysaccharide; NO, nitric oxide; PGE2, prostaglandin E2; SOD, superoxide dismutase; TAG, triglycerides; TC, total cholesterol; TNF-α: tumor necrosis factor alpha.