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A B S T R A C T   

Statement: Enrichment analysis of cell transcriptional responses to SARS-CoV-2 infection from biclustering so-
lutions yields broader coverage and superior enrichment of GO terms and KEGG pathways against alternative 
state-of-the-art machine learning solutions, thus aiding knowledge extraction. 
Motivation and methods: The comprehensive understanding of the impacts of SARS-CoV-2 virus on infected cells is 
still incomplete. This work aims at comparing the role of state-of-the-art machine learning approaches in the 
study of cell regulatory processes affected and induced by the SARS-CoV-2 virus using transcriptomic data from 
both infectable cell lines available in public databases and in vivo samples. In particular, we assess the relevance 
of clustering, biclustering and predictive modeling methods for functional enrichment. Statistical principles to 
handle scarcity of observations, high data dimensionality, and complex gene interactions are further discussed. In 
particular, and without loos of generalization ability, the proposed methods are applied to study the differential 
regulatory response of lung cell lines to SARS-CoV-2 (α-variant) against RSV, IAV (H1N1), and HPIV3 viruses. 
Results: Gathered results show that, although clustering and predictive algorithms aid classic stances to functional 
enrichment analysis, more recent pattern-based biclustering algorithms significantly improve the number and 
quality of enriched GO terms and KEGG pathways with controlled false positive risks. Additionally, a compar-
ative analysis of these results is performed to identify potential pathophysiological characteristics of COVID-19. 
These are further compared to those identified by other authors for the same virus as well as related ones such as 
SARS-CoV-1. The findings are particularly relevant given the lack of other works utilizing more complex machine 
learning algorithms within this context.   

1. Introduction 

The infection of humans by Severe Acute Respiratory Syndrome 
Corona Virus 2 (SARS-CoV-2) represents a major global health concern, 
with deaths having surpassed 5.8 million according to the World Health 
Organization.1 Worldwide initiatives to publicly share data related to 
the virus provides an opportunity to draw novel insights on the infection 
by the family of coronaviruses, enabling continuous breakthroughs on 
the understanding of how the virus can enter and use the cellular ma-
chinery to replicate. The knowledge of these mechanisms has been 
propelled by a generic understanding of the process of viral replication, 
the transcriptomic properties of the virus, and the study of differentially 
expressed genes after infection [1,2]. This later line of research has been 

primarily assisted by the sequencing of RNA transcripts in infectable cell 
lines, chosen according to the level of permissivity to infection, as well 
as cells collected from organisms susceptible to infection, including 
humans and ferrets [1]. Along this line of research, comparisons of 
infection in different cells and tissues have been pursued, as well as 
between different viral strains and families of virus [1]. 

Despite the ongoing breakthroughs, the regulatory responses to 
SARS-CoV-2 infection are still not comprehensively known [3]. For 
instance, the role played by genes with moderate differential expression 
in response to infection, or how interactions between multiple genes 
support or prevent viral replication, are still being actively updated [4]. 
In addition, most works in this field do not explore the role of machine 
learning approaches, such as clustering, predictive modeling and 
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biclustering, to aid in the identification of differentially expressed reg-
ulatory modules [5]. 

This work aims to address these challenges by assessing the extent to 
which clustering, predictive modeling and biclustering methods aid the 
identification of elicited biological functions and pathways from tran-
scriptomic data in response to infection. The aforementioned machine 
learning approaches are placed to model differential regulatory re-
sponses after infection from both infectable lung cell lines and in vivo 
tissue samples. In addition, a comprehensive analysis of the enriched 
processes and pathways using these methods is undertaken to better 
understand the viral life-cycle and interactions with the cell, as well as 
the defence mechanisms employed by the cell against the virus. In 
particular, SARS-CoV-2 infection is assessed against non-infected cells 
and infection by other respiratory viruses such as the RSV, IAV (H1N1), 
and HPIV3. SARS-CoV-2 (α-variant) is targeted in this study, yet the 
underlying methodological principles extensible to other variants and 
viruses. 

Four major contributions are provided. First, the role of different 
machine learning approaches to produce relevant gene sets for enrich-
ment analysis is experimentally compared. Second, state-of-the-art 
biclustering algorithms are assessed and compared against alternative 
descriptive and predictive stances. The gathered results reveal that 
biclustering significantly assists the knowledge acquisition process. In 
particular, the recent class of pattern-based biclustering approaches [6, 
7] show distinctive ability to produce a comprehensive set of superiorly 
enriched biological annotations in well-established knowledge bases 
without an increase on false positive discoveries. Third, grounded on the 
previous findings, a novel methodology is provided for a robust and 
comprehensive analysis of putative regulatory modules associated with 
virus infection. Fourth, under this methodology, we further identify and 
highlight the putative role of less-studied biological processes associated 
with SARS-CoV-2 infection, some consistent with literature on other 
coronaviruses. In particular, cell- and virus-specific regulatory differ-
ences are further identified. 

The manuscript is organized as follows: section 2 covers related 
contributions; section 3 explores the datasets; section 4 presents the 
proposed methodology; section 5 experimentally compares the role of 
state-of-the-art machine learning approaches to aid enrichment analysis, 
together with the description of the identified biological processes. 
Finally, major concluding remarks are drawn. 

2. Related work 

Blanco-Melo et al. [1] profiled the transcriptional response of 
different cell lines to infection by SARS-CoV-2 and other respiratory 
viruses, including RSV, IAV and HPIV3. In their work, these diverse 
transcriptomic data sources are consolidated and further integrated with 
experimental data from MERS-CoV and SARS-CoV-1 infection collected 
by Frieman et al. [8]. The profiled cells consisted in three main groups: i) 
respiratory cell lines, including NHBE, A549 and Calu-3 cells; ii) human 
respiratory tract cells extracted from infected and non-infected in-
dividuals; and iii) cells extracted from infected and non-infected ferrets 
[1]. The second and third groups were used to ascertain if the gene 
signatures matched the ones found in vitro. Additionally, the authors 
treated some of the cell lines with universal IFNβ to determine whether 
or not SARS-CoV-2 is sensitive to IFN-I. The treatment resulted in 
significantly decreased viral replication, confirming the hypothesized 
sensitivity in earlier works [9]. To investigate how infection affects the 
cell transcriptome, the authors performed a differential expression 
analysis on NHBE cells, revealing significant differences between the 
response from SARS-CoV-2 infection and other viral strains. Functional 
enrichment was further performed on the differentially expressed genes 
to better understand the cellular functions affected by SARS-CoV-2 
infection. Consistently across experiments, the authors highlight the 
production of cytokines and associated transcriptional responses as 
pivotal pathways, as well as the induction of a subset of 

interferon-stimulated genes (ISGs). 
The transcriptional response of human cells to SARS-CoV-2 infection, 

and its comparison them with MERS-CoV, SARS-CoV-1 and IAV, has 
been complementarily analysed to identify possible common impacts 
between viral strains [10]. The authors generated consensomes by 
analysing how frequently the corresponding genes were differentially 
expressed throughout the various datasets. Similarly to Blanco-Melo 
et al. [1], the authors found ISGs to have significant induction levels. 

A comprehensive analysis of the transcriptional response of three cell 
lines, Caco-2 (a gut cell line), Calu-3 and H1299 (both lung cell lines) 
was conducted in Ref. [11]. The authors began by identifying the sus-
ceptibility of each cell line to SARS-CoV-2 infection, which revealed 
H1299 cells had the lowest percentage of viral reads. Caco-2 and Calu-3 
cells had comparable levels, despite the latter revealed visible signs of 
impaired growth and cellular death, as opposed to the former. Addi-
tionally, Calu-3 cells showed a strong induction of interferon-stimulated 
genes, among other cytokines, in agreement with the findings of other 
authors. 

In [12], genome-wide CRISPR screening is performed on an African 
green monkey cell line (Vero-E6) to identify genetic sequences aiding 
(pro-viral) or preventing (anti-viral) infection. To this end, surviving 
cells from populations infected with SARS-CoV-2 were harvested 7 days 
post-infection. A genome-wide screen was performed and a z-score 
applied to identify genes associated with increased or decreased resis-
tance to SARS-CoV-2-induced cell death. The gene with the strongest 
pro-viral effect was ACE2, the protein facilitating viral entry into the 
cell. TMPRSS2, another gene with an established role in the SARS-CoV-2 
entry, was not identified significantly as pro or anti-viral, whereas the 
CTSL gene, which encodes the Cathepsin L protease with an identified 
role in viral entry, was identified as pro-viral. 

Due to thrombotic complications being common among COVID-19 
patients, the functional and transcriptional changes elicited by SARS- 
CoV-2 infection in platelets have been further explored [13]. The con-
ducted analysis shows that SARS-CoV-2 infection does indeed alter the 
platelet transcriptional activity [13]. To assess the significance of dif-
ferential changes, paired t-Student and Mann-Whitney tests are 
considered. The authors observed that COVID-19 further induces func-
tional and pathological changes to platelets, including thrombocyto-
penia (abnormally low numbers of platelets), despite the platelets not 
presenting detectable levels of ACE2. This may be a contributing factor 
to the pathophysiology of COVID-19. 

In [14], the authors tested the pathogenesis of the SARS-CoV-2 virus 
on transgenic mice presenting the human ACE2 gene. The infection of 
these mice by SARS-CoV-2 resulted in high mortality rates, especially in 
male mice. The transcriptional analysis of the lungs of infected animals 
revealed increases in transcripts involved in lung injury and inflamma-
tory cytokines, in agreement with findings in humans. 

Though there are multiple authors applying machine learning and 
complex statistical models to COVID-19 patient biometric data, these 
approaches have been more scarcely applied to transcriptomic data. The 
objective of this work is to fill this gap, addressing the question of 
whether the application of these approaches to this data can assist 
functional enrichment analysis, yielding novel insights into the disease. 

3. Dataset 

In order to assess the proposed methods, we use the transcriptomic 
data (RNA-Seq) collected by Blanco et al. (Gene Expression Omnibus, 
GEO accession GSE1475072) [1]. A schematic of its structure is pre-
sented in Fig. 1. The samples are divided into different series (a subset of 
samples), each comprising the behavior of a single cell line among 
different sets of experimental conditions. These also correspond to 

2 Available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 
acc=GSE147507. 
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particular experiments being run, with each experiment containing 
multiple replicas of each experimental condition being tested. 

Three major cell lines are considered: NHBE (normal human bron-
chial epithelial), A549 (adenocarcinomic human alveolar basal epithe-
lial) and Calu3 (generated from a bronchial adenocarcinoma) cells. 
Considering NHBE cells, there is a total of 7 samples of healthy cells 
(spanned along three series), 3 samples of SARS-CoV-2 α-variant infec-
tion (all part of series 1), 4 samples of IAV infection (all in series 9), 4 
samples of infection by an IAV strain which lacks the NS1 protein and, 
finally, 2 samples of cells treated with IFNβ 4, 6 and 12 h post treatment. 
Considering A549 cells, there are 13 samples of healthy cells (distributed 
along five series), 6 samples of SARS-CoV-2 α-variant infection (three 
each in series 2 and 5), 2 samples of IAV infection (series 4), 2 samples of 
RSV infection (series 3) and 3 samples of HPIV3 infection (series 8). 
Blanco-Melo et al. [1] notes that A549 cells show low viral counts, a fact 
posited, in agreement with other studies, to be due to the low expression 
of ACE2 in these cells. Thus, data of A549 cells with added ACE2 

(A549-ACE2) is also available. In particular, 6 samples of healthy cells 
(series 6 and 16), 6 samples of cells infected by SARS-CoV-2 α-variant 
(series 6 and 16) and, finally, 3 samples of cells after treatment with 
Ruxolitinib (series 16). For Calu3 cells, there are 3 samples of healthy 
cells and 3 samples of cells infected by SARS-CoV-2 α-variant (all 
belonging to series 7). Complementarily to infectable lung cell lines, 
there is an additional set of 2 samples from a lung biopsy of two healthy 
human donors (one male, one female), and 2 samples from a single 
deceased male patient of COVID-19. 

Since the distribution of transcript counts is understandably signifi-
cantly skewed, gene expression was adjusted by a log2-transform for all 
subsequent analysis. Fig. 2 depicts the distribution of expression levels 
among in-vitro cell lines and lung biopsies. The standard deviation of 
gene expression within healthy and infected cells was subsquently 
computed to preliminarily verify if there are significant differences be-
tween healthy and infected cells (Fig. 3). 

In order to select an appropriate statistical test to identify 

Fig. 1. Overview of the structure of the dataset used in this study. Numbers between parentheses represent the number of data points.  
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differentially expressed genes, a number of assumptions needs to be 
assessed. Firstly, we performed a median-based Levene’s test [15] to 
assess the equality of variances for each pair of conditions (Table 1). For 
these pairs, out of 19967 genes with non-null expression levels, 18990 
had unequal variance for at least one pair of conditions, with p < 0.01. 

Additionally, we applied the Shapiro-Wilk test [16] to assess whether 
these genes follow a normal distribution, applied to healthy and infected 
lines for each cell type with p < 0.05. Overall, 32.8%, 46.1% and 27.4% 
of all genes in NHBE, A549 and Calu3 cells, respectively, are 
non-normally distributed. 

Fig. 2. Distribution of gene expression (mean among samples) after applying a log2 transform (N = 21797 genes).  

Fig. 3. Variability of gene expression within healthy and within infected cells.  
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The results of Levene’s test suggest that an assumption of equal 
variance cannot be made. As such, either an unequal variance (Welch) t- 
test or its non-parametric alternative, the Mann-Whitney U test [17], are 
more suitable for variable selection. As results reveal a significant per-
centage of non-normally distributed genes, Mann-Whitney U tests are 
selected as a baseline to identify differentially expressed genes. 

4. Methodology 

To comprehensively unravel the biological processes involved in the 
cell response to SARS-CoV-2 infection, we explore the role of state-of- 
the-art machine learning approaches to find discriminative transcrip-
tional modules. In this context, we propose a methodology for the se-
lection and discovery of correlated groups of differentially expressed 
genes (DEG) composed of three major steps. First, preprocessing and 
preliminary gene selection are undertaken. Second, we proceed with 
pattern recognition techniques, namely clustering, predictive modeling 
and biclustering. For each of these techniques, we apply functional 
enrichment to the obtained groups of genes in order to identify putative 
biological functions. Finally, we analyse and interpret the identified 
functions, relating them to known characteristics of the disease as well 
as work by other authors. These steps are summarized in Fig. 4. 

4.1. Preprocessing and gene selection 

Given the skewed distribution of gene expression (with a vast 

majority of genes having low expression levels), we first apply a log2 
transform. Then, from the high-dimensional set of over 20 000 genes, we 
select a subset of DEGs. Due to the non-normal nature of data and un-
equal variance between control and test groups (as seen in section 3), 
Mann-Whitney U test is applied with p < 0.05 and p < 0.01. By default a 
p < 0.01 is used, however for certain cell types p < 0.05 is suggested to 
guarantee a better coverage of gene candidates to the subsequent 
learning stage. The null hypothesis of Mann Whitney U test is that the 
two assessed populations are equal. Therefore, this test can only be 
applied for pairs of conditions. In particular, we consider the following 
settings:  

● Paired setting: single pairs of conditions, e.g. healthy and SARS-CoV-2 
infected NHBE cells or healthy and IAV infected A549 cells;  

● Multi-condition setting: genes are selected if they show differential 
expression in one of the various pairs of conditions presented in 
Table 1. For each set of pairs, a Mann-Whitney U test is applied for 
each gene. Genes satisfying p < 0.01 or p < 0.05 are selected. 

Additionally, ANOVA test [18] can be optionally applied to further 
ensure the discriminative power of the resulting set of differentially 
expressed genes. This is suggested if the subsequent learning step ben-
efits from a reduced dimensionality by requiring candidate genes to 
satisfy two distinct statistical criteria. 

4.2. Pattern recognition 

The usage of complete data with a simple statistical pre-selection of 
genes yields results which, depending on the chosen level of statistical 
significance, can surpass 1000 genes. Applying functional enrichment to 
these results delivers none or very few enriched processes, which, when 
present, tend to be very generic cell functions. In this context, the pursue 
of putative transcriptional modules given by smaller sets of DEG is 
attempted to obtain more specific biological processes, as well as better 
statistical significance for each one found. To achieve this goal, three 
major approaches are applied: clustering, predictive modeling and 
biclustering. 

4.2.1. Clustering 
Given a set of genes G and sample X, the clustering task aims to find 

groups (clusters) of genes, {J1, ‥, Jk} where Ji ⊆ G, or conditions, {I1, ‥, 
Ik} where Ii ⊆ X, maximizing intra-cluster similarity and inter-cluster 
dissimilarity. As introduced, the notion of a cluster can assume two 
distinct forms – a subset of correlated genes along a given set of samples 
or a subset of correlated samples along a given set of genes. The former is 
suggested to identify sets of co-expressed genes, which further satisfy 
delineate discriminative criteria satisfied in the precedent feature se-
lection step (section 4.1). Agglomerative clustering is considered in this 
work with Euclidean affinity and Ward linkage for two main reasons: the 
easy visualization of gene proximity using dendrogram, which can also 
help with the selection of the number of clusters; and inherent algo-
rithmic flexibility, allowing for parameters to be adjusted according to 
the provided data. 

Despite the relevance of clustering for enrichment analysis [19,20], 
it has considerable limitations. Namely, similarity between genes is 
assessed across all samples. If multiple conditions are used simulta-
neously, such information will not be taken into account, imposing 
similarity across all conditions and biasing the detected patterns. To 
ameliorate this effect, clusters can be found on subsets of conditions or 
individual conditions. As a result, multiple clustering solutions can be 
acquired, providing a wide diversity of sets of correlated genes with 
potential biological relevance. However, such disaggregation prevents a 
direct comparison between different conditions. 

4.2.2. Machine learning models for classification 
Consider the target multivariate data, described by a set of samples 

Table 1 
Tested pairs of conditions.  

First Condition Second Condition 

NHBE Healthy NHBE SARS-CoV-2 
NHBE Healthy NHBE IAV 
NHBE Healthy NHBE IAVdNS1 
A549 Healthy A549 SARS-CoV-2 
A549 Healthy A549 IAV 
A549 Healthy A549 RSV 
A549 Healthy A549 HPIV3 
Calu3 Healthy Calu3 SARS-CoV-2 
Biopsy Healthy Biopsy SARS-CoV-2  

Fig. 4. Schematic diagram of the steps composing the proposed computa-
tional pipeline. 
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(observations), X, with expression measured along a high-dimensional 
set of genes, G, and each sample annotated with the corresponding 
condition (e.g. IAV infection), c ∈ C. Given a set of annotated data 
samples, the classification task aims at learning a mapping between 
samples and conditions, X → C, on the basis of the underlying tran-
scriptional activity. 

As we seek to better understand potential signaling pathways and 
gene ontologies involved in the infection by SARS-CoV-2, we mainly 
focus on which genes are chosen to classify each of the samples by 
inspecting the learned predictive model. For this reason, we focus on the 
family associative classifiers given their easier explainability, namely 
decision trees [21], random forests [22], and XGBoost [23] in Python. 
While not directly interpretable, both random forests and XGBoost 
provide a metric of the relevance of each gene, which can be used to 
obtain the set of genes with the highest difference in expression level. In 
both cases, this metric corresponds to the impurity-based feature 
importance [24], which is calculated using the Gini criterion and then 
averaged across all trees within the model. 

4.2.3. Biclustering 
Given a set of observations (samples), X = {x1, ‥, xn}, genes G = {g1, 

‥, gm}, a bicluster, B=(I, J), is a subspace defined by a subset genes, J ⊆
G, co-expressed on a subset of conditions, I ⊆ X. The biclustering task 
aims at identifying a set of biclusters, ℬ, such that each bicluster, Bk=(Ik, 
Jk), satisfies specific criteria of homogeneity, dissimilarity and statistical 
significance. 

Homogeneity criteria are commonly guaranteed through the use of a 
merit function, such as the variance of the values in a bicluster [25]. 
Merit functions are typically applied to guide the formation of biclusters 
in greedy and exhaustive searches. In stochastic approaches, a set of 
parameters that describe the biclustering solution are learned by opti-
mizing a merit (likelihood) function. The pursued homogeneity de-
termines the coherence (co-expression patterning), quality (noise 
tolerance) and structure (number, size and positioning) of the subspaces 
in the biclustering solution [7]. A putative regulatory module is in this 
context given by a subspace of co-expressed genes, i.e. expression 
pattern on observations (Fig. 5). A co-expressed subspace, B=(I, J), can 
be described by an order-preserving coherence when the ordering of a 
subset of genes according to their expression values, πJ, is preserved for 
each sample in I. In alternative, co-expression can be defined by constant 
coherence where expression values in a bicluster, aij ∈ B, are described by 
aij = cj + ηij, where cj is the expected value of gene gj and ηij is the noise 
factor, generally a bounded deviation from expectations, ηij ∈ [ − δ/2, 
δ/2]. 

In addition to homogeneity criteria, dissimilarity criteria can be 
further placed to guarantee the discovery of non-redundant biclusters 
[6]. Finally, statistical significance criteria guarantee that the probability 
of a bicluster’s occurrence (against a null data model) deviates from 
expectations [26]. 

With biclustering algorithms, we can detect gene sets co-expressed 
on particular subsets of conditions, allowing for a more comprehen-
sive modular view of regulatory responses to infection by SARS-CoV-2 
and other viruses. In particular, when compared to the other proposed 
methods, biclustering allows for the detection of more specific patterns, 
such as gene groups with higher or lower expression levels for a 
particular set of conditions, which are in turn easier to interpret and 
provide better results with functional enrichment. 

To this end, we tested several biclustering algorithms to assess dif-
ferences between solutions, namely the Cheng and Church [27], plaid 
[28] and xMotifs [29] algorithms. In recent years, a clearer under-
standing of the synergies between biclustering and pattern mining paved 
the rise of a new class of biclustering algorithms, generally referred to as 
pattern-based biclustering [7]. Pattern-based biclustering algorithms are 
inherently prepared to efficiently find exhaustive solutions of biclusters 
and offer the unprecedented possibility to affect their structure, co-
herency and quality [30]. This behavior explains why this class of 

biclustering algorithms are receiving an increasing attention in recent 
years [7]. In this context, we additionally assess the role of BicPAMS 
(Biclustering based on PAttern Mining Software), which consistently 
combines state-of-the-art contributions on pattern-based biclustering 
[6]. 

4.3. Functional enrichment and biological analysis 

To study the biological processes associated with the gene groups 
found with the aforementioned methods, we used the EnrichR tool [31, 
32]. To assess enrichment of terms in the target knowledge bases, we 
focus on three major criteria: p-value from Fisher’s exact test; the 
q-value, which adjusts the p-value to control the False Discovery Rate; 
and the z-score, which takes into account that Fisher’s exact method to 
calculate the p-value produces lower values for longer lists even if they 
are random. Furthermore, the z-score and p-value are combined as fol-
lows: c = ln(p) × z. We prioritize both the adjusted p-value and the 
combined score to compare the results of the enrichment analysis. 

Additionally, EnrichR web tool provides access to multiple knowl-
edge bases.3 For our analysis, we prioritize Gene Ontology (GO) Bio-
logical Process knowledge base [33,34] (ver. 2021) as it 
comprehensively characterizes a large amount of genes (14937) against 
6036 terms, including recently augmented biological processes on viral 
infection and immune responses. Additionally, we use the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [35] to analyse enriched 
pathways and diseases. The identified terms are then analysed and 
compared to known characteristics of the infectious disease and other 
previous studies, in order to identify potential new insights into the ef-
fects of the virus and verify existing ones. 

4.4. Code availability 

The code used to obtain the results can be obtained in the following 
GitHub repository: https://github.com/PRodrigues98/Analysis-of-regu 
latory-response-to-SARS-CoV-2-infection. Dependencies: Python 
version 3.8, NumPy, pandas, scikit-learn and matplotlib libraries. 

5. Results and discussion 

To address the challenges of classic functional enrichment analyses, 
we introduced three approaches for identifying DEGs associated with 
modular regulatory views (section 4): clustering, predictive modeling 
and biclustering. In the present section, we present the key findings 
resulting from the application of these methods to study regulatory re-
sponses to viral infection, as well as an analysis of the identified bio-
logical processes within the context of SARS-CoV-2 infection. 

To assess the effectiveness of the methods, we begin by presenting, in 
Table 2, the functional enrichment on the baseline set of genes obtained 
directly through gene selection using the Multi-Condition Setting (sec-
tion 4), p < 0.01. As we can see in Table 2, there is a considerable 
number of processes with low p-value and c-scores are significantly 
lower when compared to the gene sets formed using machine learning 
methods (Tables 3–8). This is likely due to the higher number of genes 
being analysed together, an observation that supports the need for 
complementary methods, such as clustering, predictive modeling and 
biclustering, better suited to identify smaller subgroups of co-expressed 
genes. Additionally, terms such as negative regulation of bone remodeling 
(GO:0046851) and negative regulation of bone resorption (GO:0045779), 
less related to viral infection appear in this analysis, yet do not seem to 
reoccur within the terms found when using machine learning methods. 
Subsequent sections 5.1 to 5.3 assess the role of clustering, classification 
and biclustering searches to functional enrichment analysis, establishing 
a comparative appraisal. 

3 https://maayanlab.cloud/Enrichr. 
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5.1. Clustering analysis 

Considering the application of agglomerative clustering (Ward 
linkage, Pearson correlation affinity) over differentially expressed genes 
obtained using the Multi-Condition Setting (p < 0.01), seven clusters of 
co-expressed genes were produced under the Elbow method, and all 
clusters subsequently subjected to functional enrichment analysis using 
the EnrichR API [31,32] and ordered by combined score. The gathered 
results from GO term enrichment, in Table 3, show that a high per-
centage of the top enriched processes are related to response to viral 
infection, as well as complementary immune-related responses. The 
annotation cytoplasmic pattern recognition receptor (PRR) signaling 
pathway in response to virus, GO:0039528 (directly related to the anno-
tations GO:0140546 and GO:0051607, also within the top enriched 
processes) corresponds to a set of molecular signals associated with the 
detection of a virus (binding of viral RNA molecules to certain cyto-
plasmic receptors). In particular, the detection seems to be performed by 
the RIG-I PRR, responsible for the detection of RNA synthesized during 
the process of viral replication, since there are three child processes 
(GO:0039529 with p = 2.91 × 10− 3 and c = 905.29; GO:0039535 with p 

= 7.67 × 10− 4 and c = 526.08; GO:0039526 with p = 5.26 × 10− 3 and c 
= 513.51) associated with this receptor which are statistically relevant. 
This receptor, along with others, has been identified as part of the in-
flammatory response to SARS-CoV-2 as well as other coronaviruses [36]. 
Additionally, the signaling cascade resulting from the detection of viral 
proteins is associated with the production of Type I interferons and 
pro-inflammatory cytokines [37], which can also be observed within the 
top enriched processes (for instance, terms GO:0060337, GO:0071357 
and GO:0060333). 

In order to assess cell-specific transcriptional responses, clustering 
was also performed separately per cell line after gene selection using the 

Fig. 5. Biclustering with constant and order-preserving coherence assumptions. The illustrative constant bicluster has pattern (value expectations) φB = {c1 = 1.1, c2 
= 0.45, c3 = 0.9} on x2 and x3 observations, while the order-preserving bicluster satisfies the πJ= (g1 ≥ g3 ≥ g2) permutation on {x1, x2, x3} observations. 

Table 2 
Top 15 GO biological processes ordered by combined score after selecting 
differentially expressed genes using the Multi-Condition Setting (p < 0.01). GO 
IDs are linked to descriptions of the biological processes in the QuickGO web 
browser.  

GO Biological Process p-value c-score 

cellular response to type I interferon (GO:0071357) 2.35E- 
10 

324.03 

type I interferon signaling pathway (GO:0060337) 2.35E- 
10 

324.03 

cytokine-mediated signaling pathway (GO:0019221) 3.80E- 
26 

319.38 

protein mono-ADP-ribosylation (GO:0140289) 3.22E- 
04 

319.17 

receptor signaling pathway via STAT (GO:0097696) 2.73E- 
06 

299.82 

receptor signaling pathway via JAK-STAT (GO:0007259) 2.50E- 
06 

250.15 

exogenous peptide antigen, TAP-independent (GO:0002480) 7.04E- 
03 

219.44 

negative regulation of bone remodeling (GO:0046851) 2.62E- 
03 

212.68 

interferon-gamma-mediated signaling pathway 
(GO:0060333) 

3.48E- 
08 

211.38 

cellular response to interferon-gamma (GO:0071346) 5.98E- 
10 

192.56 

cellular response to cytokine stimulus (GO:0071345) 6.64E- 
16 

177.02 

negative regulation of bone resorption (GO:0045779) 9.92E- 
03 

164.52 

positive regulation of tyrosine phosphorylation of STAT 
protein (GO:0042531) 

1.39E- 
06 

163.05 

negative regulation of viral genome replication (GO:0045071) 2.50E- 
06 

159.30 

positive regulation of defense response (GO:0031349) 6.15E- 
08 

155.70  

Table 3 
Top 20 GO biological processes ordered by combined score (clustering applied 
over the multi-condition gene selection setting, p < 0.01). See GO IDs for links to 
biological processes in the QuickGo web browser.  

GO Biological Process p-value c-score 

type I interferon signaling pathway (GO:0060337) 4.40E- 
27 

9111.11 

cellular response to type I interferon (GO:0071357) 4.40E- 
27 

9111.11 

negative regulation of viral genome replication 
(GO:0045071) 

1.10E- 
16 

3820.31 

defense response to symbiont (GO:0140546) 7.74E- 
22 

3260.22 

cytoplasmic PRR signaling pathwaya(GO:0039528) 1.74E- 
06 

3253.53 

negative regulation of viral process (GO:0048525) 5.16E- 
17 

3163.10 

defense response to virus (GO:0051607) 2.34E- 
21 

2930.10 

endogenous peptide antigen, TAP-independent 
(GO:0002486) 

4.42E- 
05 

2797.75 

endogenous peptide antigen (GO:0002484) 4.42E- 
05 

2797.75 

regulation of viral genome replication (GO:0045069) 1.64E- 
15 

2717.94 

interferon-gamma-mediated signaling pathway 
(GO:0060333) 

1.79E- 
15 

2656.13 

protein mono-ADP-ribosylation (GO:0140289) 3.35E- 
06 

2318.71 

exogenous peptide antigen, TAP-independent 
(GO:0002480) 

6.69E- 
05 

2159.41 

cellular response to interferon-gamma (GO:0071346) 5.16E- 
17 

2028.44 

negative regulation of lipid localization (GO:1905953) 8.90E- 
05 

1742.91 

response to interferon-beta (GO:0035456) 6.88E- 
08 

1678.71 

regulation of ribonuclease activity (GO:0060700) 1.81E- 
03 

1644.95 

positive regulation of glial cell proliferation (GO:0060252) 1.81E- 
03 

1644.95 

interleukin-27-mediated signaling pathway (GO:0070106) 7.76E- 
06 

1582.01 

cytokine-mediated signaling pathway (GO:0019221) 6.11E- 
25 

1457.27  

a Some names have been shortened in favor of succinctness, with full defini-
tions available in the accompanying hyperlink. 
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Paired Setting (section 5). Appendix tables 12, 13, 14 and 15 list the top 
enriched GO terms from healthy versus infected expression for NHBE 
cells, A549 cells, A549 cells with added ACE2, and Calu3 cells, respec-
tively. In particular, type I interferon signaling pathway (GO:0060337), 
which has several related terms also present within the top enriched 
processes (for instance, type I interferon signaling pathway, GO:0060337 
and cytokine-mediated signaling pathway, GO:0019221, both direct an-
cestors), appear to be strongly associated to the process of viral infec-
tion, further bolstered by the presence of terms response to interferon-beta 
(GO:0035456) and response to interferon-alpha (GO:0035455). 

It is also interesting to note the presence of the term negative regu-
lation of type I interferon-mediated signaling pathway (GO:0060339) as 
well as negative regulation of chemokine production (GO:0032682). Che-
mokines are involved in inflammation and the control of viral infections, 
and they and their receptors are sometimes mimicked by viruses in order 
to evade host antiviral immune responses [38]. The presence of these is 
noteworthy mainly due to directly opposing the other processes related 
to the activation of an immune response. 

Considering normal bronchial epithelial (NHBE) cells (Table 12), 
there are multiple additional processes directly related to cellular 
response to viruses, namely defense response to symbiont (GO:0140546), 
defense response to virus (GO:0051607), negative regulation of viral genome 
replication (GO:0045071, also associated with GO:0045069), antiviral 
innate immune response (GO:0140374), negative regulation of viral process 
(GO:0048525) and cellular response to virus (GO:0098586). These indi-
cate that NHBE cells were able to identify that they had been infected by 
a virus and induce an immune response. 

For adenocarcinomic alveolar basal (A549) cells (Table 13), the 
genes composing all detected processes show higher expression levels 
for infected cells than for control. Similarly to NHBE cells, there seems to 
be a prevalence of type I interferon and cytokine related terms. Multiple 
processes, such as cellular response to type I interferon (GO:0071357), type 
I interferon signaling pathway (GO:0060337), response to interferon-beta 
(GO:0035456) reoccur, with most of the common processes linked to 
interferon and general cytokine responses as well as general responses to 
viral infection. Interestingly, and also similarly to the NHBE cells, the 
process negative regulation of type I interferon production (GO:0032480) 
seems to suggest a potential attempt to reduce immune response. 
However, the opposite term, positive regulation of type I interferon pro-
duction (GO:0032481) is also within the top terms (though with higher p- 
value and lower c-score). This may be due to both pathways being active 
simultaneously, although it may also reveal overlap in the genes that 
produce each process (2 out of 5 genes in common between the two 
processes). 

The terms STAT cascade (GO:0097696), positive regulation of JAK- 
STAT cascade (GO:0046427) and JAK-STAT cascade (GO:0007259) are 
also considerably enriched in A549 cells, although not significantly 
enriched in NHBE cells. These terms are related to the JAK-STAT 
signaling pathway, mediated by a wide variety of cytokines. Not trig-
gering signaling or not regulating it properly, can lead to inflammatory 
disease [39], among other issues. 

The addition of ACE2 to A549 cell cultures (Table 14) seems to in-
crease the number of processes not directly related with viral infection. 
Nevertheless, top terms, including positive regulation of heat generation 
(GO:0031652), regulation of fever generation (GO:0031620) and positive 
regulation of fever generation (GO:0031622), all associated with acute 
inflammatory response (the term GO:0002526, which is an ancestor), 
underlie common physiological symptoms of COVID-19 (α-variant) and 
mediate immune responses. 

Predominantly interferon and cytokine related processes are 
observed for Calu3 cells (Table 15), similarly to NHBE and A549 cells. 
The term regulation of ribonuclease activity (GO:0060700), also identified 
for NHBE cells (Table 12), is noteworthy as ribonuclease (RNase) is an 
enzyme that catalyzes the decomposition of RNA into smaller compo-
nents. Particularly, RNase L is associated with innate immune response, 
and certain viruses have been shown to block this pathway for 

preventing viral RNA degradation [40]. 
Finally, in Table 4, we present the top enriched pathways from the 

KEGG knowledge base (ver. 2021). The results, similarly to the GO 
database, include multiple virus related pathways. These are all 
composed by genes with higher expression values for infected cells than 
control. Within the top identified terms, there is a prevalence of virus- 
related pathways. Coronavirus disease (map05171), the sixth enriched 
term, confirms the association to the target viral infection. The KEGG 
pathways antigen processing and presentation (map04612), JAK-STAT 
signaling pathway (map04630), the principal signaling mechanism for a 
variety of cytokines, IL-17 signaling pathway (map04657), a subset of 
cytokines with various roles related to inflammatory responses and 
defence against external pathogens, and NF-kappa B signaling pathway 
(map04064), a signaling pathway which is activated by the aforemen-
tioned cytokines and is related to immune responses, all support the 
processes identified previously in the role played by inflammatory cy-
tokines and related signaling pathways in the infection by SARS-CoV-2. 
Additionally, the term RIG-I-like receptor signaling pathway (map04622), 
which is related to the previously mentioned RIG-I receptor, solidifies 
the relevance of its putative involvement with the anti-viral immune 
response. 

5.2. Predictive modeling analysis 

Fig. 6 presents a decision tree produced for the Multi-Condition 
Setting (Mann-Whitney U test with p < 0.01) using the Gini criterion. 
We notice the presence of selected genes related to immune and in-
flammatory responses, namely IL1A, Interleukin 1 Alpha, a protein- 
encoding gene associated with cytokine activity and inflammatory 
response; MX1, which is a protein-encoding gene associated with anti-
viral activity against a variety of RNA viruses; IL31RA, a type I cytokine 
receptor. We observe that a few genes appear to be sufficient to 
discriminate conditions, including infection by different viruses. While 
in a classification problem this can be desirable, it does not support the 
comprehensive discovery of putative regulatory modules from tran-
scriptomic data. To address this limitation, we now proceed with 
ensemble algorithms. 

Random Forest and xGBoost algorithms are selected as ensemble 
predictive models. As with clustering, we first begin by presenting the 
processes identified when using the complete data, with multiple cell 
types and viruses. Tables 5 and 6 gather the top enriched terms for 
Random Forests and XGBoost, respectively. Using impurity-based 

Table 4 
Top 20 KEGG pathways ordered by combined score for A549 cells (paired 
healthy versus SARS-CoV-2 setting). See KEGG IDs for links to the pathway maps 
description.  

KEGG Pathway p-value c-score 

Measles (map05162) 1.02E-08 295.14 
Influenza A (map05164) 1.02E-08 252.18 
Herpes simplex virus 1 infection (map05168) 7.16E-10 177.20 
Epstein-Barr virus infection (map05169) 4.82E-07 156.14 
TNF signaling pathway (map04668) 1.11E-07 153.86 
Coronavirus disease (map05171) 3.78E-07 150.32 
RIG-I-like receptor signaling pathway (map04622) 3.68E-04 120.34 
NOD-like receptor signaling pathway (map04621) 9.37E-06 119.63 
Legionellosis (map05134) 1.77E-05 118.99 
Hepatitis C (map05160) 1.79E-05 118.31 
TNF signaling pathway (map04668) 8.61E-05 116.25 
Primary immunodeficiency (map05340) 2.17E-03 116.00 
Allograft rejection (map05330) 2.17E-03 116.00 
Amoebiasis (map05146) 2.13E-06 111.38 
African trypanosomiasis (map05143) 1.50E-04 111.14 
Rheumatoid arthritis (map05323) 3.12E-06 110.93 
Legionellosis (map05134) 1.12E-03 105.75 
Antigen processing and presentation (map04612) 5.58E-04 100.66 
JAK-STAT signaling pathway (map04630) 1.07E-06 96.92 
NF-kappa B signaling pathway (map04064) 3.68E-04 92.76  
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feature importance, 94 genes are identified with xGBoost and 356 genes 
with Random Forest. These algorithms have 69 genes in common. There 
are multiple terms present in both models, mostly related to immune 
system activity. However, there are several processes uniquely identified 
by each algorithm. 

ISG15-protein conjugation (GO:0032020), a term identified only 
within XGBoost selected genes, is related to the cellular protein modi-
fication process of ISG15. This protein has an important role in host 
antiviral response, with several different actions depending on the 
infecting virus. Most significantly among these actions is the inhibition 
of viral replication in addition to the modulation of the damage and 
repair as well as the immune responses [41]. 

Amongst the terms identified by XGBoost, multiple ones are related 
to chemotaxis, the movement of a cell or organism towards a higher or 
lower concentration of a given substance, and migration of various types 
of immune cells. In particular, macrophages [42,43] (GO:0048246 and 
GO:1905517), natural killer cells [44] (GO:2000501)), eosinophils [45] 
(GO:0072677 and GO:0048245), neutrophils [46] (GO:0030593 and 
GO:1990266), which are all types of white blood cells involved with the 
innate immune response to viral infection. 

Additionally, there are multiple terms in both cases associated with 
cytokine production and related signaling pathways, as well as response 

to different types of interferons. In addition to these, terms such as 
regulation of fever generation (GO:0031620), negative regulation of viral 
process (GO:0048525), inflammatory response (GO:0006954) and negative 
regulation of viral genome replication (GO:0045071) are also associated 
with immune response. Together with the previously mentioned 
signaling of white blood cells, these results show the significance, both 
innate and adaptive, immune responses by cells infected by this virus. 

NHBE cell-specific terms are highlighted in Tables 16 and 17 in ap-
pendix for Random Forest and XGBoost, respectively. The p-values for 
these processes are significantly higher than those obtained using clus-
tering on the same data. Among the top processes in both tables is 
chronic inflammatory response (GO:0002544). Similarly to what was 
mentioned for the combined data, there are multiple terms related to the 
recruitment of certain types of white blood cells. In particular, positive 
regulation of monocyte chemotactic protein-1 production (GO:0071639), 
the top term for the Random Forest, is associated to a protein with a 
pivotal role in the migration of monocytes [47]. 

It is also important to note that multiple terms associated with the 
apoptotic process are present, namely positive regulation of intrinsic 
apoptotic signaling pathway (GO:2001244), regulation of intrinsic apoptotic 
signaling pathway (GO:2001242) and positive regulation of apoptotic 
signaling pathway (GO:2001235). This process, responsible for cell death 

Fig. 6. Decision Tree for Multi-Condition Setting (p < 0.01) using Gini criterion. Colors represent each class (condition), with a node’s color corresponding to the 
combination of the colors of all associated conditions. 
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programming, may indicate that the cell was able to detect the infection 
by SARS-CoV-2. This hypothesis is further supported by the presence of 
the term pattern recognition receptor signaling pathway (GO:0002221). 
These receptors, as previously explained for the related term present in 

Table 3, have been associated with the inflammatory response to SARS- 
CoV-2 [36]. 

Considering A549 cells (Tables 18 and 19), we observe the presence 
of several terms related with the host response to the virus. In particular, 
positive regulation of defense response to virus by host (GO:0002230), 
regulation of defense response to virus by host (GO:0050691), defense 
response to symbiont (GO:0140546) and defense response to virus 
(GO:0051607) within the selected DEG by the Random Forest. It is also 
worth noting once again the abundance of interferon related processes, 
as well as some cytokine related terms. Among these, negative regulation 
of cytokine production (GO:0001818) and positive regulation of cytokine 
production (GO:0001819), which are contradicting, may indicate an 
attempt to modulate the immune response by the cell or potentially a 
mechanism of the virus to defend itself from the immune response. 

The terms RIG-I signaling pathway (GO:0039529) and cytoplasmic 
pattern recognition receptor signaling pathway in response to virus 
(GO:0039528), also enriched for NHBE cells, are once more identified. 
These receptors play crucial roles in the detection of viruses by cells and 
the resulting signaling cascade, which in turn leads to the production of 
Type I interferons and pro-inflammatory cytokines [37]. 

5.3. Biclustering analysis 

With the aim of modeling more complex regulatory patterns to ac-
quire novel knowledge, biclustering is now applied. In particular, 
biclustering, unlike clustering, can identify regulatory co-expression 
profiles spanning a subset of overall conditions. In addition, we can go 
beyond classic correlation assumptions, and accommodate less-trivial 
(yet relevant) forms of subspace coherence, such as additive and 
order-preserving expression [6]. 

We begin in Table 7 by presenting multiple statistics per algorithm 
when considering different preprocessing options. BicPAMS and Cheng 
and Church algorithms present the highest average number of biclusters, 
while Plaid and xMotifs algorithms provide significantly less for most 
preprocessing conditions. These differences are driven by the varying 
coherence, positioning constraints, and underlying searches (greedy in 
Cheng and Church and xMotifs, stochastic in Plaid, and exhaustive in 
BicPAMS). It is also important to note that BicPAMS presents delin-
eatedly higher enrichments, and selects a larger amount of genes and 
lower number of conditions per putative regulatory module. Compara-
tively, this behavior is particularly relevant since having too many 
conditions can lead to the identification of more generic genes, while 
having too few genes can lead to the identification of less significant 
processes. 

The observed differences are further hypothesized to be driven by 
four unique properties of the pattern-based biclustering searches 
implemented in BicPAMS. First, the exhaustive nature of the searches 
combined with the possibility to mask regions of the data space with 
greater likelihood in an attempt to find a more diversified set of non- 
redundant biclusters [6]. Second, the ability to consider varying levels 
of coherence strength and quality, allowing the discovery of regulatory 
modules with varying degrees of homogeneity [30]. Third, the ability to 
statistically test biclusters with varying coherence assumptions, 
ensuring deviations from expectations and therefore minimizing false 
positive discoveries [26]. Finally, the absence of structural constraints, 
enabling the discovery of an arbitrarily-high number of putative regu-
latory modules with flexible positioning [7], including overlapping 
genes and conditions. 

Using these methods, we obtain a set of biclusters per algorithm, 
where each bicluster consists of a subset of genes and a subset of con-
ditions. By performing functional enrichment on these genes, a set of 
biological processes is then produced (Tables 8–10). In order to analyse 
these results and obtain a more generic view of how often certain pro-
cesses occur for each condition, a count is performed for each process 
identified. This allows the identification of the most commonly occur-
ring processes, and thus provides a better view of which processes are 

Table 5 
Top 20 GO biological processes ordered by combined score using Random Forest 
(Multi-Condition Setting, p < 0.01).  

GO Biological Processes p-value c-score 

protein mono-ADP-ribosylation (GO:0140289) 3.44E- 
06 

980.50 

type I interferon signaling pathway (GO:0060337) 3.70E- 
14 

833.99 

cellular response to type I interferon (GO:0071357) 3.70E- 
14 

833.99 

regulation of fever generation (GO:0031620) 2.02E- 
03 

819.46 

positive regulation of glial cell proliferation (GO:0060252) 2.02E- 
03 

819.46 

cytokine-mediated signaling pathway (GO:0019221) 7.67E- 
24 

420.28 

interferon-gamma-mediated signaling pathway (GO:0060333) 3.65E- 
09 

372.42 

negative regulation of viral genome replication (GO:0045071) 3.35E- 
08 

368.56 

antigen processing via MHC class I via ER pathway 
(GO:0002484) 

5.02E- 
03 

358.52 

antigen processing via MHC class I via ER, TAP-independent 
(GO:0002486) 

5.02E- 
03 

358.52 

positive regulation of gliogenesis (GO:0014015) 5.02E- 
03 

358.52 

positive regulation of podosome assembly (GO:0071803) 5.02E- 
03 

358.52 

cellular response to interferon-gamma (GO:0071346) 1.87E- 
11 

354.96 

negative regulation of viral process (GO:0048525) 4.92E- 
09 

353.10 

interleukin-27-mediated signaling pathway (GO:0070106) 3.24E- 
04 

344.30 

defense response to symbiont (GO:0140546) 2.53E- 
11 

339.26 

receptor signaling pathway via STAT (GO:0097696) 2.01E- 
05 

337.92 

positive regulation of epidermal growth factor-activated 
receptor activity (GO:0045741) 

1.26E- 
03 

332.52 

receptor signaling pathway via JAK-STAT (GO:0007259) 6.49E- 
06 

329.14 

defense response to virus (GO:0051607) 8.56E- 
11 

297.98  

Table 6 
Top 20 GO biological processes ordered by combined score using XGBoost 
(Multi-Condition Setting, p < 0.01).  

GO Biological Processes p-value c-score 

ISG15-protein conjugation (GO:0032020) 7.61E-03 869.12 
macrophage chemotaxis (GO:0048246) 1.20E-03 783.48 
response to interferon-gamma (GO:0034341) 1.20E-07 672.59 
nicotinamide nucleotide biosynthetic process (GO:0019359) 9.89E-03 666.41 
regulation of natural killer cell chemotaxis (GO:2000501) 9.89E-03 666.41 
macrophage migration (GO:1905517) 2.00E-03 548.36 
eosinophil migration (GO:0072677) 2.01E-03 495.85 
eosinophil chemotaxis (GO:0048245) 2.01E-03 495.85 
lymphocyte migration (GO:0072676) 8.21E-05 435.11 
neutrophil chemotaxis (GO:0030593) 8.53E-06 432.97 
chemokine-mediated signaling pathway (GO:0070098) 2.76E-05 412.00 
granulocyte chemotaxis (GO:0071621) 9.17E-06 406.08 
lymphocyte chemotaxis (GO:0048247) 1.24E-04 376.49 
neutrophil migration (GO:1990266) 1.11E-05 374.27 
cellular response to chemokine (GO:1990869) 3.60E-05 370.93 
cellular response to interferon-gamma (GO:0071346) 1.66E-06 355.72 
type I interferon signaling pathway (GO:0060337) 4.53E-05 328.36 
cellular response to type I interferon (GO:0071357) 4.53E-05 328.36 
NAD biosynthetic process (GO:0009435) 3.89E-03 327.14 
monocyte chemotaxis (GO:0002548) 2.00E-03 232.75  
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most closely related with a certain condition, while also potentially 
reducing the amount of more generic biological processes. In addition to 
this, it provides a direct element of comparison between different cell 
types for the same condition, or between the same cell type and different 
viruses. In addition to the number of occurrences of each process, the 
best c-score and p-value are also provided, in order to compare the 
statistical relevance of different processes. 

We now proceed to a comparative analysis of the biological processes 
associated with SARS-CoV-2 for all cell types using biclustering 
(Table 8). In order to provide an ordering for the processes taking into 
account all cell types, each enriched term is first ranked by the number 
of occurrences it has related to a given condition. Then a fused rank is 
computed by multiplying the resulting ranks. The multiplication allows 
for a higher penalization of terms which contain a single very low rank 
but high ranks for other cell types. 

Some of the identified processes have been analogously retrieved 
with clustering and predictive models. In particular, terms related to 
cytokine activity, for instance cytokine-mediated signaling pathway 
(GO:0019221), showing a high number of occurrences for A549 (1.00), 
NHBE (0.75) and Calu3 (1.00) cells and a lower count for Biopsy cells 
(0.60). It is interesting to note a seeming tendency for the normalized 
number of occurrences for Biopsy cells to be lower for most processes, 
with more generic DNA related processes, such as DNA metabolic process 
(GO:0006259), DNA repair (GO:0006281) and cellular response to DNA 
damage stimulus (GO:0006974), possessing higher values. This may be 
due to biopsy results possibly containing multiple cell types as well as 
given the very low number of samples of this type of cell (2 healthy and 2 
infected). 

Other cytokine associated processes include cellular response to 
cytokine stimulus (GO:0071345), chemokine-mediated signaling pathway 
(GO:0070098) followed also by cellular response to chemokine 
(GO:1990869). Chemokines in particular play an important role in 
multiple processes related with host immune response against viral 
infection [48,49], namely the attraction of leukocytes to the infected 
tissue. The presence of the terms neutrophil mediated immunity 
(GO:0002446), neutrophil activation involved in immune response 
(GO:0002283) and neutrophil degranulation (GO:0043312), further sup-
ports this hypothesis. Neutrophils are leukocytes which are the first 
responders to sites of infection, and have also been identified as the main 
infiltrating cell population in IAV infection [46]. Despite containing 
somewhat lower counts than other processes, this set of enriched terms 
still possess p-values and c-scores well within the range of statistical 

significance. 
Another set of previously identified processes is interferon related 

terms. Interferons are a potent type of cytokines which are associated 
with antiviral response, with most viruses having developed adaptations 
to at least partially avoiding this mechanism [50]. In particular, cellular 
response to interferon-gamma (GO:0071346) and interfer-
on-gamma-mediated signaling pathway (GO:0060333). 

We now proceed to a comparative analysis of the processes associ-
ated with SARS-CoV-2, RSV, HPIV3 and IAV viruses. In Table 9 we 
present the results from A549 cells, and in Table 10 from NHBE cells. We 
observe a considerable number of processes in common with the anal-
ysis provided in Table 8, which is to be expected, since most identified 
processes are related to immune response. 

Cellular response to interferon-gamma (GO:0071346) has somewhat 
fewer occurrences when compared to the other viruses (0.66 vs 0.85 for 
RSV, 0.92 for HPIV3 and 0.86 for IAV). Cytokine-mediated signaling 
pathway (GO:0019221) has a somewhat higher number of occurrences 
for SARS-CoV-2 and HPIV than others (1.00 and 1.00 vs 0.74 for RSV 
and 0.92 for IAV). Inflammatory response (GO:0006954) is somewhat 
muted for SARS-CoV-2 when compared to the other viruses, for both 
A549 (0.45 vs 0.97 for RSV, 0.92 for HPIV3, 1.00 for IAV) and NHBE 
cells (0.75 vs 0.91 for IAV, 1.00 for IAVdNS1). These differences are 
consistent with those found by Blanco-Melo et al. [1], who found 
SARS-CoV-2 to induce a limited interferon response when compared 
with the other viruses but a strong production of cytokines and resulting 
processes. Overall, there seems to be a tendency for the other viruses to 
have comparatively higher counts, especially IAV. 

Table 11 offers a compilation of the number of GO biological pro-
cesses detected for each of the applied machine learning approaches. As 
we can see, biclustering provides, by a considerable margin, a highest 
amount of biological processes, followed by clustering. The predictive 
models generally provided worse results, with Random Forests 
providing somewhat better results amongst predictors for the Multi- 
Condition Setting as well as for NHBE cells. Overall, these results pro-
vide initial empirical evidence in favor of pattern-based algorithms to 
promote the coverage and statistical significance of functional enrich-
ment analysis, offering a way of unraveling less-trivial yet relevant 
regulatory behavior in knowledge bases. 

6. Conclusion 

This work assesses the impact of different modular views on 

Table 7 
Statistics for comparing the performance of the tested biclustering algorithms with different preprocessing techniques. Note: |ℬ| corresponds to the number of 
biclusters; |I| is the average number of genes per bicluster; σ|I|the standard deviation of genes per bicluster; |J| the average number of conditions per bicluster; σ|J| the 
standard deviation of the number of conditions per bicluster; and finally Terms the average number of enriched terms per bicluster.  

Algorithm Preprocessing |ℬ| |I| σ|I| |J| σ|J| Terms 

BicPAMS p < 0.01 80 208.03 18.54 3.16 0.53 28.91 
p < 0.05 79 3526.66 301.50 3.24 0.64 341.70 
ANOVA (top 200) 7 188.29 5.95 10.00 9.70 10.57 
ANOVA (top 1000) 20 676.05 29.13 5.00 4.22 55.75 
ANOVA (top 5000) 57 2106.18 128.36 3.61 1.25 131.32 

Cheng and Church p < 0.01 50 15.60 12.59 12.92 5.90 3.46 
p < 0.05 100 55.90 16.23 34.79 9.96 1.68 
ANOVA (top 200) 8 25.00 23.49 21.38 12.56 6.50 
ANOVA (top 1000) 56 17.86 15.27 17.89 10.67 4.41 
ANOVA (top 5000) 100 34.54 24.10 22.76 11.25 2.47 

Plaid p < 0.01 10 64.70 55.53 14.20 5.60 29.90 
p < 0.05 10 776.40 922.43 11.60 6.89 24.10 
ANOVA (top 200) 8 44.00 30.76 12.88 8.43 9.88 
ANOVA (top 1000) 10 159.50 100.72 12.20 7.29 18.70 
ANOVA (top 5000) 10 739.20 530.04 13.10 7.48 43.40 

xMotifs p < 0.01 10 31.90 17.17 8.20 2.86 1.70 
p < 0.05 10 654.50 365.82 6.00 0.00 6.30 
ANOVA (top 200) 6 30.33 34.30 24.50 9.73 10.67 
ANOVA (top 1000) 10 71.90 103.54 11.10 4.28 7.60 
ANOVA (top 5000) 10 326.00 538.95 6.20 0.60 5.30  
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regulation for gene set enrichment analysis using transcriptional re-
sponses to SARS-CoV-2 infection, and further presents non-trivial bio-
logical processes associated with virus infection. Amongst state-of-the- 
art machine learning approaches, particular focus is placed on the 
pattern-centric views given the observed role of subspace clustering 
methods to improve the coverage and quality of enriched terms from 
knowledge bases. 

A novel methodology is proposed, combining different computa-
tional approaches, which when consolidated provide a more robust view 
of the putative processes associated with virus infection. To guarantee 
the discriminative power of the pursued regulatory modules, the com-
plete gene set is initially filtered using a Mann-Whitney U Test, which 
allows for the selection of genes with statistically relevant differences in 
expression between healthy and infected cells, as well as between cells 
infected by different viruses. Other authors perform feature enrichment 
directly on the set of genes obtained using simplistic statistical tests. 
However, this stance results in a smaller amount of biological processes 
detected, as well as a decrease in their quality (measured using Fisher’s 
Exact Test and the combined c-score). So a three-fold, pattern-centric 
approach – composed by clustering, associative predictive modeling and 

biclustering algorithms – is suggested to identify DEGs with correlated 
expression. 

Under this methodology, we were able to validate and identify 
potentially novel biological processes associated with SARS-CoV-2 
infection. Among the various enriched terms, the high cytokine induc-
tion, Type I interferon related terms, as well as signaling pathways 
related to these were reoccurring in all analysis performed. In particular, 
SARS-CoV-2 was found to induce a limited interferon response when 
compared with other viruses but a strong production of cytokines and 
associated processes (namely interferon induction and response to these 
stimuli). These findings are consistent with previous studies [1]. Addi-
tionally, we found in multiple analysis the involvement of Pattern 
Recognition Receptors (with particular emphasis on RIG-I) in the pro-
cess of infection. This was not identified in previous studies, however it 
is consistent with other literature on coronaviruses, and further supports 
the hypothesis that a pattern-centric view of the gene enrichment pro-
cess can result in novel information. 

As directions for future work, we aim at: i) extending the conducted 
experimental analysis towards other transcriptomic data sources, in 
particular SARS-CoV-2 related sources, to cross-validate, expand and 

Table 8 
GO biological processes with highest joint ranks for SARS-CoV-2 conditions. Counts correspond to the normalized number of occurrences of each process within each 
condition.  

GO Biological Processes A549 SARS-CoV-2 NHBE SARS-CoV-2 Calu3 SARS-CoV-2 Biopsy SARS-CoV-2 

count p-value c-score count p-value c-score count p-value c-score count p-value c-score 

cytokine-mediated signaling pathway 
(GO:0019221) 

1.00 6.95E-3 6.06E+5 0.75 2.79E-4 6.06E+5 1.00 2.29E-3 1.02E+3 0.60 2.79E-4 6.06E+5 

cellular response to interferon-gamma 
(GO:0071346) 

0.66 1.15E-7 5.61E+2 0.88 4.31E-3 3.97E+2 0.83 2.36E-4 1.13E+3 0.56 1.37E- 
18 

1.56E+3 

cellular response to cytokine stimulus 
(GO:0071345) 

0.61 2.50E-4 6.55E+5 0.92 2.50E-4 6.55E+5 0.67 4.14E-4 3.67E+2 0.44 2.50E-4 6.55E+5 

inflammatory response (GO:0006954) 0.45 5.30E-5 6.46E+2 0.75 3.90E-4 1.47E+2 0.50 3.23E-5 2.30E+2 0.72 3.23E- 
23 

3.84E+2 

protein modification by small protein 
removal (GO:0070646) 

0.49 7.88E-3 1.74E+2 0.46 7.88E-3 1.68E+2 0.67 6.62E-3 1.39E+2 0.63 2.74E-4 1.25E+2 

regulation of immune response 
(GO:0050776) 

0.34 3.64E-7 7.11E+2 0.71 5.14E-3 1.85E+2 0.69 3.32E-3 2.62E+2 0.72 2.84E- 
25 

5.29E+2 

mRNA splicing, via spliceosome 
(GO:0000398) 

0.51 2.08E-6 7.38E+2 0.62 1.69E-4 6.89E+2 0.42 3.83E-5 3.18E+2 0.65 1.11E-5 5.68E+2 

mRNA processing (GO:0006397) 0.51 2.88E-6 7.02E+2 0.62 3.98E-4 6.99E+2 0.42 3.83E-5 3.67E+2 0.65 1.27E-5 6.39E+2 
DNA metabolic process (GO:0006259) 0.45 5.44E-4 2.63E+2 0.38 7.56E-4 4.22E+1 0.22 7.56E-4 1.40E+2 1.00 2.59E-6 1.97E+2 
interferon-gamma-mediated signaling 

pathway (GO:0060333) 
0.54 1.03E-3 6.97E+2 0.38 9.63E-4 6.97E+2 0.75 1.14E-6 1.49E+3 0.21 5.67E-8 1.28E+3 

epidermis development (GO:0008544) 0.54 1.83E-4 1.44E+3 0.88 2.21E- 
22 

2.15E+3 0.08 8.41E-6 5.33E+2 0.35 6.74E-4 6.99E+2 

RNA splicing, with bulged adenosine as 
nucleophile (GO:0000377) 

0.48 3.31E-6 7.02E+2 0.62 4.30E-4 6.75E+2 0.42 3.83E-5 3.36E+2 0.56 1.27E-5 5.35E+2 

positive regulation of response to external 
stimulus (GO:0032103) 

0.39 3.65E-3 5.26E+2 0.67 1.82E-3 1.36E+2 0.69 8.96E-3 3.29E+2 0.35 2.81E- 
10 

3.26E+2 

chemokine-mediated signaling pathway 
(GO:0070098) 

0.39 6.02E-5 3.99E+3 0.67 1.55E-4 5.04E+2 0.67 1.16E-3 4.40E+2 0.37 1.19E-8 4.94E+2 

DNA repair (GO:0006281) 0.45 4.48E-3 3.13E+2 0.25 4.65E-3 3.81E+1 0.22 4.65E-3 1.36E+2 0.95 9.43E-3 1.36E+2 
extracellular matrix organization 

(GO:0030198) 
0.32 1.13E-3 1.05E+2 1.00 3.31E-8 1.70E+2 0.28 1.81E-3 6.33E+1 0.44 2.96E-6 9.18E+1 

neutrophil mediated immunity 
(GO:0002446) 

0.53 3.68E-3 2.39E+2 0.38 2.14E- 
24 

1.93E+2 0.67 2.16E-5 2.48E+2 0.28 1.57E-8 1.12E+2 

cellular response to DNA damage stimulus 
(GO:0006974) 

0.47 2.65E-3 1.29E+2 0.29 4.65E-3 1.10E+2 0.11 2.73E- 
17 

1.42E+2 0.95 6.21E-5 1.42E+2 

neutrophil activation involved in immune 
response (GO:0002283) 

0.49 6.01E- 
21 

2.39E+2 0.50 9.44E-3 1.93E+2 0.67 2.16E-5 2.47E+2 0.28 4.96E-9 8.95E+1 

neutrophil degranulation (GO:0043312) 0.49 2.12E- 
21 

2.46E+2 0.50 8.99E-3 2.00E+2 0.67 2.16E-5 2.55E+2 0.26 5.39E-8 9.08E+1 

cellular response to chemokine 
(GO:1990869) 

0.36 8.06E-5 3.65E+3 0.62 1.94E-4 4.57E+2 0.72 1.75E-3 3.99E+2 0.26 4.05E-8 4.45E+2 

protein ubiquitination (GO:0016567) 0.45 9.45E-3 1.70E+2 0.29 9.45E-3 1.70E+2 0.19 9.45E-3 8.06E+1 0.81 9.45E-3 1.55E+2 
cellular protein modification process 

(GO:0006464) 
0.49 1.52E- 

19 
1.39E+2 0.29 1.93E-3 1.20E+2 0.25 1.93E-3 8.82E+1 0.70 2.97E-6 1.19E+2 

antigen receptor-mediated signaling 
pathway (GO:0050851) 

0.49 6.48E-6 8.87E+1 0.67 3.95E-3 8.87E+1 0.14 3.73E-6 1.63E+2 0.26 4.15E- 
11 

1.63E+2 

defense response to symbiont 
(GO:0140546) 

0.39 7.76E-6 9.11E+5 0.38 7.76E-6 9.11E+5 0.75 1.15E- 
10 

1.66E+3 0.23 7.76E-6 9.11E+5  
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improve the robustness of the provided findings; ii) assessing the val-
idity of the methodological contributions over proteomic and metab-
olomic data; iii) addressing the issue of sample interdependence by 
testing the underlying relationships and designing pattern-centric ap-
proaches tailored to the presence of replicates; and iv) explicitly 
combining available background knowledge [51] to guide the enrich-
ment analysis towards novel findings. In particular, and beyond virus 
infections, the proposed methodology can be straightforwardly 
extended towards the study of other pathologies as long as distinct 
phenotypes or morphological features of interest are present. Paradig-
matic examples are cancer and cardiovascular disease analysis. As such, 
we believe that the proposed computational pipeline will prove to be a 
useful workflow for generating hypotheses across biomedical domains. 
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Table 9 
GO biological processes with highest joint ranks for all viruses for the A549 cell type. Counts correspond to the normalized number of occurrences of each process 
within each condition.  

GO Biological Processes A549 SARS-CoV-2 A549 RSV A549 HPIV3 A549 IAV 

count p- 
value 

c-score count p- 
value 

c-score count p- 
value 

c-score count p-value c-score 

epidermis development (GO:0008544) 0.54 1.83E- 
4 

1.44E+3 1.00 4.96E- 
6 

7.01E+2 1.00 1.83E- 
4 

1.44E+3 1.00 2.38E- 
14 

9.94E+2 

cellular response to interferon-gamma 
(GO:0071346) 

0.66 1.15E- 
7 

5.61E+2 0.85 1.15E- 
7 

2.91E+2 0.92 1.15E- 
7 

7.32E+2 0.86 4.74E-6 2.91E+2 

cytokine-mediated signaling pathway 
(GO:0019221) 

1.00 6.95E- 
3 

6.06E+5 0.74 6.95E- 
3 

9.57E+1 0.90 6.95E- 
3 

4.40E+2 1.00 2.87E- 
10 

4.36E+2 

inflammatory response (GO:0006954) 0.45 5.30E- 
5 

6.46E+2 0.97 1.23E- 
7 

2.33E+2 0.92 5.30E- 
5 

1.97E+2 1.00 3.90E-4 2.53E+2 

interferon-gamma-mediated signaling 
pathway (GO:0060333) 

0.54 1.03E- 
3 

6.97E+2 0.74 1.03E- 
3 

2.19E+2 0.92 1.03E- 
3 

9.72E+2 0.61 8.73E-3 2.19E+2 

antigen receptor-mediated signaling 
pathway (GO:0050851) 

0.49 6.48E- 
6 

8.87E+1 0.68 2.38E- 
4 

8.87E+1 0.63 6.48E- 
6 

8.87E+1 0.59 1.92E-3 8.87E+1 

complement activation, classical pathway 
(GO:0006958) 

0.39 6.59E- 
3 

8.66E+3 0.91 4.52E- 
5 

8.66E+3 0.86 6.59E- 
3 

8.66E+3 0.78 4.54E-5 8.66E+3 

skin development (GO:0043588) 0.46 9.85E- 
4 

3.80E+2 0.71 8.82E- 
6 

3.80E+2 0.59 4.62E- 
4 

3.80E+2 0.57 9.85E-4 3.80E+2 

cellular response to cytokine stimulus 
(GO:0071345) 

0.61 2.50E- 
4 

6.55E+5 0.41 5.74E- 
5 

8.36E+1 0.55 5.74E- 
5 

1.49E+2 0.71 5.74E-5 1.69E+2 

chemokine-mediated signaling pathway 
(GO:0070098) 

0.39 6.02E- 
5 

3.99E+3 0.76 6.02E- 
5 

5.04E+2 0.71 6.02E- 
5 

8.65E+2 0.67 7.71E-3 5.04E+2 

humoral immune response via 
immunoglobulin (GO:0002455) 

0.37 8.06E- 
5 

5.89E+3 0.91 8.06E- 
5 

5.89E+3 0.82 8.06E- 
5 

5.89E+3 0.76 5.90E-5 5.89E+3 

positive regulation of external stimulus 
response (GO:0032103) 

0.39 3.65E- 
3 

5.26E+2 0.56 3.65E- 
3 

1.43E+2 0.71 3.65E- 
3 

1.95E+2 0.76 4.51E-3 1.47E+2 

epidermal cell differentiation (GO:0009913) 0.36 9.67E- 
4 

9.29E+2 0.88 1.21E- 
7 

9.29E+2 0.71 8.76E- 
5 

9.29E+2 0.76 9.67E-4 9.29E+2 

keratinocyte differentiation (GO:0030216) 0.36 1.51E- 
3 

1.29E+3 0.85 1.31E- 
6 

1.29E+3 0.71 6.21E- 
4 

1.29E+3 0.76 1.51E-3 1.29E+3 

regulation of immune response 
(GO:0050776) 

0.34 3.64E- 
7 

7.11E+2 0.94 3.06E- 
9 

7.11E+2 0.88 3.64E- 
7 

2.29E+2 0.88 1.18E-8 7.11E+2 

cellular response to chemokine 
(GO:1990869) 

0.36 8.06E- 
5 

3.65E+3 0.68 8.06E- 
5 

4.57E+2 0.67 8.06E- 
5 

7.92E+2 0.59 1.94E-4 4.57E+2 

positive regulation of defense response 
(GO:0031349) 

0.36 2.07E- 
3 

8.24E+2 0.38 2.07E- 
3 

1.36E+2 0.45 2.07E- 
3 

2.17E+2 0.75 2.07E-3 1.37E+2 

exogenous peptide antigen via MHC class II 
(GO:0019886) 

0.48 6.36E- 
3 

6.51E+2 0.41 6.36E- 
3 

6.51E+2 0.43 6.36E- 
3 

6.51E+2 0.29 9.02E-3 6.51E+2 

peptide antigen via MHC class II 
(GO:0002495) 

0.48 6.81E- 
3 

6.34E+2 0.38 6.81E- 
3 

6.34E+2 0.43 6.81E- 
3 

6.34E+2 0.27 9.02E-3 6.34E+2 

positive regulation of chemotaxis 
(GO:0050921) 

0.31 6.20E- 
4 

3.42E+2 0.88 3.37E- 
3 

3.42E+2 0.80 6.20E- 
4 

4.14E+2 0.82 6.71E-3 3.42E+2 

extracellular matrix organization 
(GO:0030198) 

0.32 1.13E- 
3 

1.05E+2 0.53 1.13E- 
3 

3.98E+1 0.59 1.13E- 
3 

3.90E+1 0.57 1.13E-3 4.23E+1 

T cell receptor signaling pathway 
(GO:0050852) 

0.41 2.70E- 
3 

1.16E+2 0.29 8.46E- 
4 

5.79E+1 0.35 2.70E- 
3 

6.64E+1 0.24 2.46E-3 3.68E+1 

presentation of exogenous peptide antigen 
(GO:0002478) 

0.45 7.80E- 
3 

6.10E+2 0.26 7.80E- 
3 

6.10E+2 0.31 7.80E- 
3 

6.10E+2 0.16 9.02E-3 6.10E+2 

positive regulation of protein 
phosphorylation (GO:0001934) 

0.33 4.81E- 
3 

5.19E+1 0.32 4.81E- 
3 

5.19E+1 0.29 4.81E- 
3 

5.19E+1 0.31 5.56E-3 5.19E+1 

mRNA processing (GO:0006397) 0.51 2.88E- 
6 

7.02E+2 0.18 2.34E- 
8 

3.67E+2 0.29 3.83E- 
5 

5.11E+2 0.20 2.88E-6 3.67E+2  

P. Rodrigues et al.                                                                                                                                                                                                                              



Computers in Biology and Medicine 146 (2022) 105443

14

Appendix A. Clustering: functional enrichment per cell line  

Table 12 
Top GO biological processes ordered by combined score, for NHBE cells.  

GO Biological Process p-value c-score Cluster 

regulation of calcidiol 1-monooxygenase activity (GO:0060558) 1.83E-03 1610.66 1 
pantothenate metabolic process (GO:0015939) 1.83E-03 1610.66 1 
cellular response to type I interferon (GO:0071357) 1.95E-12 1330.17 2 
type I interferon signaling pathway (GO:0060337) 1.95E-12 1330.17 2 
postsynaptic neurotransmitter receptor internalization (GO:0098884) 9.96E-03 865.07 2 
postsynaptic endocytosis (GO:0140239) 9.96E-03 865.07 2 
regulation of ribonuclease activity (GO:0060700) 9.96E-03 865.07 2 
response to interferon-beta (GO:0035456) 2.28E-06 830.41 2 
defense response to symbiont (GO:0140546) 9.02E-12 717.21 2 
defense response to virus (GO:0051607) 1.94E-11 641.59 2 
response to interferon-alpha (GO:0035455) 2.93E-04 593.97 2 
negative regulation of viral genome replication (GO:0045071) 4.90E-06 434.32 2 
regulation of lipid storage (GO:0010883) 5.88E-04 430.27 2 
antiviral innate immune response (GO:0140374) 3.39E-03 426.70 2 
cytokine-mediated signaling pathway (GO:0019221) 9.05E-15 395.62 2 
interleukin-27-mediated signaling pathway (GO:0070106) 3.68E-03 382.07 2 
negative regulation of type I interferon-mediated signaling pathway (GO:0060339) 4.10E-03 344.91 2 

(continued on next page) 

Table 10 
GO Biological processes with highest joint ranks for all viruses for the NHBE cell type. Counts correspond to the normalized number of occurrences of each process 
within each condition.  

GO Biological Processes NHBE SARS-CoV-2 NHBE IAV NHBE IAVdNS1 

count p-value c-score count p-value c-score count p-value c-score 

extracellular matrix organization (GO:0030198) 1.00 3.31E-08 1.70E+02 1.00 3.31E-08 1.70E+02 0.84 3.31E-08 1.70E+02 
cardiac muscle tissue development (GO:0048738) 0.79 4.78E-03 3.00E+02 0.91 4.78E-03 3.00E+02 0.80 4.78E-03 3.00E+02 
inflammatory response (GO:0006954) 0.75 3.90E-04 1.47E+02 0.91 3.90E-04 2.71E+02 1.00 3.90E-04 2.71E+02 
dendritic cell migration (GO:0036336) 0.75 6.79E-03 5.92E+02 0.86 6.79E-03 5.92E+02 0.77 6.79E-03 5.92E+02 
dendritic cell chemotaxis (GO:0002407) 0.75 6.71E-03 7.08E+02 0.86 6.71E-03 7.08E+02 0.77 6.71E-03 7.08E+02 
cellular response to interferon-gamma (GO:0071346) 0.88 4.31E-03 3.97E+02 0.79 4.31E-03 5.12E+02 0.75 7.60E-04 1.13E+03 
extracellular structure organization (GO:0043062) 0.75 1.10E-07 8.85E+01 0.86 1.10E-07 8.85E+01 0.70 1.10E-07 8.85E+01 
external encapsulating structure organization (GO:0045229) 0.75 4.67E-08 9.64E+01 0.86 4.67E-08 9.64E+01 0.70 4.67E-08 9.64E+01 
regulation of immune response (GO:0050776) 0.71 5.14E-03 1.85E+02 0.79 5.14E-03 1.85E+02 0.82 5.14E-03 1.85E+02 
negative regulation of T cell activation (GO:0050868) 0.75 9.83E-03 1.13E+03 0.77 3.11E-03 4.28E+02 0.66 3.11E-03 4.28E+02 
phospholipase receptor signaling pathway (GO:0007200) 0.67 9.33E-03 2.60E+02 0.81 9.33E-03 2.60E+02 0.66 9.33E-03 2.60E+02 
regulation of T cell proliferation (GO:0042129) 0.67 7.93E-04 4.13E+02 0.77 7.93E-04 4.13E+02 0.66 7.93E-04 4.13E+02 
chemokine-mediated signaling pathway (GO:0070098) 0.67 1.55E-04 5.04E+02 0.67 1.55E-04 5.04E+02 0.68 4.01E-04 5.04E+02 
positive regulation of chemotaxis (GO:0050921) 0.62 6.71E-03 3.42E+02 0.79 6.71E-03 9.51E+02 0.59 6.71E-03 9.51E+02 
cellular response to cytokine stimulus (GO:0071345) 0.92 2.50E-04 6.55E+05 0.70 2.90E-03 1.42E+02 0.52 2.90E-03 2.98E+02 
positive regulation of lymphocyte proliferation (GO:0050671) 0.54 3.72E-03 1.66E+02 0.70 3.72E-03 1.66E+02 0.70 8.75E-03 3.05E+02 
complement activation, classical pathway (GO:0006958) 0.58 4.54E-05 8.66E+03 0.70 4.54E-05 9.67E+03 0.61 4.54E-05 9.67E+03 
nervous system development (GO:0007399) 0.54 3.84E-03 3.69E+01 0.74 3.84E-03 3.74E+01 0.61 3.84E-03 3.56E+01 
heart development (GO:0007507) 0.54 2.69E-03 7.04E+01 0.74 2.69E-03 7.04E+01 0.61 2.69E-03 7.04E+01 
positive regulation of MAPK cascade (GO:0043410) 0.54 9.24E-06 2.95E+02 0.70 9.24E-06 2.95E+02 0.66 9.24E-06 2.95E+02 
cellular response to chemokine (GO:1990869) 0.62 1.94E-04 4.57E+02 0.63 1.94E-04 4.57E+02 0.75 4.14E-04 4.57E+02 
regulation of calcium ion-dependent exocytosis (GO:0017158) 0.54 4.08E-03 1.91E+02 0.72 4.08E-03 1.91E+02 0.59 4.08E-03 1.91E+02 
positive regulation of ERK1 and ERK2 cascade (GO:0070374) 0.54 6.12E-05 2.77E+02 0.70 6.12E-05 2.77E+02 0.61 6.12E-05 2.77E+02 
B cell receptor signaling pathway (GO:0050853) 0.54 7.09E-04 5.07E+02 0.70 7.09E-04 5.07E+02 0.61 7.09E-04 5.07E+02 
calcium-mediated signaling (GO:0019722) 0.54 6.85E-03 1.07E+02 0.70 6.85E-03 1.07E+02 0.61 6.85E-03 1.07E+02  

Table 11 
Overview of the number of processes found, for different p values and for each of 
the methods applied (Multi-Condition Setting).  

Method Setting Number of GO biological processes 

p < 0.05 p < 0.01 p < 0.001 

Clustering MCS (p < 0.01) 463 215 76 
NHBE 234 75 20 
A549 182 38 19 

Random Forests MCS (p < 0.01) 215 109 44 
NHBE 110 22 3 
A549 21 0 0 

xGBoost MCS (p < 0.01) 60 41 15 
NHBE 34 0 0 
A549 36 0 0 

BicPAMS MCS (p < 0.01) 4440 2086 1184 
NHBE 2912 685 305 
A549 3926 779 273  
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Table 12 (continued ) 

GO Biological Process p-value c-score Cluster 

negative regulation of chemokine production (GO:0032682) 4.81E-03 313.53 2 
regulation of viral genome replication (GO:0045069) 2.03E-05 309.60 2 
negative regulation of viral process (GO:0048525) 2.50E-05 289.01 2 
regulation of complement activation (GO:0030449) 1.88E-03 233.87 1 
regulation of lipid storage (GO:0010883) 9.15E-03 233.65 1 
inflammatory response (GO:0006954) 3.32E-07 215.82 2 
positive regulation of NIK/NF-kappaB signaling (GO:1901224) 1.88E-03 213.72 1 
cellular response to virus (GO:0098586) 2.89E-03 208.65 2   

Table 13 
Top GO biological processes ordered by combined score, for A549 cells.  

GO Biological Process p-value c-score Cluster 

cellular response to type I interferon (GO:0071357) 2.23E-15 1540.94 2 
type I interferon signaling pathway (GO:0060337) 2.23E-15 1540.94 2 
negative regulation of viral genome replication (GO:0045071) 3.07E-09 792.37 2 
response to interferon-beta (GO:0035456) 4.98E-05 637.94 2 
negative regulation of viral life cycle (GO:1903901) 1.99E-08 569.74 2 
regulation of viral genome replication (GO:0045069) 2.32E-08 540.29 2 
regulation of interferon-alpha production (GO:0032647) 6.90E-04 472.38 2 
positive regulation of interferon-alpha production (GO:0032727) 1.26E-03 354.12 2 
interferon-gamma-mediated signaling pathway (GO:0060333) 1.05E-06 344.39 2 
cytokine-mediated signaling pathway (GO:0019221) 2.23E-15 327.50 2 
cellular response to interferon-gamma (GO:0071346) 4.59E-08 321.58 2 
positive regulation of defense response to virus by host (GO:0002230) 1.81E-03 300.45 2 
STAT cascade (GO:0097696) 9.26E-04 211.79 0 
chemokine-mediated signaling pathway (GO:0070098) 4.73E-04 195.27 2 
response to interferon-gamma (GO:0034341) 1.78E-04 187.71 2 
regulation of leukocyte chemotaxis (GO:0002688) 5.77E-03 169.19 2 
regulation of defense response to virus by host (GO:0050691) 5.77E-03 169.19 2 
negative regulation of type I interferon production (GO:0032480) 2.18E-03 160.73 2 
response to cytokine (GO:0034097) 3.49E-05 147.64 2 
positive regulation of JAK-STAT cascade (GO:0046427) 1.26E-03 139.37 2 
regulation of type I interferon production (GO:0032479) 6.82E-04 130.07 2 
neutrophil migration (GO:1990266) 6.25E-03 102.79 2 
JAK-STAT cascade (GO:0007259) 4.73E-03 95.44 0 
positive regulation of leukocyte chemotaxis (GO:0002690) 7.10E-03 94.66 2 
positive regulation of type I interferon production (GO:0032481) 7.40E-03 92.17 2   

Table 14 
Top GO biological processes ordered by combined score, for A549-ACE2 cells.  

GO Biological Process p-value c-score Cluster 

positive regulation of heat generation (GO:0031652) 8.32E-03 3921.08 0 
regulation of fever generation (GO:0031620) 8.32E-03 3921.08 0 
positive regulation of fever generation (GO:0031622) 8.32E-03 2825.38 0 
regulation of vascular wound healing (GO:0061043) 8.32E-03 1765.21 0 
positive regulation of steroid biosynthetic process (GO:0010893) 8.32E-03 1765.21 0 
aerobic electron transport chain (GO:0019646) 3.06E-20 833.55 2 
mitochondrial ATP synthesis coupled electron transport (GO:0042775) 3.06E-20 801.88 2 
mitochondrial electron transport, NADH to ubiquinone (GO:0006120) 2.72E-13 692.38 2 
L-phenylalanine catabolic process (GO:0006559) 4.28E-03 637.69 2 
amino acid catabolic process (GO:1902222) 4.28E-03 637.69 2 
ribose phosphate metabolic process (GO:0019693) 4.28E-03 637.69 2 
quinone catabolic process (GO:1901662) 4.28E-03 637.69 2 
cellular glucuronidation (GO:0052695) 9.25E-03 426.04 1 
acyl-CoA biosynthetic process (GO:0071616) 2.56E-05 292.54 2 
acetyl-CoA biosynthetic process (GO:0006085) 7.63E-04 291.06 2 
NADH dehydrogenase complex assembly (GO:0010257) 3.07E-10 286.82 2 
mitochondrial respiratory chain complex I assembly (GO:0032981) 3.07E-10 286.82 2 
mitochondrial respiratory chain complex assembly (GO:0033108) 4.09E-10 198.40 2 
L-phenylalanine metabolic process (GO:0006558) 5.27E-03 194.75 2 
secondary alcohol biosynthetic process (GO:1902653) 8.13E-06 177.46 2 
mitochondrial electron transport (GO:0006122) 2.48E-03 171.57 2 
cholesterol biosynthetic process (GO:0006695) 1.04E-05 165.42 2 
heme biosynthetic process (GO:0006783) 2.74E-04 148.92 2 
fatty-acyl-CoA metabolic process (GO:0035337) 2.74E-04 148.92 2 
sterol biosynthetic process (GO:0016126) 2.56E-05 135.90 2   
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Table 15Top GO biological processes ordered by combined score, for Calu3 cells.  

GO Biological Process p-value c-score Cluster 

secondary alcohol biosynthetic process (GO:1902653) 7.95E-16 1990.21 0 
regulation of ribonuclease activity (GO:0060700) 7.19E-05 1921.48 2 
negative regulation of viral process (GO:0048525) 2.57E-26 1907.45 2 
negative regulation of viral genome replication (GO:0045071) 8.48E-23 1896.45 2 
cholesterol biosynthetic process (GO:0006695) 7.95E-16 1858.91 0 
sterol biosynthetic process (GO:0016126) 2.75E-15 1541.71 0 
defense response to symbiont (GO:0140546) 9.30E-31 1498.91 2 
type I interferon signaling pathway (GO:0060337) 7.48E-22 1405.26 2 
cellular response to type I interferon (GO:0071357) 7.48E-22 1405.26 2 
defense response to virus (GO:0051607) 9.30E-31 1396.78 2 
regulation of viral genome replication (GO:0045069) 9.17E-19 1016.38 2 
regulation of nuclease activity (GO:0032069) 1.78E-04 880.78 2 
positive regulation of extrinsic apoptotic signaling pathway (GO:1902043) 1.78E-04 880.78 2 
cytokine-mediated signaling pathway (GO:0019221) 9.36E-44 869.33 2 
isopentenyl diphosphate biosynthetic process (GO:0009240) 6.97E-03 735.60 0 
negative regulation of lymphocyte differentiation (GO:0045620) 3.64E-04 546.31 2 
positive regulation of gliogenesis (GO:0014015) 3.64E-04 546.31 2 
positive regulation of smooth muscle cell differentiation (GO:1905065) 3.64E-04 546.31 2 
negative regulation of innate immune response (GO:0045824) 9.07E-10 500.91 2 
cellular response to interferon-gamma (GO:0071346) 2.10E-16 485.61 2 
cellular response to cytokine stimulus (GO:0071345) 3.66E-28 483.06 2 
positive regulation of heat generation (GO:0031652) 2.52E-03 479.71 2 
exocyst localization (GO:0051601) 2.52E-03 479.71 2 
regulation of fever generation (GO:0031620) 2.52E-03 479.71 2 
positive regulation of glial cell proliferation (GO:0060252) 2.52E-03 479.71 2  

Predictive modeling: enrichment per cell line  

Table 16 
Top statistically relevant GO biological processes ordered by combined score for NHBE cells using Random Forests.  

GO Biological Processes p-value c-score 

positive regulation of monocyte chemotactic protein-1 production (GO:0071639) 4.06E-03 718.81 
chronic inflammatory response (GO:0002544) 2.24E-02 558.06 
positive regulation of glial cell proliferation (GO:0060252) 2.24E-02 558.06 
positive regulation of heat generation (GO:0031652) 2.24E-02 558.06 
response to salt stress (GO:0009651) 2.24E-02 558.06 
regulation of fever generation (GO:0031620) 2.24E-02 558.06 
regulation of monocyte chemotactic protein-1 production (GO:0071637) 8.10E-03 402.78 
positive regulation of fever generation (GO:0031622) 2.70E-02 395.36 
ISG15-protein conjugation (GO:0032020) 2.70E-02 395.36 
positive regulation of histone phosphorylation (GO:0033129) 2.70E-02 395.36 
toll-like receptor 4 signaling pathway (GO:0034142) 3.02E-03 312.35 
positive regulation of gliogenesis (GO:0014015) 3.17E-02 300.93 
regulation of calcidiol 1-monooxygenase activity (GO:0060558) 3.17E-02 300.93 
negative regulation of MyD88-independent toll-like receptor signaling (GO:0034128) 3.17E-02 300.93 
intermediate filament bundle assembly (GO:0045110) 3.17E-02 300.93 
positive regulation of granulocyte macrophage colony-stimulating factor (GO:0032725) 1.33E-02 268.34 
interleukin-21-mediated signaling pathway (GO:0038114) 3.55E-02 239.87 
cellular response to interleukin-21 (GO:0098757) 3.55E-02 239.87 
vascular associated smooth muscle cell differentiation (GO:0035886) 3.55E-02 239.87 
regulation of MyD88-independent toll-like receptor signaling pathway (GO:0034127) 3.55E-02 239.87 
positive regulation of osteoclast differentiation (GO:0045672) 1.57E-02 239.65 
positive regulation of alpha-beta T cell proliferation (GO:0046641) 1.60E-02 215.79 
regulation of granulocyte macrophage colony-stimulating factor (GO:0032645) 1.60E-02 215.79 
regulation of gap junction assembly (GO:1903596) 4.07E-02 197.46 
cellular response to interleukin-9 (GO:0071355) 4.07E-02 197.46   

Table 17 
Top statistically relevant GO biological processes ordered by combined score for NHBE cells using XGBoost.  

GO Biological Processes p-value c-score 

regulation of integrin biosynthetic process (GO:0045113) 1.32E-02 8352.53 
chronic inflammatory response (GO:0002544) 1.32E-02 8352.53 
peptidyl-cysteine S-nitrosylation (GO:0018119) 1.32E-02 8352.53 
astrocyte development (GO:0014002) 1.32E-02 6499.56 
regulation of macromolecule biosynthetic process (GO:0010556) 1.32E-02 6499.56 
astrocyte differentiation (GO:0048708) 1.32E-02 5287.72 
leukocyte aggregation (GO:0070486) 1.32E-02 4436.86 
peptidyl-cysteine modification (GO:0018198) 1.32E-02 3808.55 

(continued on next page) 
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Table 17 (continued ) 

GO Biological Processes p-value c-score 

defense response to fungus (GO:0050832) 3.05E-02 1111.12 
glial cell development (GO:0021782) 3.05E-02 1006.18 
positive regulation of intrinsic apoptotic signaling pathway (GO:2001244) 3.92E-02 589.61 
regulation of intrinsic apoptotic signaling pathway (GO:2001242) 3.92E-02 425.07 
inorganic anion transport (GO:0015698) 3.92E-02 405.46 
positive regulation of apoptotic signaling pathway (GO:2001235) 3.92E-02 362.85 
pattern recognition receptor signaling pathway (GO:0002221) 3.92E-02 347.96 
antimicrobial humoral immune response (GO:0061844) 3.92E-02 327.57 
neutrophil chemotaxis (GO:0030593) 3.92E-02 292.57 
response to molecule of bacterial origin (GO:0002237) 3.92E-02 277.46 
granulocyte chemotaxis (GO:0071621) 3.92E-02 277.46 
chloride transport (GO:0006821) 3.92E-02 263.66 
positive regulation of growth (GO:0045927) 3.92E-02 263.66 
neutrophil migration (GO:1990266) 3.92E-02 259.33 
regulation of organelle organization (GO:0033043) 3.92E-02 247.05 
activation of endopeptidase activity involved in apoptotic process (GO:0006919) 3.92E-02 243.19 
positive regulation of neuron projection development (GO:0010976) 3.92E-02 218.84   

Table 18 
Top statistically relevant GO biological processes ordered by combined score, for A549 cells (Random Forest).  

GO Biological Processes p-value c-score 

RIG-I signaling pathway (GO:0039529) 2.01E-02 819.47 
positive regulation of dendritic cell cytokine production (GO:0002732) 2.08E-02 658.60 
cytoplasmic pattern recognition receptor signaling in response to virus (GO:0039528) 3.15E-02 463.95 
positive regulation of epidermal growth factor-activated receptor activity (GO:0045741) 3.65E-02 401.14 
positive regulation of vascular endothelial growth factor production (GO:0010575) 1.52E-02 314.50 
regulation of vascular endothelial growth factor production (GO:0010574) 1.52E-02 280.69 
positive regulation of nuclear division (GO:0051785) 1.52E-02 280.69 
positive regulation of defense response to virus by host (GO:0002230) 1.52E-02 266.02 
response to interferon-beta (GO:0035456) 1.52E-02 266.02 
regulation of interleukin-2 production (GO:0032663) 1.52E-02 240.53 
regulation of defense response to virus by host (GO:0050691) 2.02E-02 183.70 
positive regulation of mitotic nuclear division (GO:0045840) 2.02E-02 183.70 
positive regulation of interleukin-6 production (GO:0032755) 1.75E-02 120.65 
regulation of protein localization to plasma membrane (GO:1903076) 1.97E-02 111.57 
defense response to symbiont (GO:0140546) 1.52E-02 98.43 
defense response to virus (GO:0051607) 1.52E-02 88.09 
negative regulation of cytokine production (GO:0001818) 1.52E-02 84.74 
regulation of interleukin-6 production (GO:0032675) 4.07E-02 68.02 
cellular response to cytokine stimulus (GO:0071345) 1.52E-02 63.15 
positive regulation of cytokine production (GO:0001819) 2.02E-02 45.00 
cytokine-mediated signaling pathway (GO:0019221) 1.52E-02 38.92   

Table 19 
Top statistically relevant GO biological processes ordered by combined score, for A549 cells (XGBoost).  

GO Biological Processes p-value c-score 

negative regulation of substrate adhesion-dependent cell spreading (GO:1900025) 1.49E-02 3304.67 
negative regulation of cell morphogenesis involved in differentiation (GO:0010771) 1.49E-02 3304.67 
protein localization to vacuole (GO:0072665) 1.49E-02 3012.37 
regulation of lymphocyte activation (GO:0051249) 1.49E-02 2764.28 
negative regulation of T cell receptor signaling pathway (GO:0050860) 1.49E-02 2062.22 
regulation of protein localization to cell periphery (GO:1904375) 1.49E-02 1935.63 
negative regulation of protein localization to plasma membrane (GO:1903077) 1.49E-02 1822.54 
negative regulation of protein localization to cell periphery (GO:1904376) 1.49E-02 1822.54 
negative regulation of interleukin-2 production (GO:0032703) 1.49E-02 1720.94 
negative regulation of antigen receptor-mediated signaling pathway (GO:0050858) 1.49E-02 1470.20 
negative regulation of protein localization to membrane (GO:1905476) 1.49E-02 1400.90 
regulation of calcium-mediated signaling (GO:0050848) 1.49E-02 1278.76 
regulation of B cell activation (GO:0050864) 1.49E-02 1278.76 
regulation of protein localization to membrane (GO:1905475) 1.50E-02 1174.65 
regulation of T cell receptor signaling pathway (GO:0050856) 1.60E-02 971.56 
regulation of sodium ion transport (GO:0002028) 1.60E-02 938.42 
negative regulation of cell-substrate adhesion (GO:0010812) 1.68E-02 824.08 
cellular response to tumor necrosis factor (GO:0071356) 1.49E-02 773.33 
regulation of interleukin-2 production (GO:0032663) 1.85E-02 657.83 
negative regulation of ERK1 and ERK2 cascade (GO:0070373) 1.85E-02 625.39 
regulation of substrate adhesion-dependent cell spreading (GO:1900024) 1.85E-02 610.23 

(continued on next page) 
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Table 19 (continued ) 

GO Biological Processes p-value c-score 

interferon-gamma-mediated signaling pathway (GO:0060333) 2.35E-02 426.61 
regulation of ion transport (GO:0043269) 2.45E-02 353.55 
response to interferon-gamma (GO:0034341) 2.45E-02 348.01 
regulation of protein localization to plasma membrane (GO:1903076) 2.45E-02 348.01  
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