Skip to main content
. 2022 Apr 25;146:105443. doi: 10.1016/j.compbiomed.2022.105443

Table 7.

Statistics for comparing the performance of the tested biclustering algorithms with different preprocessing techniques. Note: |B| corresponds to the number of biclusters; |I|¯ is the average number of genes per bicluster; σ|I|the standard deviation of genes per bicluster; |J|¯ the average number of conditions per bicluster; σ|J| the standard deviation of the number of conditions per bicluster; and finally Terms¯ the average number of enriched terms per bicluster.

Algorithm Preprocessing |B| |I|¯ σ|I| |J|¯ σ|J| Terms¯
BicPAMS p < 0.01 80 208.03 18.54 3.16 0.53 28.91
p < 0.05 79 3526.66 301.50 3.24 0.64 341.70
ANOVA (top 200) 7 188.29 5.95 10.00 9.70 10.57
ANOVA (top 1000) 20 676.05 29.13 5.00 4.22 55.75
ANOVA (top 5000) 57 2106.18 128.36 3.61 1.25 131.32
Cheng and Church p < 0.01 50 15.60 12.59 12.92 5.90 3.46
p < 0.05 100 55.90 16.23 34.79 9.96 1.68
ANOVA (top 200) 8 25.00 23.49 21.38 12.56 6.50
ANOVA (top 1000) 56 17.86 15.27 17.89 10.67 4.41
ANOVA (top 5000) 100 34.54 24.10 22.76 11.25 2.47
Plaid p < 0.01 10 64.70 55.53 14.20 5.60 29.90
p < 0.05 10 776.40 922.43 11.60 6.89 24.10
ANOVA (top 200) 8 44.00 30.76 12.88 8.43 9.88
ANOVA (top 1000) 10 159.50 100.72 12.20 7.29 18.70
ANOVA (top 5000) 10 739.20 530.04 13.10 7.48 43.40
xMotifs p < 0.01 10 31.90 17.17 8.20 2.86 1.70
p < 0.05 10 654.50 365.82 6.00 0.00 6.30
ANOVA (top 200) 6 30.33 34.30 24.50 9.73 10.67
ANOVA (top 1000) 10 71.90 103.54 11.10 4.28 7.60
ANOVA (top 5000) 10 326.00 538.95 6.20 0.60 5.30