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INTRODUCTION

Surveillance of postoperative complications, including surgical site infections (SSI), can 

provide healthcare systems with reliable data to support continuous quality improvement 

(CQI) efforts.1, 2 For example, these data can allow healthcare systems to identify targets 

for CQI and conduct follow-up studies to determine the efficacy of interventions.3, 4 

Several nationwide surveillance systems have been developed focusing on postoperative 

complications such as the American College of Surgeons National Surgical Quality 

Improvement Program (NSQIP) and the Centers for Disease Control National Healthcare 

Safety Network.1, 5, 6 While these programs provide high-quality clinical data to drive CQI 

efforts, both programs rely on manual chart abstraction to extract key clinical variables 

from the medical record limiting the scalability and generalizability across large healthcare 

systems.7

In 2008, the Health Information Technology for Economic and Clinical Health Act led 

to the rapid adoption of Electronic Healthcare Records (EHR) in US hospitals.8 By 2017 

over 90% of hospitals had implemented an EHR most with advanced capabilities such 

as computerized provider order entry (CPOE), clinical decision support, and electronic 

provider documentation.9 The availability of electronic healthcare data in combination with 

artificial intelligence approaches, such as machine learning and natural language processing 

(NLP), has created opportunities to develop automated tools to support CQI efforts.10, 11

CORRESPONDING AUTHOR AND REQUEST FOR REPRINTS: Brian T. Bucher, MD, Assistant Professor of Surgery, Division of 
Pediatric Surgery, Department of Surgery, University of Utah School of Medicine, 100 North Mario Capecchi Drive, Suite #3800, Salt 
Lake City, UT 84113, Phone: 801-662-2950, Fax: 801-662-2980, brian.bucher@utah.edu. 

CONFLICT OF INTEREST DISCLOSURE
Dr. Chapman reported consulting for IBM and serving on the Scientific Advisory Board of Health Fidelity. These companies had no 
role in the study. No other disclosures are reported.

HHS Public Access
Author manuscript
Ann Surg. Author manuscript; available in PMC 2022 April 26.

Published in final edited form as:
Ann Surg. 2020 October ; 272(4): 629–636. doi:10.1097/SLA.0000000000004133.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To demonstrate the value of electronic healthcare data in the surveillance of postoperative 

complications, Bucher, et. al. developed a machine learning approach using postoperative 

CPOE events for the detection of SSIs. Their approach demonstrated a sensitivity ranging 

from 62% to 88% and a specificity ranging from 72% to 92% compared to manual chart 

review for identification of SSIs in a single academic healthcare system.12 The use of 

structured EHR data (table-based data like CPOE events, laboratory results, vital signs, 

etc.) is inherently limited for surveillance of SSIs. These events are typically noted as a 

clinical diagnosis primarily documented in clinical unstructured text notes.13 To address this 

limitation, FitzHenry and Murff developed an NLP approach for the identification of SSIs 

in the VA Healthcare System. They published a sensitivity of 77% and a specificity of 63% 

compared to the VA Surgical Quality Improvement Program manual chart review.14, 15 

While their study was the first to demonstrate the utility of NLP for surveillance of 

postoperative complications, the performance of their system is inherently limited. The 

methodology focused on a defined list of concepts in clinical text (e.g. “purulent”) and 

lacked a demonstration of generalizability outside the VA healthcare system.

In this paper, we address these limitations by presenting the development and validation 

of a portable NLP system capable of automated surveillance of SSI. We hypothesized 

that an NLP approach for surveillance of SSIs can be developed with high sensitivity and 

specificity, and the NLP system can be implemented across separate independent healthcare 

systems using different EHRs.

METHODS

Setting

The study population was drawn from two independent healthcare systems located in Utah 

that service the intermountain west: the University of Utah Health and Intermountain 

Healthcare. The University of Utah has maintained an EHR serviced by Epic since 

September 1, 2015. Intermountain Healthcare has maintained a separate EHR, Help2, locally 

serviced since 1996. The institutional review boards at each health care system approved the 

study, granting a waiver of informed consent for the use of patient healthcare data.

Participants

Patients were included in the study if their operative course underwent review by NSQIP-

trained surgical clinical reviewers (SCR). The NSQIP methodology has been described 

previously.16 NSQIP SCRs select a random stratified set of patients undergoing surgical 

procedures and review all records for postoperative complications occurring within 30 days 

of the operative procedure.7 If a patient’s postoperative documentation is not complete 

in the EHR, attempts are made to contact the patient to complete 30-day follow-up. We 

included patients who were treated at one health care system from September 1, 2015 

through August 30, 2017 as a training cohort and patients treated from September 1, 2017 

through December 31, 2018 as an internal validation cohort. Patients who were treated at the 

other healthcare system from September 1, 2008 through June 30, 2017 were included as an 

external validation cohort.
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Data Sources

We extracted the NSQIP reviewed cases for patient demographics, procedure characteristics, 

and outcomes for each cohort. The enterprise data warehouse at each healthcare system 

was queried using the NSQIP case identifiers for all electronic clinical text notes such as 

history and physical, operative reports, progress notes, nursing notes, radiology reports, and 

discharge summaries from the date of surgery to 30 days after the operative date. All patients 

who underwent NSQIP SCR review were included in the present study even if the complete 

documentation was not present for the entire 30-day postoperative period.

Reference Standard

We used the NSQIP SSI definition as the reference standard for the study. As the NSQIP 

definitions for SSI have changed over time, we used the NSQIP definitions of SSI from the 

2017 Operations Manual.17 Each SSI was subsequently characterized as Superficial, Deep, 

or Organ Space according to standard NSQIP definitions. Each SSI was also characterized if 

an infection was present at the time of surgery (PATOS).

NLP Development

The description of our NLP architecture EasyCIE has been previously reported.18, 19 

EasyCIE is a lightweight, rules-based NLP tool that supports quick and easy implementation 

of clinical information extractions. EasyCIE uses a set of highly optimized NLP components 

built on top of n-Trie20 (a fast rule processing engine), that includes a section detector, a 

sentence segmentater21, a named entity recognizer, a context detector22, a feature inferencer, 

a document inferencer23, and a patient inferencer.

EasyCIE builds a knowledge base during the training process with information extraction 

models (IEM) including a term mapping component, essentially a semantic representation of 

target concepts (“purulent”, “incision”, “abscess”, “Piperacillin,” etc.) and the corresponding 

contextual modifiers (i.e., affirmation, negation, temporality, anatomy, status of the 

infection, status of healing, purpose of treatment, and status of wound closure). Easy-CIE 

aggregates each IEM-term identified in a document in a rules-based manner to infer a 

document level classification.23 Subsequently, Easy-CIE aggregates documents along a 

temporal timeline to infer a patient-level classification.

NLP Rule Development

The NLP rules were developed initially using the NSQIP definitions for SSI as defined 

in the 2017 Operations Manual and Appendix.17, 18 We subsequently enriched the rules 

for synonyms using terms from the Unified Medical Language System (UMLS) from 

the National Library of Medicine.24 Using these rules, EasyCIE infers either SSI present 

or absent for each operative episode. To accomplish this inference, EasyCIE utilizes the 

operative report for each procedure to infer whether an SSI was PATOS, if the wound was 

closed or left open, and/or if the PATOS infection was healed within 30 days after surgery. 

We reviewed the rules manually iterating over the training cohort until all addressable errors 

were resolved. The final software package, EasyCIE-SSI, including the source code and SSI 

knowledgebase can be found at https://github.com/jianlins/EasyCIE_GUI.
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Validation

After training was finalized, the performance of EasyCIE was evaluated blindly on both the 

internal and external validation cohorts without any rule modification.

Statistical Analysis

The analysis was performed using R v3.6 Statistical Software Package. We performed 

univariate analysis on the training, internal validation, and external validation cohort using 

the Pearson Chi-square test for discrete variables, and Student’s T-Test for continuous 

variables. The Bonferroni method was used to adjust for multiple comparisons on the 

univariate analysis.25 The performance of EasyCIE-SSI was evaluated for sensitivity, 

specificity, areas under the receiver operating curve (AUC), positive predictive value, 

negative predictive value, positive likelihood ratio, and negative likelihood ratio.26–28 A true 

positive occurred if EasyCIE-SSI inferred an SSI was present for the operative episode and 

the NSQIP SCR concluded any type of SSI was present, regardless of SSI depth. We used 

bootstrapping with 2000 iterations to obtain 95% confidence intervals for each performance 

metric.29 To evaluate the difference between the performance of EasyCIE-SSI between the 

internal and external validation cohorts, the Test of Two Proportions was used.30 We also 

performed an analysis of procedure subgroup characteristics including procedure types, 

wound classification, inpatient/outpatient status, and emergent procedures. A p-value of less 

than 0.05 was considered statistically significant.

RESULTS

A total of 21,784 operative events were included in the study and were divided into a 

training cohort (4574 events), an internal validation cohort (1850 events), and an external 

validation cohort (15360 events). (Table 1) In the internal validation cohort, compared 

to the training cohort, there were small significant differences in the rate of patients 

undergoing appendectomy (17% vs. 12%, p<0.001) and contaminated procedures (20% vs. 

15%, p<0.001). In the external validation cohort, compared to the training cohort, there were 

small significantly higher rates of white patients (92% vs. 91%, p<0.001); and lower rates of 

patients with independent functional status (98% vs. 99%, p<0.001), steroid use (4% vs. 6%, 

p<0.001), and open wounds (3% vs. 6%, p<0.001). The external validation cohort also had 

significantly higher rates of appendectomy (17% vs. 14%, p<0.001) and vascular procedures 

(13% vs. 11%, p<0.001); and significantly lower rates of breast (9% vs. 11%, p<0.001), 

esophagus (3% vs 4%, p<0.001), and stomach (1% vs. 4%, p<0.001) procedures compared 

to the training cohort. In addition, in the external validation cohort, there were higher rates 

of emergent procedures (21% vs. 4%, p<0.001) and shorter operative duration (mean (SD): 

99 (94) min vs. 120 (100) min, p<0.001).

Within each cohort, the incidence of any SSI was 6% (training), 4% (internal validation), 

and 5% (external validation). (Table 1) There was a significantly lower rate of Organ/Space 

SSI in the external validation cohort compared to the training cohort (2% vs 3%, p<0.001). 

There were no significant differences in the incidence of any other SSI or SSI subtype 

between the training and internal or external validation cohorts.
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The performance of EasyCIE-SSI for the detection of an SSI is shown in Table 2. For 

detection of any SSI, external validation (compared to internal validation) had a lower 

sensitivity (0.79 vs. 0.94, p=0.002), higher specificity (0.92 vs 0.88, p=0.01), and lower 

AUC (0.852 vs. 0.912, p<0.001). On subgroup analysis, for detection of Superficial SSI, 

there was a significantly lower sensitivity (0.71 vs. 0.92, p=0.047), higher specificity (0.90 

vs 0.86, p=0.004), and lower AUC (0.805 vs 0.887, p<0.001) in the external validation 

cohort compared to the internal validation cohort. There was a significantly lower AUC for 

the detection of Deep SSI in external validation compared to internal validation (0.850 

vs 0.925, p<0.001). There was no significant difference between internal and external 

validation in the performance of EasyCIE-SSI for the detection of Organ/Space SSI.

The value of a positive and negative EasyCIE-SSI result is shown in Table 3. Given the 

low prevalence of SSI, the positive predictive value of EasyCIE-SSI was low: 0.24 (95%CI: 

0.22–0.27) for internal validation and 0.33 (95%CI: 0.31–0.34) for external validation. In 

external validation, compared to internal validation, there was a significant increase in both 

the positive likelihood ratio (PLR) (9.8 vs. 7.9, p<0.001) and negative likelihood ratio (NLR) 

(0.23 vs. 0.06, p<0.001).

We next evaluated the performance of EasyCIE-SSI in several procedure subgroups. The 

differences in the performance of EasyCIE-SSI between the internal and external validation 

cohorts are show in Figure 1. Compared to the internal validation cohort, the sensitivity 

of EasyCIE-SSI for detection of SSI in the external validation cohort was significantly 

worse for hernia (absolute difference (95%CI): −17.3% (−33.7%– −1%)), and skin/soft 

tissue procedures (absolute difference (95%CI): −43.2% (−77.2% – −9.3%)). EasyCIE-SSI 

had a significantly lower sensitivity for detection of SSI in clean procedures (absolute 

difference (95%CI): −26.6% (−42.0% – −11.2%)), and outpatient procedures (absolute 

difference (95%CI): −31.7% (−46.2% – −17.3%)) in external validation compared to 

internal validation.

We next analyzed the performance errors in EasyCIE-SSI compared to the reference 

standard NSQIP review (Table 4). We chose to focus on false-negative errors given 

the importance of missing an SSI identified on NSQIP review. In the training, internal 

validation, and external validation cohort 68%, 50%, and 56% respectively, of the false-

negative errors were due to the documentation not being present in electronic format, 

respectively. These were most commonly due to outside documentation obtained from 

the NSQIP SCR patient contact. Other causes of errors associated with the NLP pipeline 

included errors in named entity recognition, local inferencing, document inferencing, and 

patient inferencing.

DISCUSSION

In this paper, we present the development and validation of a natural language processing 

approach, EasyCIE-SSI, for automated surveillance of surgical site infections. There are 

several novel and significant findings of our work. First, SSI surveillance can be achieved 

with high sensitivity (94% in internal validation), specificity (86% in internal validation), 

and distinction (AUC 0.912 in internal validation). Second, EasyCIE is portable across 
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EHRs and can be implemented in health care systems without the need for significant 

retraining. Lastly, the post-discharge surveillance of SSI continues to remain a challenge 

especially for clean, skin/soft tissue, and outpatient procedures despite the benefits of natural 

language processing.

Natural language processing has been used to identify postoperative complications in 

several previous studies. A study by Murff, et. al., developed an NLP tool, Post-Operative 

Event Monitor (POEM), for automated surveillance of several postoperative complications, 

including SSI, in the VA healthcare system.14, 15 In their approach, they electronically 

parsed clinical notes for medical terminology and mapped to SNOMED CT concepts. 

They subsequently created rules using a combination of SNOMED CT concepts to detect 

the presence or absence of a surgical site infection compared to the VA Surgical Quality 

Improvement Program Review. Their sensitivity and specificity for the detection of surgical 

site infections was 77% and 63%, respectively. Given that their study used a validation 

cohort from the same health care system, the appropriate comparison to the current 

study would be comparing to the internal validation cohort, which demonstrated improved 

sensitivity and specificity of 94% and 88%.

Several reasons contribute to our improved performance compared to previous studies. 

First, we utilized an expanded vocabulary for SSI detection including signs, symptoms, 

treatments, and medications related to SSIs. Second, we utilized information located in 

the operative report, including inferring for evidence of infection present at the time of 

surgery (PATOS) and inferring based on the status of the wound closure. This information 

is key in identifying subsequent events in the patient’s postoperative course. For example, 

if the wound was not closed at the time of the initial operation, a superficial infection at 

the surgical site will not be considered as an SSI until the wound is documented to be 

closed. Lastly, we integrated temporal information across the patient’s postoperative course. 

Integrating temporal information improves NLP accuracy by inferring the status of an SSI 

if there is conflicting information documented multiple notes.31 For example, if the patient 

had an intrabdominal abscess at the time of the operation then, understanding when a 

reference to intrabdominal abscess refers to the original abscess which has resolved or a 

newly developed organ/space infection is necessary to minimize false-positive errors.

We demonstrated the portability of our approach by implementing EasyCIE-SSI across 

two independent healthcare systems that utilize different electronic health care records. 

Portability across healthcare systems is feasible because EasyCIE-SSI is directly interacting 

with the database using a general-purpose NLP-database schema and utilizes free-text 

clinical notes commonly available in enterprise data warehouses of healthcare systems.32 

Therefore, our approach can easily be implemented locally in health care systems or through 

remote services utilizing Fast Healthcare Interoperability Resources (FHIR).33 However, 

there are key differences in the performance of EasyCIE-SSI between the internal and 

external validation cohorts. Overall, we observed a 15% decrease in Sensitivity and a 

4% increase in Specificity between our internal and external validation cohorts. Given 

NSQIP definitions have changed over time, the performance of EasyCIE-SSI in the external 

validation is likely the lower bound of performance as the reference standard labels were 

based on an older definition of SSI by NSQIP. We observed larger decreases in the 
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Sensitivity of EasyCIE-SSI for Superficial SSI (−20%), Clean Procedures (−26%), Skin/Soft 

Tissue Procedures (−43%), and Outpatient Procedures (−31%).

To get a better understanding of the reasons for the differences between the Sensitivity of 

EasyCIE-SSI in the internal and external validation cohorts, we performed an error analysis 

of all the false negative errors occurring in the validation cohorts. The most common reason 

for a false negative was the documentation necessary to diagnose an SSI did not exist in the 

enterprise data warehouse of the health care system. The lack of documentation accounted 

for over 50% of the false-negative errors in both the internal and external validation cohorts. 

We intentionally did not exclude these patients from analysis as we aimed to demonstrate 

the performance of an NLP approach for SSI surveillance in a “real world” setting where 

post-procedural documentation may be limited. If the patients with a lack of documentation 

were removed from our analysis, the Sensitivity of EasyCIE-SSI on the internal and external 

validation cohorts increases to 97% and 89%, respectively. Other false-negative errors were 

due to technical aspects of the NLP pipeline, including named entity recognition (NER) 

errors, local, document, and patient inferencing errors. NER errors could be mitigated 

with additional training data before NLP implementation. For example, hospital antibiotic 

formulations can be anticipated and added to the rules dictionary to minimize named entity 

recognition errors. The inferencing errors represent the complexities of clinical language and 

remain general NLP challenge.22, 31 However, NLP systems can be designed to minimize 

false positive or false negative errors to maximize sensitivity or specificity.

The lack of documentation also explains the observed differences between the likelihood 

ratios between our internal and external validation cohorts. In external validation, both the 

PLR (9.83 vs 7.91) and NLR increased (0.23 vs 0.06), compared to internal validation. 

Due to the higher number of patients who lacked post-discharge documentation in external 

validation, there are fewer false positives and more false negatives in the external validation 

cohort. However, given the low prevalence of SSIs, the decrease in false positives was 

greater than the increase in false negatives. Therefore the value of a positive result increases 

(increase PLR), while the value of a negative result decreases (increased NLR) in external 

validation.

The organization of the healthcare systems included in the study can explain the large 

increase in the lack of documentation observed in external validation. The healthcare 

system for the internal evaluation cohort is a vertically integrated healthcare system with 

employed physicians and providers.34 The external validation cohort is a horizontally 

integrated healthcare system with both employed and affiliated physicians and providers. 

In the vertically integrated healthcare system, all the providers use the same electronic 

documentation for postoperative care. In the horizontally integrated healthcare system, 

the providers have the option of using the EHR of the healthcare system for outpatient 

documentation. Our findings demonstrate an NLP approach to SSI surveillance is limited 

in the detection of post-discharge events outside of vertically integrated healthcare systems. 

Given the majority of post-discharge readmissions, after surgical procedures are due to new-

onset postoperative complications, alternative strategies should be investigated to improve 

post-discharge surveillance.35
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The implications of adopting an NLP approach for automated SSI surveillance should be 

considered with caution for quality assessment programs. Given the low prevalence of 

SSIs, the positive predictive value of EasyCIE-SSI was predictably low (24%–33%), and 

the negative predictive value predictably near perfect (greater than 99%) in both cohorts. 

In addition, the PLR and NLR both increased in external validation. Therefore, after the 

implementation of EasyCIE at a new healthcare system without any additional training, a 

negative result could be trusted. However, a positive result would still require manual chart 

review for confirmation of SSI. Given the high sensitivity and high negative predictive value 

of our NLP approach, NSQIP SCRs could safely restrict their review to positively flagged 

patients after an NLP evaluation. This option potentially could lead to a decrease in chart 

review burden, allowing an expanded surveillance scope of cases across a healthcare system 

at a lower cost. Also, our approach could easily be extended to other common postoperative 

complications including urinary tract infection, pneumonia,36 venous thromboembolism, and 

pulmonary embolism.22

There are several limitations to the present study. First, the data were abstracted from 

two independent healthcare systems in a single geographic region. We cannot account for 

variation in our NLP performance across geographic regions due to differences in clinical 

language and treatments between healthcare systems. However, the benefit of a rules-based 

NLP system is that it can easily be adapted to language and terminology differences between 

healthcare systems with a small amount of training data. Second, the definition of SSI was 

based on NSQIP methodology. The performance EasyCIE for SSI surveillance based on 

other definitions of SSI, such as the NHSN definition, is unknown. Likely, small variations 

in the definitions of operative episodes and an SSI would lead to the diminished performance 

of EasyCIE-SSI compared to other surveillance systems. We limited our definition of 

operative episodes to procedures defined by NSQIP methodology. It is not generalizable 

at this time to other procedures including orthopedic and neurosurgical procedures. Lastly, 

we included only clinical text notes and did not include any structured data fields in our 

surveillance approach, such as laboratory values, microbiology reports, and medication 

administration. This information was only included if documented in the clinical notes. 

Additional research studies are needed to determine if the inclusion of these structured data 

fields in combination with NLP would improve the overall performance of our surveillance 

approach.

CONCLUSION

We report the development and validation of a portable natural language processing 

approach for surveillance of postoperative surgical site infections. We demonstrate that 

surveillance of surgical site infections can be achieved with high sensitivity and specificity 

in two independent healthcare systems. We observe an NLP approach is limited in 

the surveillance of some post-discharge events particularly among skin and soft tissue 

procedures. Since the tool’s NPV is near perfect, using an NLP approach would allow a 

healthcare system to focus their chart review resources solely on NLP-positive cases, saving 

considerable effort and cost in the review process. This approach can easily be integrated 

into the NSQIP methodology at independent healthcare systems and can be generalized to 

other postoperative complications.
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FIGURE 1. 
Subgroup analysis of the difference in sensitivity (left) and specificity (right) of EasyCIE-

SSI between the external validation cohort compared to the internal validation cohort by 

procedure characteristics. The error bars represent 95% Confidence Interval for each point 

estimate and the dotted line represents 0 or no difference between external and internal 

validation. Sensitivity was uniformly decreased in External Validation, with characteristics 

whose error bar excludes 0, for example, Clean Procedures, representing statistically 

significant decreases.
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TABLE 1.

Patient and Procedure Characteristics and Outcomes for Patients in Training, Internal Validation, and External 

Validation Cohorts.

Training Internal Validation External Validation

(n=4574) (n=1850) (n=15360)

Patient Characteristics

Age (Mean Years, SD) 53 (17) 53 (17) 53 (18)

Sex (male, %) 2248 (49%) 923 (50%) 7536 (49%)

Race (%)

 White 4181 (91%) 1679 (91%) 14143 (92%)

 Black or African American 48 (1%) 23 (1%) 126 (1%)

 Asian 69 (2%) 31 (2%) 191 (1%)

 Native Hawaiian or Other Pacific Islander 30 (1%) 12 (1%) 147 (1%)

 American Indian or Alaska Native 64 (1%) 28 (2%) 59 (0%)

Hispanic Ethnicity (%) 455 (10%) 173 (9%) 1382 (9%)

BMI (Mean, SD) 29 (7.3) 29 (6.7) 29 (7.1)

Independent Functional Health Status (%) 4518 (99%) 1832 (99%) 14986 (98%)*

Congestive Heart Failure (%) 21 (0%) 4 (0%) 123 (1%)

Hypertension (%) 1533 (34%) 597 (32%) 5421 (35%)

COPD (%) 114 (2%) 44 (2%) 410 (3%)

Current Smoker (%) 660 (14%) 237 (13%) 2236 (15%)

Dialysis (%) 93 (2%) 26 (1%) 280 (2%)

Diabetes Mellitus (%) 630 (14%) 253 (14%) 2123 (14%)

Steroid Use (%) 284 (6%) 139 (8%) 639 (4%)*

Weight Loss (%) 122 (3%) 31 (2%) 371 (2%)

Open Wound (%) 262 (6%) 101 (5%) 506 (3%)*

Procedure Characteristics

Procedure Type (%)

 Appendectomy 536 (12%) 314 (17%)* 2583 (17%)*

 Breast 518 (11%) 182 (10%) 1366 (9%)*

 Colon/Rectal 826 (18%) 394 (21%) 2533 (16%)

 Esophagus 184 (4%) 66 (4%) 390 (3%)*

 General Abdominal 138 (3%) 30 (2%) 516 (3%)

 Hepatobiliary 448 (10%) 184 (10%) 1545 (10%)

 Hernia 806 (18%) 327 (18%) 3184 (21%)

 Skin/Subcutaneous 413 (9%) 135 (7%) 987 (6%)*

 Stomach 204 (4%) 31 (2%)* 205 (1%)*

 Vascular 499 (11%) 186 (10%) 2037 (13%)*

Outpatient Procedure (%) 2378 (52%) 993 (54%) 7578 (49%)

Emergent Procedure (%) 188 (4%) 45 (2%) 3224 (21%)*
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Training Internal Validation External Validation

(n=4574) (n=1850) (n=15360)

Wound Classification (%)

 Clean 2349 (51%) 873 (47%) 7874 (51%)

 Clean/Contaminated 1143 (25%) 425 (23%) 3861 (25%)

 Contaminated 676 (15%) 376 (20%)* 2402 (16%)

 Dirty/Infected 406 (9%) 176 (10%) 1223 (8%)

Operative Duration (minutes, SD) 120 (100) 120 (110) 99 (94)*

Hospital Length of Stay (days, SD) 3.4 (9.5) 3.1 (5.6) 3.2 (6.2)

Outcomes

Superficial SSI (%) 97 (2%) 24 (1%) 389 (3%)

Deep SSI (%) 14 (0%) 4 (0%) 94 (1%)

Organ/Space SSI (%) 155 (3%) 47 (3%) 252 (2%)*

SSI Present at the Time of Surgery (%) 40 (1%) 19 (1%) 66 (0%)

Any SSI 255 (6%) 72 (4%) 721 (5%)

*
p<0.001 compared to Training Cohort; SD: Standard Deviation; BMI: Body Mass Index; COPD: Chronic Obstructive Pulmonary Disease
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TABLE 2.

EasyCIE-SSI Performance in the Training, Internal and External Validation Cohorts

Training Internal Validation External Validation p-Value*

Sensitivity

Superficial SSI 0.90 (0.82–0.95) 0.92 (0.79–1.00) 0.71 (0.66–0.75) 0.047

Deep SSI 1.00 (1.00–1.00) 1.00 (1.00–1.00) 0.81 (0.72–0.88) 0.757

Organ/Space SSI 0.92 (0.88–0.96) 0.96 (0.89–1.00) 0.90 (0.86–0.94) 0.334

SSI PATOS 1.00 (1.00–1.00) 0.95 (0.84–1.00) 0.88 (0.79–0.95) 0.665

Any SSI 0.91 (0.88–0.95) 0.94 (0.89–0.99) 0.79 (0.75–0.82) 0.002

Specificity

Superficial SSI 0.86 (0.85–0.87) 0.86 (0.84–0.87) 0.90 (0.90–0.91) 0.004

Deep SSI 0.85 (0.84–0.86) 0.85 (0.83–0.87) 0.89 (0.89–0.90) 0.127

Organ/Space SSI 0.87 (0.86–0.88) 0.87 (0.85–0.88) 0.90 (0.90–0.90) 0.443

SSI PATOS 0.85 (0.84–0.86) 0.86 (0.84–0.87) 0.89 (0.88–0.89) 0.156

Any SSI 0.89 (0.88–0.90) 0.88 (0.86–0.89) 0.92 (0.92–0.92) 0.012

AUC

Superficial SSI 0.879 (0.848–00.91) 0.887 (0.830–0.944) 0.805 (0.782–0.827) 0.008

Deep SSI 0.924 (0.919–00.93) 0.925 (0.917–0.933) 0.850 (0.810–0.890) <0.0001

Organ/Space SSI 0.897 (0.876–00.92) 0.913 (0.883–0.943) 0.900 (0.882–0.919) 0.484

SSI PATOS 0.926 (0.921–00.93) 0.902 (0.849–0.954) 0.884 (0.845–0.924) 0.608

Any SSI 0.902 (0.884–00.92) 0.912 (0.884–0.940) 0.852 (0.837–0.868) <0.0001

*
p-Value: comparison of EasyCIE-SSI performance on external validation cohort compared to internal validation cohort; SSI: Surgical Site 

Infection, PATOS: Present at the Time of Surgery, AUC: Area Under the Receiver Operating Curve
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TABLE 3.

Value of EasyCIE-SSI Information in the Training, Internal and External Validation Cohorts

Training Internal Validation External Validation

Positive Predictive Value

Superficial SSI 0.12 (0.11–0.13) 0.08 (0.07–0.09) 0.16 (0.15–0.17)

Deep SSI 0.02 (0.02–0.02) 0.01 (0.01–0.02) 0.04 (0.04–0.05)

Organ/Space SSI 0.20 (0.19–0.22) 0.16 (0.14–0.18) 0.13 (0.12–0.14)

SSI PATOS 0.06 (0.05–0.06) 0.06 (0.05–0.07) 0.03 (0.03–0.04)

Any SSI 0.33 (0.31–0.35) 0.24 (0.22–0.27) 0.33 (0.31–0.34)

Negative Predictive Value

Superficial SSI 1.00 (1.00–1.00) 1.00 (1.00–1.00) 0.99 (0.99–0.99)

Deep SSI 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

Organ/Space SSI 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

SSI PATOS 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

Any SSI 0.99 (0.99–1.00) 1.00 (0.99–1.00) 0.99 (0.99–0.99)

Positive Likelihood Ratio

Superficial SSI 6.51 (6.46–6.56) 6.52 (6.45–6.60) 7.27 (7.21–7.30)

Deep SSI 6.58 (6.56–6.61) 6.68 (6.65–6.72) 7.43 (7.37–7.48)

Organ/Space SSI 7.28 (7.22–7.35) 7.38 (7.31–7.45) 9.03 (8.98–9.08)

SSI PATOS 6.85 (6.81–6.89) 6.69 (6.63–6.76) 8.00 (7.94–8.06)

Any SSI 8.39 (8.32–8.46) 7.91 (7.84–7.98) 9.83 (9.74–9.84)

Negative Likelihood Ratio

Superficial SSI 0.12 (0.12–0.13) 0.10 (0.09–0.11) 0.32 (0.32–0.33)

Deep SSI 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.22 (0.21–0.22)

Organ/Space SSI 0.09 (0.09–0.09) 0.05 (0.05–0.05) 0.11 (0.11–0.11)

SSI PATOS 0.00 (0.00–0.00) 0.06 (0.06–0.07) 0.14 (0.13–0.15)

Any SSI 0.10 (0.09–0.10) 0.06 (0.06–0.07) 0.23 (0.23–0.24)

SSI: Surgical Site Infection, PATOS: Present at the Time of Surgery, AUC: Area Under the Receiver Operating Curve

Ann Surg. Author manuscript; available in PMC 2022 April 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bucher et al. Page 17

TA
B

L
E

 4
.

Fa
ls

e 
N

eg
at

iv
e 

E
rr

or
 A

na
ly

si
s 

of
 E

as
yC

IE
-S

SI
 in

 th
e 

in
te

rn
al

 a
nd

 E
xt

er
na

l V
al

id
at

io
n 

C
oh

or
ts

.

E
rr

or
 T

yp
e

C
oh

or
t

D
es

cr
ip

ti
on

E
xa

m
pl

e
In

te
rn

al
 

V
al

id
at

io
n 

(n
=4

)
E

xt
er

na
l V

al
id

at
io

n 
(n

=1
55

)

D
oc

um
en

ta
tio

n 
N

ot
 

Pr
es

en
t

2 
(5

0%
)

88
 (

56
.8

%
)

T
he

 d
oc

um
en

ta
tio

n 
ne

ed
ed

 to
 id

en
tif

y 
an

 S
SI

 w
as

 n
ot

 a
va

ila
bl

e 
el

ec
tr

on
ic

al
ly

.
Pa

tie
nt

 tr
ea

te
d 

at
 n

on
-i

nd
ex

 f
ac

ili
ty

 p
os

t d
is

ch
ar

ge
,

N
am

ed
 E

nt
ity

 R
ec

og
ni

tio
n

20
 (

12
.9

%
)

T
he

 lo
ca

l t
er

m
in

ol
og

y 
w

as
 n

ot
 in

 th
e 

di
ct

io
na

ry
 r

eq
ui

re
d 

to
 

id
en

tif
y 

ke
y 

te
rm

s 
re

la
te

d 
to

 S
SI

.
M

is
sp

el
lin

g 
(i

.e
. “

pr
ul

en
t”

),
 A

na
to

m
ic

 n
am

e 
no

t p
re

se
nt

 in
 

T
ra

in
in

g 
(i

.e
. “

M
or

ri
so

n’
s 

Po
uc

h”
)

L
oc

al
 I

nf
er

en
ce

1 
(2

5%
)

33
 (

21
.3

%
)

Se
nt

en
ce

/P
ar

ag
ra

ph
 in

fe
re

nc
in

g 
ru

le
s 

m
ad

e 
an

 in
co

rr
ec

t 
co

nc
lu

si
on

 in
 a

gg
re

ga
tin

g 
th

e 
co

nc
ep

ts
.

C
on

cl
ud

ed
 S

SI
 w

as
 h

is
to

ri
ca

l d
ue

 to
 p

hr
as

e 
“p

at
ie

nt
 h

as
 a

 
hi

st
or

y 
of

 a
n 

SS
I”

D
oc

um
en

t I
nf

er
en

ce
10

 (
6.

5%
)

D
oc

um
en

t l
ev

el
 in

fe
re

nc
in

g 
ru

le
s 

m
ad

e 
an

 in
co

rr
ec

t 
co

nc
lu

si
on

 a
gg

re
ga

tin
g 

th
e 

se
nt

en
ce

s 
an

d 
pa

ra
gr

ap
hs

.
A

nt
ib

io
tic

s 
m

en
tio

ne
d 

se
pa

ra
te

ly
 in

 d
oc

um
en

t a
nd

 n
ot

 
as

so
ci

at
ed

 w
ith

 S
SI

 s
ym

pt
om

s 
to

 c
on

cl
ud

e 
SS

I 
Pr

es
en

t

Pa
tie

nt
 I

nf
er

en
ce

1 
(2

5%
)

4 
(2

.6
%

)
Pa

tie
nt

 le
ve

l i
nf

er
en

ci
ng

 r
ul

es
 m

ad
e 

an
 in

co
rr

ec
t c

on
cl

us
io

n 
ag

gr
eg

at
in

g 
th

e 
do

cu
m

en
ts

 c
on

cl
us

io
ns

In
fe

ct
io

n 
PA

T
O

S 
no

t i
de

nt
if

ie
d 

as
 r

es
ol

ve
d 

pr
io

r 
to

 O
rg

an
 

Sp
ac

e 
SS

I 
de

ve
lo

pm
en

t.

Ann Surg. Author manuscript; available in PMC 2022 April 26.


	INTRODUCTION
	METHODS
	Setting
	Participants
	Data Sources
	Reference Standard
	NLP Development
	NLP Rule Development
	Validation
	Statistical Analysis

	RESULTS
	DISCUSSION
	CONCLUSION
	References
	FIGURE 1.
	TABLE 1.
	TABLE 2.
	TABLE 3.
	TABLE 4.

