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ABSTRACT We introduce the operational genomic unit (OGU) method, a metage-
nome analysis strategy that directly exploits sequence alignment hits to individual
reference genomes as the minimum unit for assessing the diversity of microbial
communities and their relevance to environmental factors. This approach is inde-
pendent of taxonomic classification, granting the possibility of maximal resolution of
community composition, and organizes features into an accurate hierarchy using a
phylogenomic tree. The outputs are suitable for contemporary analytical protocols
for community ecology, differential abundance, and supervised learning while sup-
porting phylogenetic methods, such as UniFrac and phylofactorization, that are sel-
dom applied to shotgun metagenomics despite being prevalent in 16S rRNA gene
amplicon studies. As demonstrated in two real-world case studies, the OGU method
produces biologically meaningful patterns from microbiome data sets. Such patterns
further remain detectable at very low metagenomic sequencing depths. Compared
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with taxonomic unit-based analyses implemented in currently adopted metagenom-
ics tools, and the analysis of 16S rRNA gene amplicon sequence variants, this
method shows superiority in informing biologically relevant insights, including stron-
ger correlation with body environment and host sex on the Human Microbiome
Project data set and more accurate prediction of human age by the gut micro-
biomes of Finnish individuals included in the FINRISK 2002 cohort. We provide
Woltka, a bioinformatics tool to implement this method, with full integration with
the QIIME 2 package and the Qiita web platform, to facilitate adoption of the OGU
method in future metagenomics studies.

IMPORTANCE Shotgun metagenomics is a powerful, yet computationally challenging,
technique compared to 16S rRNA gene amplicon sequencing for decoding the com-
position and structure of microbial communities. Current analyses of metagenomic
data are primarily based on taxonomic classification, which is limited in feature reso-
lution. To solve these challenges, we introduce operational genomic units (OGUs),
which are the individual reference genomes derived from sequence alignment
results, without further assigning them taxonomy. The OGU method advances cur-
rent read-based metagenomics in two dimensions: (i) providing maximal resolution
of community composition and (ii) permitting use of phylogeny-aware tools. Our
analysis of real-world data sets shows that it is advantageous over currently adopted
metagenomic analysis methods and the finest-grained 16S rRNA analysis methods in
predicting biological traits. We thus propose the adoption of OGUs as an effective
practice in metagenomic studies.

KEYWORDS operational genomic unit, taxonomy independent, reference phylogeny,
UniFrac, supervised learning, metagenomics

The rapidly developing field of shotgun metagenomics has enabled higher-resolu-
tion determination of microbial community structure, well beyond that of 16S

rRNA gene amplicon sequencing. This determination is achieved through algorithms
that match DNA sequence data, typically obtained by high-throughput sequencing
methods, against a database that contains a comprehensive collection of reference
genomes (whole-genome or marker sequences). Taxonomy, the hierarchical classifica-
tion of organisms (1), is a central part of this process. Many tools (e.g., see references
2–5) have been developed to estimate the abundance of taxonomic groups in the
community—a process referred to as taxonomic profiling (6). Recently, cluster analysis
has been useful in defining taxonomic groups, both in building reference databases
and in matching sequence data to these references. For example, species-level clusters
of genomes have been identified by the average nucleotide identity (7, 8), and sequen-
ces can be recruited to species clusters based on the phylogenetic distance informed
by marker genes (9, 10). Regardless of the analytical method, the end product of these
analyses is a per-sample table with features representing taxonomic units at a fixed
rank (e.g., species, genus, or above). This table can then be analyzed using statistical
approaches such as those implemented in QIIME 2 (11) to explore the structure and di-
versity of communities and their relevance to biological factors.

Although this taxonomy-centered strategy is effective, it has limitations compared
to analysis using 16S rRNA gene amplicons (16S), which are more mature, although
they are limited by the resolution of the data. A typical 16S workflow is centered
around amplicon sequence variants (ASVs) (12), which serve as the entries in a feature
table. ASVs can be used to assign taxonomy for interpretation, but this taxonomic in-
formation is generally not used when calculating diversities, differential abundance, or
in the statistics applied to those calculations. There is no assumption of the uniformity
of the evolutionary level represented by ASVs, as they are independent of taxonomy
(which is also not uniform in terms of the evolutionary period or diversity spanned by
a taxon at a given rank). This property allows ASV feature tables to be combined with
de novo and a priori phylogenetic inference methods (13), the latter of which benefit
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from precomputed reference phylogenies (14, 15), enabling statistical assessments
that factor in evolutionary relationships informed by the molecular sequence data.

We suggest that the lessons learned from amplicon sequencing be applied to meta-
genomics. Thanks to the advances in efficient sequence alignment algorithms and the
expansion of reference genome databases (16, 17) and phylogenomic trees (18, 19), it
is now possible and increasingly preferable to develop a high-resolution, tree-struc-
tured data analysis strategy in shotgun metagenomics. In this work, we established
and systematically evaluated a taxonomy-free analytical strategy, in which the features
for analysis are individual reference genomes and the feature counts are the number
of sequences aligned to these genomes. We refer to such features as operational
genomic units (OGUs). This phrase, an echo of “operational taxonomic units” (OTUs)
but replacing “taxonomic” with “genomic,” highlights the nature of the genome-based,
taxonomy-free analysis. Meanwhile, “operational” indicates that this method does not
rely on the direct observation of member genomes of the community (e.g., through
metagenome assembly) but instead uses predefined reference genomes as a proxy to
model the community composition. In this sense, OGUs are not analogs of ASVs.
Instead, OGUs are the minimum units that can, from a technical standpoint, be pro-
duced by a reference-based method. An OGU table can be used to quantify the com-
munity structure and its relationship to biological traits. This process can be made
more powerful with a reference phylogeny of the genomes, using tree-based methods
such as UniFrac and phylofactorization (20).

The OGU method simplifies metagenomic data analysis by removing the bias of tax-
onomy, yet one can still describe the final results using taxonomic terms (as is done for
ASVs). With minimum constraints, the OGU method achieves the finest-grained resolu-
tion in both the feature table and the relationship graph of features, as allowed by the
reference. It produces biologically relevant results, which are robust against common
artifacts in metagenomics and remain stable at very low sequencing depths. It should
be noted that the OGU method is not meant to characterize the actual strain-level
genetic variation in the community (as described in reference 21), nor does it attempt
to infer the phylogenetic position of microbes (as described in reference 22). Instead, it
operates within a reference-defined genome catalog and phylogeny, which subse-
quently facilitate comparing and combining results across studies.

Here, we describe an implementation of the method for generating OGU tables in
the open-source bioinformatics tool Woltka. This program serves as a versatile interface
connecting upstream sequence aligners (such as Bowtie2 and BLAST) and downstream
microbiome analysis pipelines (such as QIIME 2). The program works seamlessly with
the Web of Life (WoL) reference phylogeny that we previously developed to describe
accurate evolutionary relationships among genomes (18), but it is not tied to a particu-
lar database or sequence aligner. In addition to a standalone command line interface,
the package includes a QIIME 2 (11) plug-in to facilitate adoption and integration into
existing pipelines. We have also made this method available through the Qiita web
analysis platform (23), where it serves as the standard operating procedure for shotgun
metagenomic data analysis, thereby enabling repository-scale processing and meta-
analysis of metagenome data sets with OGUs. Thus far, we have applied the OGU
method to reanalyze all public and private metagenomic data sets hosted on Qiita,
totaling 64 studies, 369 preparations and 60,784 samples, as of January 2022.

Prototypes of the OGU method have already been used in multiple microbiome
studies and have obtained biologically relevant results (e.g., see references 24–27). In
this article, we introduce the principles and practices of the OGU method, demonstrate
its efficacy in two real-world microbiome data sets, compare it with state-of-the-art
metagenome analysis approaches and the alternative data type (i.e., 16S rRNA gene
amplicons), and systematically evaluate its performance in various conditions. Given
our findings, we propose the adoption of OGUs in the community ecology analysis of
metagenomic data.
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RESULTS
OGUs maximize resolution of community structures. The initial rationale and

benefits of the OGU method are demonstrated with a synthetic example illustrated in
Fig. 1. In this example, three metagenomes with 12 sequences each were aligned to 10
reference genomes, which were hierarchically organized by taxonomy (Fig. 1A, left) or
by phylogeny (right). Beta diversity was calculated on feature tables at different levels,
either on taxonomic units at the rank of genus or species or directly on reference
genomes (i.e., OGUs), without the need for giving them taxonomic labels.

As demonstrated (Fig. 1B), the genus-level analysis, which had the lowest resolution
(three genera), yielded spurious proximity between samples B and C, relative to sample
A, largely determined by the differential abundance of genera G1 and G2. The species-
level analysis with moderately higher resolution (five species) was able to bring A
closer to B and C, mainly contributed by the identical frequencies of species S1, which
could not be revealed at the genus level. The OGU-level analysis, having the highest re-
solution (10 features), revealed the separation between B and C due to distinct OGU
composition, despite similar species counts (e.g., O5 and O7 have the same count
within S3) and the proximity between A and B due to shared OGUs (O6 and O9).
Additional structure was revealed by using the UniFrac metric, which considers the

FIG 1 Feature resolution impacts community ecology analysis in small conceptual examples. (A)
Synthetic data set involving three microbial communities, each having 12 unique read hits, as
represented by black circles in the frequency table, to a total of 10 reference genomes (OGUs),
classified under five species, three genera, and one family, as noted on the left. A phylogenetic tree
of the 10 genomes is shown on the right. In this simplified case, the phylogeny is not much more
complex than the taxonomy (with three more edges); however, the taxonomic assignment and the
phylogenetic placement of genome O5 are not consistent. (B) Beta diversity of the data set. The
three samples (circles) are connected by edges representing the pairwise distances calculated by
Bray-Curtis (BC) or weighted UniFrac (WU) on the frequency table. For the latter measure, either the
taxonomy or the phylogeny was used to quantify the hierarchical relationships among OGUs, as
noted in the parentheses. The edge lengths were normalized so that their sum is equal in each
graph. This synthetic case study demonstrates that different resolutions of features and feature
structures can lead to very different conclusions regarding sample relationships.
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hierarchical relationships among features, hence further joining samples (here, A and
B) sharing longer branches in the phylogenetic tree (even by different OGUs, such as
O1 and O2) and separating those sharing shorter ones. Taxonomy may serve as a
replacement for phylogeny, but it has a lower resolution than phylogeny (e.g., O1 and
O2 are evolutionarily closer to each other than to O3, but taxonomy cannot reveal this)
and sometimes does not reflect the true evolutionary relationships among organisms
(e.g., O4 and O5 are here placed in different genera), which can impact the accurate
modeling of community structures.

In summary, this example illustrates the potential benefit of increasing resolution in
assessing the diversity of microbial communities. This “resolution” has two dimensions
of meaning: first, the quantity of features representing individual microbiomes, and
second, the granularity and accuracy of the structure that defines the relationships
among individual features.

OGUs enhance body environment and host sex-associated microbiome patterns.
Next, we demonstrated the typical use of the OGU method on the classic Human
Microbiome Project (HMP) shotgun metagenomic data set (28), which contains 210
metagenomes sampled from seven body sites of male and female human subjects. We
subsampled each metagenome to one million paired-end reads—a sampling depth
close to the recommended lower threshold (500,000 reads) for “shallow” shotgun
sequencing (29). The sequences were aligned to the WoL reference genome database
(totaling 10,575 bacterial and archaeal genomes), and the alignments were processed
using Woltka, resulting in an OGU table with 6,220 features (reference genomes) and a
density of 0.235 (Fig. 2A). For comparison, a species-level taxonomic profile inferred by
Bracken (30) using the same database has a feature count of 8,388 and a density of
0.510) (Fig. 2B).

Beta diversity analysis using the weighted UniFrac metric with the WoL reference
phylogeny was performed on the OGU table. Principal coordinates analysis (PCoA)
(Fig. 2C), with the first three axes explaining 71.01% of community structure variance
(Fig. 2E), revealed that microbiomes were clustered mainly by the body site from which
they were sampled, which overshadowed clustering by host sex, if any. This pattern is
largely consistent with the previous report (28). For comparison, we analyzed the data
set using Bray-Curtis on the species profile, a currently adopted method (CAM) (e.g.,
see reference 28). The PCoA plot by CAM (Fig. 2D), although with less explained var-
iance (46.30%) (Fig. 2E), also displayed a clustering-by-site pattern. However, it is nota-
ble from the plot that sample clusters are aligned diagonally, a typical pattern indicat-
ing the saturation of distances caused by the inadequacy of shared features (species)
among body sites (31) (Fig. 2D). This characteristic limits the power of resolving com-
munity diversity.

Permutational multivariate analysis of variance (PERMANOVA) of the beta diversity
distance matrices suggested that both methods were able to clearly differentiate sam-
ples by body site (P = 0.001), with the OGU method generating the stronger statistic
(Fig. 2G) (OGU method, F = 77.82; CAM, F = 42.36). The distinction by host sex was less
obvious. Only the OGU method was able to distinguish microbial communities based
on sex (F = 3.011, P = 0.013), whereas the CAM failed to distinguish sex with statistical
significance (F = 1.692, P = 0.086) (Fig. 2H). This demonstrated the power of the OGU
method in capturing subtle but relevant trends, even when another primary factor
(body site) can explain most of the variation in community diversity.

Three of the seven body sites are located in the oral environment: tongue, teeth and
buccal mucosa (Fig. 2C and D). Together, they indicate weaker differentiation by sex (OGU,
F = 1.905, P = 0.099; CAM, F = 1.610, P = 0.130) (Fig. 2H). We reason that sites sharing the
same environment likely have higher microbial connections. To test this effect, we calcu-
lated the relative distance between the three oral sites versus that between oral sites and
nonoral sites. This distance is significantly smaller with the OGU method (0.699 6 0.098
[mean and standard deviation {SD}]) than with CAM (0.808 6 0.051) (two-tailed paired
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t = 214.398, P = 2.57e226) (Fig. 2F), suggesting that OGUs are more effective at relating
subgroups of samples with shared properties.

The OGU table plus the WoL tree further enabled differential abundance analysis
using the phylogenetic factorization method (32) (Fig. S1 and S2). The result was visual-
ized and analyzed using the recently released tree visualizer EMPress (33) (Fig. 2I). It

FIG 2 Analysis of the HMP metagenomes reveals clustering by body environment and differentiation by host sex. The analysis was performed on 210
samples subsampled to one million paired-end shotgun reads each. (A) Heat map of the OGU table randomly subsampled to 10 samples and 100 OGUs.
(B) Heat map of a species-level taxonomic profile inferred by Bracken, subsampled to the same 10 samples and 100 randomly selected species. Empty cells
represent zero values. The feature count and table density indicated in the y axis describe the entire (not subsampled) table. (C) PCoA based on OGUs
using weighted UniFrac calculated with the WoL reference phylogeny based on the OGU table. Samples (dots) are colored by body site and shaped by
host sex. (D) PCoA using the currently adopted method (CAM): Bray-Curtis calculated on species-level taxonomic units identified by Bracken, which shows a
diagonal pattern that aligns all samples of the four nonoral body sites in one plane. (E) Proportions of community structure variance explained by the first
three axes of PCoA. (F) Mean ratio of the beta diversity distances from any oral sample to a sample of the two other oral sites versus to that of nonoral
body sites. The lower the mean ratio is, the more similar communities of the three oral sites are to each other in the background of multiple body
environments. The bold line in each box represents the median. The whiskers represent 1.5 times the interquartile range (IQR). (G and H) PERMANOVA
pseudo-F statistics indicating the differentiation of community structures by body site (G) and by host sex (H). The larger F is, the more distinct the
community structures are between groups versus within groups. The y axis is aligned to an F value of 1.0 which indicates no difference. For panel G, all
statistics have a P value of 0.001. For H, an asterisk indicates a P value of #0.05. (I) Differentially abundant phylogenetic clades by host sex inferred using
PhyloFactor and visualized using EMPress on the WoL reference phylogeny. The tree was subsetted to include only OGUs detected in the data set. The top
20 clades by effect size are colored (full details provided in Fig. S1 and S2). The top five clades are numbered 1 through 5 by decreasing effect size, circled,
and labeled with corresponding taxonomic annotations. The small color ring represents phylum-level annotations. The inner and outer bar plot rings
indicate the OGU counts split by body site (using the same color scheme as in panels A and B) and by host sex, respectively.
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revealed that the phylogenetic clade separated by factor 1 represents the genus
Lactobacillus, contained in predominantly posterior fornix samples from female hosts, which
was expected (34). Meanwhile, factor 2 (genus Neisseria), factor 3 (genus Capnocytophaga),
and factor 4 (species Leptotrichia buccalis) are more frequently observed in the oral sites of
male hosts. For comparison, we applied the tree-free method ANCOM (35) to the taxonomic
profiles generated by alternative methods (Table S1). At the genus level, all four methods
were able to capture only Lactobacillus, consistent with our factor 1. However, at species and
OGU levels, results were discordant between methods, and no method reported any
Lactobacillus sp. This exposed the limitation of confining analyses to one specific taxonomic
rank without using phylogenetic information.

OGUs improve prediction of host age from the gut microbiome. We next ana-
lyzed 6,430 stool samples collected through a random sampling of the Finnish popula-
tion using both 16S rRNA gene amplicon sequencing and shallow shotgun metage-
nomic sequencing. This FINRISK study (36) provides an opportunity to explore the
dependency of feature sets (e.g., taxonomic levels) and data source 16S rRNA amplicon
versus shotgun metagenomic data) on the prediction accuracy of a machine learning
model on a targeted phenotype (e.g., age). We measured the empirical error (mean
absolute error [MAE]) in predicting human age using a random forest regressor (37),
constructed using 5-fold cross-validation.

Our results (Fig. 3A) showed the prediction accuracy continued to improve with lower
microbial feature classification levels, resulting in lower absolute errors. Shotgun data out-
performed 16S data at all levels and were able to reduce MAE to less than 10 years when
analyzing at the genus level or below. Using OGUs, we were able to predict human age
based on gut microbiome composition to an MAE of 9.581 6 0.116 years (mean and SD)
(Fig. 3B). ASVs, the finest possible resolution allowed by 16S data, resulted in a higher MAE
of 10.1106 0.103 years (two-tailed t =27.25, P = 8.81e25). Meanwhile, using the species-
level profile inferred by Bracken on the shotgun data, we also obtained a higher MAE of
10.273 6 0.089 years (versus OGU, two-tailed t = 210.59, P = 5.53e26) (Fig. S3).
Decreasing sequencing depth did not reduce the age prediction accuracy for individual
samples (Fig. S4). For example, samples with 320,000 to 366,000 metagenomic sequences
(second bin from the low end in the figure) had an MAE of 9.290 6 6.378 years, whereas
samples with 1,386,000 to 1,931,000 sequences (second bin from high end) had an MAE of
10.118 6 6.086 years, which were not significantly different (two-tailed t = 21.37,
P = 0.170). We then explored which OGUs contributed to the superior performance in age
prediction compared to 16S rRNA ASVs. We identified a reduced set (n = 128) of the most
important OGUs that can maximize the prediction accuracy via a recursive feature elimina-
tion approach (Fig. S5).

Among these important features, a few gut microbial lineages increased in relative
abundance with aging, such as multiple OGUs assigned to Streptococcus mutans and
Eubacterium sp. (Fig. 3C; Fig. S6 and S7). Remarkably, those Streptococcus spp. are typi-
cally located in the oral cavity but can be overrepresented in the gut of elderly individ-
uals, suggesting potential microbial transmissions between oral and gut microbiomes
related to typical aging in a large population (38, 39). Next, we also identified a few
OGUs that were underrepresented in the elderly, such as ones assigned to Anaerostipes
hadrus, Bifidobacterium longum, and Bifidobacterium saguini. In comparison, many im-
portant features identified in the 16S data had coarse taxonomic assignments, puta-
tively because the partial sequences of a 16S rRNA gene cannot provide sufficient reso-
lution. For example, a few ASVs annotated as the family Lachnospiraceae have been
associated with aging in either this or past studies (40), whereas our method identified
several OGUs under Lachnospiraceae that exhibited strong predictive powers for dis-
criminating aging. The second most important OGU in the model was the genome of
A. hadrus DSM 3319. It contains a 16S rRNA sequence that exactly matches the third
most important ASV that was taxonomically annotated as Lachnospiraceae from the
16S data set. Nevertheless, it is important to understand that OGUs are close matches
of sequencing data found in the reference database. One should not consider that the
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FIG 3 Analysis of the FINRISK metagenomes showing superior prediction accuracy over taxonomic units and 16S rRNA data. (A) The empirical error (MAE;
a lower error indicates better performance) in predicting host chronological age using microbiome features at distinct taxonomic ranks in paired 16S rRNA
amplicon and shallow shotgun metagenomics data with a random forest regressor. “None” represents the taxonomy-free, finest-possible level (ASV for
16S, OGU for shotgun). Small circles indicate MAEs in all iterations of 5-fold cross validation. Large circles and error bars indicate means and standard
deviations of the five MAEs. (B) Scatterplot of the actual age versus the predicted age by the best-performing model with OGU features in the 5-fold
cross-validation. The black line was generated using ggplot2’s local polynomial regression fitting. (C) Phylogenomic tree of 169 OGUs with importance
scores of $0.1 in the prediction model. The tree was subsampled based on the WoL reference phylogeny and drawn to scale (branch lengths represent
mutations per site). Branch colors indicate the mean importance score of all descendants of the clade. Taxonomic labels are displayed where needed.
Circles and lines with stops are displayed where needed to assist location of taxonomic labels to target branches or clades.
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exact strains, such as A. hadrus DSM 3319, are present in the sample. Further investiga-
tion, such as metagenome assembly and genetic variation analysis, is needed when
the end goal is to characterize microbial strains in the community.

The OGU method is robust against common artifacts in metagenomics. One
major challenge that is unique to shotgun metagenomics is the ambiguity of sequence
alignment and the prevalence of false-positive assignments that arise from it (41).
Bioinformatically, it is challenging to match short DNA sequences to the reference ge-
nome that is the closest to their origin, and this challenge is amplified by the growing
size of databases, which inevitably contain many highly similar genomes. Modern
sequence aligners rely on heuristics in order to efficiently deal with very large reference
databases and input data sets. They tend to report initial local optima without search-
ing the entire database, which can lead to the inclusion of low-frequency, false-positive
microbial taxa in the resulting profiles.

In demonstrating the OGU method, we used SHOGUN to generate sequence align-
ments. This protocol reports up to 16 valid hits (k value) per query sequence. Next, instead
of using complex methods such as the Bayesian framework (e.g., Bracken) to infer the
most plausible taxa from ambiguous matches, the Woltka program retains and averages
among all valid hits in constructing the OGU table (see Materials and Methods). We exam-
ined the effect of this parameter by varying the k value, i.e., 1, 2, 4, 8, 16, 32, and 64, and
using a very slow exhaustive search mode. We found that the biological measurements
inferred by OGUs remained almost unchanged for all values of k when an abundance-
based metric (weighted UniFrac or Bray-Curtis) was used (Fig. 4A and B). Meanwhile, using
presence/absence-based metrics (unweighted UniFrac and Jaccard) resulted in inconsis-
tent results, suggesting cautionary use in the OGU analysis.

Previous work has demonstrated that bioinformatic efforts to remove erroneous
assignments have limited efficacy (41). Given a profile that could contain many unidenti-
fied false positives, a typical approach is to consider only taxa with a relative abundance
above a given threshold in each sample (41). We also provide this function in Woltka to
facilitate the user’s preferences. However, this workaround indiscriminately loses

FIG 4 Impact of alignment artifacts on the result of the OGU analysis. (A to D) Robustness of analysis results on the HMP data set. Four commonly used
beta diversity measures were tested: Jaccard (unweighted, tree free), Bray-Curtis (weighted, tree free), unweighted UniFrac (tree aware) and weighted
UniFrac (tree aware). (A and B) Impact of the maximum number (k) of alignments to consider for each query sequence. This k value corresponds to
Bowtie2’s “-k” parameter. “All” instructs Bowtie2 to return all possible alignments. (C and D) Impact of the feature filtering threshold. The original OGU
table was filtered to remove OGUs that were below the per-sample relative abundance threshold indicated at the x axis. “None” indicates no filtering
(original table). (A and C) PERMANOVA pseudo-F statistics for the separation between samples from male and female hosts. (B and D) Mean ratios of the
distances from any oral sample to samples of the two other oral sites versus to that of nonoral body sites. The error bars indicate the means and standard
deviations of the ratios.
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information from low-abundance taxa that may represent biologically important signals. We
further investigated whether filtering an OGU table has an impact on beta diversity by test-
ing a gradient of filtering thresholds and found the measurements to be largely stable when
using an abundance-based metric (Fig. 4C and D). They began to moderately change only
at extremely high filtering thresholds (0.1 to 1%). Meanwhile, the measurements diverged
notably when a presence/absence-based metric was used, as described above.

These analyses suggest that the OGU method is robust against potential alignment
ambiguity and false-positive assignments, as long as the abundance of OGUs is taken
into consideration, which effectively smooths out noise. This simplifies the analytical
workflow and removes the dilemma between data preservation and data modification.

OGUs are useful indicators of community composition. An important goal of
microbiome studies is to assess community composition. Here, we asked whether the
taxonomic units indicated by individual OGUs actually exist in the community and to
what extent an OGU table can be interpreted as community composition.

To address these questions, we first tested the congruence between OGU-informed
taxonomic units and the taxonomic profile inferred by Bracken within the 210 HMP
metagenomes. Note that the Bracken result served as a reference one would expect
from a typical taxonomic profiler, instead of ground truth. The result showed that the
corresponding species of 88.78% 6 7.04% (mean and SD) OGUs were also found by
Bracken. This ratio increased at higher taxonomic ranks (Fig. 5A), with 97.38% 6 2.24%
at the genus level and 99.76% 6 0.57% at the family level. On the other hand, the cor-
responding species of OGUs with higher abundance had a higher chance of being
found by Bracken (Fig. 5B). After removal of low-abundance OGUs, we observed a fur-
ther increase of the ratio (Fig. 5C). For example, when OGUs with a per-sample abun-
dance less than 0.01% were removed, the corresponding species indicated by
99.07%6 2.43% of the remaining OGUs were found by Bracken.

We note that the HMP data set does not allow direct evaluation of assignment accu-
racy as the ground-truth is not known. Therefore, we next generated a simulated

FIG 5 Relationship between OGU taxonomy and community composition. (A to C) Presence of OGU-informed taxonomic units in Bracken-inferred
taxonomic profiles using the HMP data set (n = 210). (A) Per-sample fraction of OGUs whose corresponding taxonomic units at different ranks were
found by Bracken. (B) Presence/absence of corresponding species of all OGUs in all samples (n = 307,060) in the Bracken result. The y axis indicates the
frequency of individual OGUs per sample (out of 1 million paired-end reads). Outliers are not displayed due to the sample size. The bold line is a logistic
regression curve, with coefficient and intercept annotated. (C) Per-sample fraction of OGUs filtered by different relative abundance thresholds whose
corresponding species were found by Bracken. (D to F) Evaluation of the accuracy of OGU or species assignments and abundance estimation using a
simulated metagenomic data set (n = 25) by the area under the precision/recall curve (AUPR) (D), Bray-Curtis (E), and weighted UniFrac (F) against the
ground truth. Three tools—SHOGUN, Bracken, and MIDAS—were evaluated. The bold line and the whiskers represent median and 1.5 times the IQR,
respectively. Each dot represents a simulated metagenomic sample.
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microbiome data set for which we could verify ground-truth assignments, consisting of
25 samples representing four human body sites and the built environment (see
Materials and Methods). The OGU assignments had an area under the precision/recall
curve (AUPR) of 0.905 6 0.057 (mean and SD), which was moderately lower than that
of the species-level assignments (0.954 6 0.034) (Fig. 5D). This was largely anticipated,
since OGU represents a lower classification level than species. This difference was also
reflected by the greater Bray-Curtis dissimilarity from the true community structure
(OGU, 0.1346 6 0.0591; species, 0.0615 6 0.0345) (Fig. 5E). However, when phylogeny
was accounted for, the weighted UniFrac distances were close to zero and to each
other (0.0128 6 0.0032 versus 0.0115 6 0.0030) (Fig. 5F), suggesting that phylogeny-
aware metrics are more robust for beta diversity analysis based on OGUs than phylog-
eny-agnostic ones.

These results suggest that we can relatively confidently discuss the taxonomic com-
position and individual components of the community based on the taxonomic assign-
ments of OGUs. They also provide a useful reference for the user to decide the taxo-
nomic rank and filtering threshold to adopt when they want to confidently make these
discussions (for example, OGUs with 0.01% or higher relative abundance have 99%
probability to match species found by Bracken, according to Fig. 5C). The last result
(Fig. 5E) further demonstrates the efficacy of phylogeny-aware analysis in approximat-
ing true community composition, in spite of potential imprecise assignments.

The OGU method is generally effective with flexible protocol design. Although
we have demonstrated the advantage of a specific protocol for generating and analyzing
OGUs over one example of currently adopted methods (Bracken), one may ask whether
this outcome holds true when alternative methods are used. Here, we extended the
comparative analysis of the HMP data set to include a total of five taxonomic profilers,
representing two mainstream strategies for analyzing metagenomic data: SHOGUN (42),
Bracken (30), and Centrifuge (4) utilize the information of whole genomes and report
sequence abundances, whereas MetaPhlAn (43) and MIDAS (10) use certain sets of phy-
logenetically informative marker genes and report taxonomic abundances (for a critical
review of the distinguishment of the two, see reference 44). The results showed that
regardless of the taxonomic profiler of choice, the Bray-Curtis analysis at the species level
consistently failed to match the resolving power of that using weighted UniFrac on the
OGU table (Fig. 6A to D).

Because OGUs are reference genomes that serve as proxies for microbial diversity in
the sample, one may postulate that the effectiveness of the OGU method is largely influ-
enced by the content of the reference genome database. To test this effect, we performed
the OGU analysis using five established catalogs of microbial genomes: GEBA-I (45), UHGG
(9), MIDAS (10), GTDB89 (8), and GEM (46), in addition to the WoL database. These six data-
bases represent a gradient of volumes (genome count and total size) and a variety of inclu-
sion foci (see Materials and Methods). Importantly, they each include a reference phylog-
eny inferred by the original authors (despite using different approaches), which we used in
the OGU analysis. The results showed that the phylogeny-aware method (weighted
UniFrac) always outperformed the phylogeny-agnostic method (Bray-Curtis), regardless of
the database (Fig. 6E to H). Except for the smallest database (GEBA-I), all databases were
able to distinguish samples of the two sexes in the HMP cohort with statistical significance
(P # 0.05). The F statistic varied from 2.51 to 3.60, which is likely influenced by both the
genome pool and the phylogenetic tree. In contrast, Bray-Curtis failed to capture this sepa-
ration for any database, and interestingly, its F statistics were fixed within a very small
range (1.60 to 1.65). This result suggests that the OGU method is compatible with many
databases of diverse microbial genomes, while enabling superior phylogenetic compari-
sons of metagenomic data.

Given that OGUs are derived from the alignments of sequence data against refer-
ence genomes, the choice of the alignment algorithm may also play a role. Our default
protocol used a specific Bowtie2 parameter set implemented in SHOGUN that was
optimized for shotgun metagenomics (see Materials and Methods). Hence, we tested
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Bowtie2 with its default parameters, and an alternative aligner, Minimap2 (47), also
using its default settings. The results showed again that weighted UniFrac outper-
formed Bray-Curtis for all three criteria considered (Fig. 6I to L). Separation by host sex
was consistently significant (P , 0.05), although the F statistic varied moderately (2.66
to 3.01). This result suggests that the OGU method is flexible with respect to the align-
ment method while again enabling superior phylogenetic analysis.

The OGU method remains effective at very low sequencing depths. Shotgun
metagenomics is advantageous over amplicon-based studies because of its higher re-
solution and the capability of informing genetic variations; however, the experimental
cost is orders of magnitude higher. A new strategy, “shallow shotgun metagenomics,”
was proposed in recent years, suggesting that as few as 500,000 sequencing reads per

FIG 6 Comparison of beta diversity analysis results on the HMP data set using alternative protocols. (A to D) Comparison of the OGU method with five
taxonomic profilers. The OGU table was extracted from SHOGUN’s alignment file using Woltka and analyzed using weighted UniFrac with the WoL
reference phylogeny. It was compared with species-level profiles analyzed using Bray-Curtis. (E to H) Comparison of six reference genome databases used
for generating the OGU table. The six databases are ordered by their volume from small (left) to large (right). Each OGU table was analyzed using either
Bray-Curtis or weighted UniFrac with the original phylogenetic tree provided in the database. (I to L) Comparison of three sequence aligners used for
generating the OGU table. (A, E, and I) Proportions of variance explained by the first three axes of PCoA. (B, F, and J) PERMANOVA pseudo-F statistics for
the separation between samples from male and female hosts. (C, G, and K) P values of the corresponding PERMANOVA tests. (D, H, and L) Mean ratios of
the distances from any oral sample to samples of the two other oral sites versus to that of nonoral body sites. The bold line and the whiskers represent
median and 1.5 times the IQR, respectively.
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sample is sufficient for resolving microbial composition and studying community ecol-
ogy (29). This strategy significantly reduces the expense of metagenomic sequencing,
therefore enabling studies at an unprecedented scale.

To assess the efficacy of the OGU method in the framework of shallow shotgun meta-
genomics, we reran the HMP analyses along a gradient of decreasing sequencing depths
(Fig. 7). The correlation between the original OGU table (from one million read pairs) and
each of the subsampled OGU tables was consistently high. A Pearson’s r of 0.9616 0.0726
(mean and SD, same below) was retained even at the sequencing depth of 200 (unit: read
pairs, same below) (Fig. 7A). The oral-versus-other relative distance (see above) retained a
Pearson’s r of 0.971 6 0.00613 when sampling depth was 200 (Fig. 7B). The PERMANOVA
pseudo-F statistics were close to the original statistic and remained largely stable down to
very low sequencing depths. The mean difference from the original statistic was still within
5% at the sequencing depth of 1,000 for body site (3.3496 1.361, percentage of the origi-
nal statistic), or 500 for host sex (2.680 6 5.473) (Fig. 7C and D). These findings suggest
that the OGU method remains valid even with very shallow metagenomic samples, includ-
ing those that would otherwise be considered unusable for typical metagenomic analyses.

For comparison, we performed the same test using two taxonomic profilers, Bracken
and MIDAS, representing the two main strategies widely adopted for this task (see above).
The results (Fig. S8) suggested that the whole-genome-based profiler Bracken was also
able to produce stable estimates of biologically relevant metrics, although moderately less
so than the OGU method (for example, the F statistic for body site decreased by nearly
20% [17.990 6 0.4062] at a sequencing depth of 1,000). In contrast, results of the marker
gene-based profiler MIDAS showed the F statistic to decrease rapidly at lower sequencing
depths, an expected pattern because marker genes constitute only a very small proportion
of the microbial genomes and are therefore more sensitive to reduced sequencing depth.

Underlying rationales for taxonomy-independent microbiome analysis. Here,
we explored the intrinsic reasons why OGUs with phylogenetically informed approaches
confer significant advantages when microbial communities are analyzed. Broadly, this

FIG 7 Impact of sequencing depth on the result of the OGU analysis. The original OGU table generated from 1 million paired-end reads of
the HMP data set was randomly subsampled to each of the sampling depths indicated at the x axis, which is equivalent to the number of
paired-end reads in the original sequencing data (see Materials and Methods). (A) Pearson correlation coefficient (r) between the
composition (frequencies) of the original OGU table and the subsampled tables. To ensure visual resolution of the boxes, three outliers of
1,000, 200 and 100, respectively, are not visible in the range of the y axis. (B) Pearson’s r between the ratios of distances from any oral
sample to sample of the two other oral sites versus to that of nonoral body sites. (C and D) PERMANOVA pseudo-F statistics on body site
(C) and host sex (D). The results presented in panels B, C, and D were calculated from 10 replicates of random subsampling at each depth.
The dashed lines indicate the statistic calculated on the original table. In all panels, the bold line in each box represents the median. The
whiskers represent 1.5 times the IQR. Note that the ranges of the y axes differ between panels.
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explanation can be broken down into two parts: feature extraction (the minimal classifica-
tion units of microbial components in a profile) and feature structuring (the relationship
graph among the classification units that guides subsequent analyses). With the OGU
method, we advocate using the finest-possible resolution of features that is allowed by
read-based metagenomics, i.e., individual reference genomes, and the finest-possible
structure of the features, i.e., a phylogenetic tree, while bypassing taxonomy as a necessary
component in conventional solutions.

It is important to understand what role taxonomy plays in this framework. Taxonomy,
despite being coarse-grained and error-prone in describing evolutionary relationships
(compared with phylogeny), provides an operational and hierarchical method for classifica-
tion. Taxonomy can be utilized in an analysis in two ways. First, microbes are grouped into
taxonomic units on a selected rank (e.g., species or genus)—an operation which itself
bears, albeit implicit, consideration of evolutionary relationships—followed by analyses
that treat all taxonomic units on this rank equally (i.e., without structure). Second, the taxo-
nomic tree itself can serve as a limited replacement of phylogeny to drive UniFrac and
other tree-aware analyses. In this context, branch lengths are not weighted by an evolu-
tionary distance between nodes but instead fixed at a constant value between adjacent
taxonomic ranks. This strategy, although less common, has been adopted in previous
works (e.g., see reference 48).

Using the HMP data set, we systematically tested and compared various options for
feature extraction, i.e., OGUs, and each of the six standard taxonomic ranks from spe-
cies to phylum, and for feature structuring, i.e., weighted UniFrac with phylogeny or
with taxonomy, or Bray-Curtis, the last of which is equivalent to weighted UniFrac with
a completely unresolved tree and an even sample size. The result (Fig. 8A to C) was
interesting in several respects. First, the phylogeny-aware analysis yielded relative sta-
ble estimates of the degree of separation by host sex at most ranks (Fig. 8B). In com-
parison, results of the taxonomy-based analysis and the tree-free (Bray-Curtis) analysis
continuously change by rank from low to high (Fig. 8B). Bray-Curtis produced the most
unstable results across ranks: from OGU to family, it failed to separate samples with sta-
tistical significance (Fig. 8B and C). Taxonomy’s results were intermediate compared to
the other two methods at lower ranks (OGU, species, and genus).

It is also noticeable that the phylogeny-based analysis at the OGU and the species
levels yielded very similar results (Fig. 8B and C). One possible explanation is that the
WoL database used in the default protocol has 10,575 genomes classified to 9,105 spe-
cies (1.16 genomes per species on average). This provides a limited increase of resolu-
tion below the species level. One may further reason that, as the database size
increases, the gap between species and OGUs will become more notable. To test this
hypothesis, we created two additional databases, containing half or double the num-
ber of genomes of the original WoL database (“core”). As one would expect, the “dou-
ble” database provided higher subspecies resolution (1.64 genomes per species on av-
erage) (Fig. 8D).

The result (Fig. 8D to I) showed that the phylogeny-based analysis produced similar
results between the core and double databases, whereas that of the half database dif-
fered from the other two and was statistically less significant. This pattern held when
either OGUs or species were analyzed. The immediate implication is that the current
WoL database (core) is likely sufficient for this study, as adding more strain-level biodi-
versity did not have a strong impact, as reducing biodiversity did. On the other hand,
the taxonomy-based analysis produced slightly more diverging results when OGUs
were used and notably more diverging results when species were used. Finally, Bray-
Curtis consistently failed to produce statistically significant results.

These two analyses point to a consistent conclusion: (i) diversity analyses using an
explicit phylogenetic tree tend to generate stable estimates of biologically relevant
measurements that are robust against the choice of the classification level of features,
and (ii) relying on taxonomy has some merits, but it is heavily influenced by how taxo-
nomic information is utilized.
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DISCUSSION

The OGU method introduced in this article provides a way to maximize the resolu-
tion of feature tables by directly considering reference genomes without relying on
taxonomic classification in shotgun metagenomics studies. Although the strategy of
taxonomy-independent analysis of community structure has been widely adopted in
16S data analysis, it remains underexplored in metagenomics. Our study shows that
sequence alignment hits to individual reference genomes can be used as the minimum
unit for features, referred to here as OGUs. Through comparative analysis of OGU and
alternative methods using a synthetic case study and two real-world microbiome stud-
ies, we demonstrated that multivariate statistics and machine learning methods devel-
oped and matured in the field of 16S rRNA gene amplicon analysis can be directly
applied to OGUs to provide biologically relevant insights. The OGU results often are
superior to currently adopted metagenomic classification methods and ASV analysis of
the 16S rRNA data. Meanwhile, we showed that the use of taxonomic units as features,
as many researchers have been doing to date, has conceptual and performance limita-
tions compared with the OGU method.

The independence from taxonomy further facilitates the utilization of phylogenetic
trees. A researcher can choose from precomputed reference phylogenies, such as the

FIG 8 Impact of classification resolution and reference genome pool on the analysis results on the HMP data set. All feature tables were generated using
the SHOGUN/Woltka protocol. (A to C) Comparison of community profiles classified to OGUs or each of the seven standard taxonomic ranks. (A) Feature
counts and table densities of the profiles. (D to I) Comparison of OGU-level and species-level profiles generated using a gradient of sizes of the reference
genome pool sampled from the same genome collection. (E) Numbers of genomes and species in the three genome pools: “half,” “core,” and “double.”
Note that “core” is the original WoL database, and it is a superset of “half” and a subset of “double.” (I) Numbers of OGUs and species classified in the
profiles. (B, E, and H) PERMANOVA pseudo-F statistics for the separation between samples from male and female hosts. (C, F, and I) P values of the
corresponding PERMANOVA tests.
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one we introduced in the Web of Life (WoL) project (18), or custom phylogenomic
trees computed from de novo construction or placement, through tools such as
PhyloPhlAn3 (22) and DEPP (49), which are scalable to large numbers of genomes. This
connects evolutionary biologists’ efforts in updating the tree of life (e.g., see references
18, 19, and 50), computational biologists’ efforts in forging phylogeny-aware methods
(e.g., UniFrac and Phylofactor), and microbiome scientists’ pursuits of relating high-
dimensional microbiome data with biology. On the other hand, although there have
been remarkable efforts toward curating taxonomy using phylogenetics, the number
of taxonomic ranks is limited (typically 7 to 8) and can constrain the topology for an
ever-growing number of sequenced genomes. The history of 16S rRNA studies (13) is
repeating itself in whole-genome studies, such that building a phylogeny is not only
advantageous but often more feasible than defining taxonomy, and the OGU method
powerfully provides an analogous extension to shotgun sequencing studies.

Our systematic investigation of the performance of OGUs in various conditions
showed that they consistently produce biologically relevant results, as long as a phy-
logeny-aware and abundance-based metric (such as weighted UniFrac) is used. The
results are robust to alignment ambiguity and low-abundance assignments, which are
common challenges in shotgun metagenomics. The PERMANOVA statistics remain sta-
ble at very low sequencing depths, potentially permitting even shallower metage-
nomic sequencing in microbiome research while still deriving biologically conclusive
results. The OGU method is not only effective with the recommended protocol (WoL 1
SHOGUN), but it is also flexible to the choice of sequence aligners and reference ge-
nome catalogs or phylogenies (Fig. 6), thus minimizing user efforts to integrate the
OGU method into existing data analysis pipelines. Furthermore, the adoption of the
OGU method can be conveniently achieved through the function-rich, highly customiz-
able pipeline (Fig. 9) implemented in our software package Woltka.

Although showing its power for general metagenomics studies, our method so far
has not provided definitive solutions to several practical questions, which remain to be
further investigated. First, we showed that diversity metrics such as Jaccard and
unweighted UniFrac, which rely on the presence/absence of features instead of their
abundances, produced less stable results when alignment count or filtering threshold
changed (Fig. 4). This issue is likely associated with the “noisy” nature of shotgun meta-
genomics, as discussed above. Future efforts may focus on the improvement of feature
extraction through better handling of alignment ambiguity and also filtering to reduce
off-target hits, both of which have been successful in other applications (41) but which

FIG 9 Procedure for generating OGU tables, as implemented in Woltka. This program serves as an interface connecting upstream sequence
alignment and downstream community diversity analysis. The inputs are sequence alignments, and the outputs are feature tables (in this
case, OGU tables). The pipeline contains multiple procedures, with rich format support and flexible options to address diverse user needs.
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we believe merit a detailed discussion that is outside the scope of the present work.
Second, we recognize that this work does not address alpha diversity directly; however,
an important consideration is that the currently most widely adopted alpha diversity
metric that considers phylogeny, Faith’s PD (51, 52), is based on the presence/absence
of features and will be impacted by alignment ambiguity (see above). A thorough
investigation of the impact of feature abundance (e.g., see reference 53), alignment
ambiguity, feature filtering, and other factors will be necessary to point to a robust
method for estimating the alpha diversity of metagenomes in a phylogenetic context.
Meanwhile, multiple nonphylogenetic, abundance-based metrics (such as Shannon
index) already exist for deriving alpha diversity estimates from shotgun metagenomic
data and have been recently benchmarked (44).

Third and most importantly, the robustness of an OGU analysis is limited by the com-
prehensiveness of the reference database. Although available genomic data have grown
to an enormous volume, the size of a reference genome database that can be realistically
used in a metagenomic analysis with typical computing facilities is circumscribed, limiting
the increase of resolution beyond subspecies levels. Balancing alignment accuracy and
database content is therefore an important consideration in designing the best analytical
strategy. The clustering-free algorithm we previously designed and used in the WoL data-
base to maximize the covered biodiversity given a fixed number of genomes (18) may be
beneficial in this situation, but its efficacy may require further testing in the context of par-
ticular biospecimens and biological questions. Leaderboard sequencing may also be a use-
ful strategy for iteratively augmenting the reference database with the common genomes
in each sample (54). Efforts to improve algorithms, increase database coverage, and
improve computing efficiency are all needed to drive advances in the field of metagenom-
ics, and the OGU method provides an important step forward in that direction.

MATERIALS ANDMETHODS
Protocol details. The OGU method is flexible to the type of sequence alignment. The recommended pro-

tocol, which is also the protocol demonstrated and benchmarked in this article, is as follows. Shotgun metage-
nomic sequencing data were aligned against the WoL reference genome database using SHOGUN v1.0.8 (42),
with Bowtie2 v2.4.1 (55) as the back end. This process is equivalent to a Bowtie2 run with the following param-
eters:2very2sensitive2k162np12mp “1,1”2rdg “0,1”2rfg “0,1”2score2min “L,0,20.05.”

The sequence alignment is treated as a mapping from queries (sequencing data) to subjects (refer-
ence genomes). It is possible that one sequence is mapped to multiple genomes (up to 16 using the
aforementioned Bowtie2 command). In this scenario, each genome is counted 1/k times (k is the number
of genomes to which this sequence is mapped). The frequencies of individual genomes were summed
after the entire alignment was processed and were rounded to the nearest even integer. Therefore, the
sum of OGU frequencies per sample is nearly (considering rounding) equal to the number of aligned
sequences in the data set. In the output feature table, columns contain sample IDs, rows contain feature
IDs (OGUs), and cell values are the frequency of each OGU in each sample. This table is ready to be ana-
lyzed using software packages such as QIIME 2 (11).

It should be noted that the Bowtie2 parameter “2k16” is part of the default protocol implemented
in SHOGUN, and it was determined through benchmarks in a previous work (29). We adopted the
SHOGUN protocol, but we performed benchmarks in this work to evaluate whether this parameter has a
significant impact on the results (Fig. 6A and B). We also benchmarked alternative alignment methods in
the framework of the OGU method (Fig. 6I to L).

It should also be noted that the OGU frequencies in the resulting table represent sequence abun-
dance, instead of taxonomic abundance, the latter of which can be estimated by normalizing the fre-
quencies with the sizes of the reference genomes. In Woltka, we implemented the parameter “–sizes” to
enable this optional normalization. The difference between the two abundance metrics and how it
impacts analysis results are discussed in reference 44.

Implementation. The OGU method is implemented in the bioinformatics tool Woltka (Web of Life
Toolkit App), under the BSD-3-Clause open-source license. The program is written in Python 3, following
high-quality software engineering standards. Its unit test coverage is 100%. The source code is hosted in
the GitHub repository (https://github.com/qiyunzhu/woltka), together with instructions, tutorials, com-
mand-line references, and test data sets. The program has been included in the Python Package Index
(PyPI). In addition to the standalone Woltka program, a QIIME 2 (11) plug-in is included in the software
package.

Woltka automatically recognizes and parses multiplexed or per-sample sequence alignment files, ei-
ther original or compressed using Gzip, Bzip2, or LZMA algorithms. It supports three alignment file for-
mats: (i) SAM (Sequence Alignment Map) (56), which is supported by multiple short read alignment pro-
grams, such as Bowtie2 (55), BWA (57) and Minimap2 (47); (ii) the standard BLAST (58) tabular output
format (-outfmt 6), which is supported by multiple-sequence-alignment programs, such as BLAST,
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VSEARCH (59), and DIAMOND (60); and (iii) a plain mapping of query sequences to subject genomes,
which is customizable to adopt other tools and pipelines.

In addition to OGU table generation, Woltka supports summarizing features into higher-level groups.
This enables taxonomic classification, for comparison purposes. The output of Woltka’s classification
function and that of SHOGUN’s “assign_taxonomy” function are identical. Woltka supports three formats
of classification systems: (i) the Greengenes-style lineage strings (supported by programs such as QIIME
2 [11], MetaPhlAn [43], and GTDB-tk [61]), (ii) the NCBI-style taxonomy database (62) (also known as “tax-
dump,” supported by programs such as Kraken 2 [5], Centrifuge [4], and DIAMOND [60]), and (iii) one or
multiple plain mappings of child-to-parent classification units.

The functions implemented in Woltka that are relevant to the current work are summarized in Fig. 8.
Deployment. The Woltka program has been incorporated in the Qiita web analysis platform

(https://qiita.ucsd.edu/) (23), as part of the standard operating procedure for analyzing shotgun metage-
nomic data (qp-woltka, code hosted at https://github.com/qiita-spots/qp-woltka). It can be directly
launched from the graphic user interface. A job array system is used to parallelize analyses on a per-sam-
ple base to maximize processing speed. Each process uses eight cores of an Intel E5-2640 v3 CPU and 90
GB DDR4 memory. Two reference genome databases are available for user choice: (i) the WoL database
(18), with 10,575 bacterial and archaeal genomes that were evenly sampled through an algorithm, and
(ii) the reference and representative genomes of microbes defined in NCBI RefSeq release 200 (16). The
subsequent community ecology analyses based on the OGU table are also available from Qiita. The WoL
reference phylogeny is available for choice for phylogenetic analyses (such as UniFrac [63]).

This system allowed us to reanalyze all metagenomic data sets hosted on Qiita (totaling 143 studies
and 57,063 samples, as of 3 March 2021) to generate OGU tables as well as tables at multiple taxonomic
ranks, which are ready for subsequent meta-analysis by Qiita users. Although run time varies by sample
size, the average wall clock time for analyzing one metagenomic sample (including sequence alignment
against WoL using Bowtie2 and feature table generation using Woltka) was 13.8 min in this large effort.

The HMP data set. The Human Microbiome Project (HMP) (28) data set was downloaded from the
official website (https://www.hmpdacc.org/hmp/). It contains 241 samples of 100-bp paired-end whole-
genome sequencing (WGS) reads. The sequencing data had already been processed to remove human
contamination and low-quality regions. We dropped samples with fewer than 1 million paired-end reads
and one sample that received zero matches by SHOGUN and MIDAS (SRS057290), leaving 210 samples
(Table S2). They were randomly subsampled to 1 million paired-end reads per sample. These samples
represent both male (n = 138) and female (n = 72) human subjects. They represent seven body sites:
stool (n = 78), tongue dorsum (n = 42), supragingival plaque (n = 33), buccal mucosa (n = 28), retroauric-
ular crease (n = 13), posterior fornix (n = 10), and anterior nares (n = 6).

Taxonomic profilers. In comparison with the OGU method, we performed taxonomic profiling on
the shotgun metagenomic data using five existing methods, representing two mainstream strategies for
metagenome profiling and two types of output metrics (44), specified below. The default parameters
were used for all programs. To maximize comparability, we used the WoL reference genome database
(18) for all methods, except for MetaPhlAn (because it uses a special marker gene database which is diffi-
cult to customize).

Three profilers that utilize the information of whole genomes (sequences or k-mer profiles), and
report sequence abundances (number of query sequences assigned to each taxon) are as follows: (i)
SHOGUN v1.0.8 (42), which calls Bowtie2 v2.4.1 (56) to perform sequence alignment (note that these
sequence alignments were also used for generating the OGU tables using Woltka); (ii) Bracken v2.5 (30)
on the results of Kraken v2.0.8 (5); and (iii) Centrifuge v1.0.3 (4).

Two profilers that use certain sets of phylogenetically informative marker genes and report taxo-
nomic abundances (number of genomes assigned to each taxon) were also used: (i) MetaPhlAn v2.6.0
(43) with its database (mpa_v20_m200) and (ii) MIDAS v1.3.0 (10) with the “species” command. The out-
puts are relative abundances and they were normalized to counts per million sequences in this study.

Reference genome databases. The applicability of the OGU method was tested with six reference
databases of microbial genomes and the corresponding reference phylogenetic trees built by the develop-
ers. They represent a gradient of capacities, and a variety of focuses. These databases are (from smallest to
largest) GEBA-I (45), UHGG (Unified Human Gastrointestinal Genome) (17), MIDAS (Metagenomic Intra-spe-
cies Diversity Analysis System) (10), WoL (Web of Life) (10,575 genomes, 30.61 Gbp; developed by us and
used in the default OGU protocol), GTDB89 (Genome Taxonomy Database release 89) (44) (24,771 genomes
representing species clusters, 82.85 Gbp), and GEM (Genomes from Earth’s Microbiomes) (46) (OTU sequen-
ces, 45,599 genomes representing species-level OTUs, 134.82 Gbp).

DNA sequence aligners. The OGU method was tested using sequence alignments generated by
two alternative methods, in addition to SHOGUN (which uses a specific parameter set of Bowtie2, as
detailed above). They are Bowtie2 v2.4.1 (55), with its default parameter setting, and Minimap2 v2.20
(47), with its default parameter setting under the “short-read” (sr) mode.

Beta diversity analysis. Beta diversity analysis of the HMP data set was performed using QIIME 2
(11), following recommended protocols (64). Specifically, beta diversity distance matrices were con-
structed using the “qiime diversity beta” command with Jaccard and Bray-Curtis metrics and using the
“qiime diversity beta-phylogenetic” command (65) with unweighted UniFrac and weighted UniFrac met-
rics, based on the WoL reference phylogeny. PCoA was performed using the “qiime diversity pcoa” com-
mand. The correlation between biological factors (body site and host sex) and beta diversity was
assessed using PERMANOVA, through the command “qiime diversity adonis,” with 999 permutations
(the default setting).
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Site clustering by environment. In the HMP study, we quantified the proximity of the three oral
sites (tongue dorsum, supragingival plaque, and buccal mucosa) compared with the four nonoral sites
(stool, retroauricular crease, posterior fornix, and anterior nares) as follows: For each sample in the three
oral sites, we calculated the beta diversity distance to all samples in all but the current site. We then sep-
arated these distances into oral (i.e., the two oral sites other than the current one) and nonoral (i.e., the
four nonoral sites). We calculated the ratio of the mean distance of the former versus the latter. Finally,
we reported the distribution of the mean ratios of all oral samples.

Phylogenetic factorization. We performed phylogenetic factorization as implemented in Phylofactor
v0.0.1 to infer phylogenetic clades (“factors”) that are differentially abundant between male and female sub-
jects. Two samples with fewer than 100,000 OGU counts were excluded from the analysis. OGUs with relative
abundance below 0.01% were dropped from each sample, and OGUs present in fewer than two samples
were also excluded. We built an explained variance-maximizing (the choice parameter was set to “var”)
Phylofactor model using the OGU table and the WoL phylogeny. We specified the model to return 20 factors.
They were labeled by the taxonomic annotation of the corresponding phylogenetic clades as provided in
the WoL database. The results were visualized with EMPress. In each factor, we tested the differences in male
versus female subjects by comparing the isometric log-ratio-transformed vectors corresponding to each sam-
ple group using a two-tailed independent-sample t test.

The FINRISK 2002 data set. The FINRISK 2002 is a large, well-phenotyped, and representative cohort
based on a stratified random sample of the population aged 25 to 74 years from specific geographical
areas of Finland (36). All volunteer participants took a self-administered questionnaire, physical measure-
ments, and collection of blood and stool samples. The microbiome data and metadata that support the
findings of this study are available from the THL Biobank based on a written application and following
relevant Finnish legislation. Details of the application process are described on the Biobank website
(https://thl.fi/en/web/thl-biobank/for-researchers).

Paired 16S rRNA gene amplicon sequencing data and shotgun metagenomic sequencing data are avail-
able for 6,430 stool samples. The 16S rRNA data were demultiplexed, quality filtered, and denoised with
deblur v1.1.0 (66), resulting in an average ASV frequency of 8,787 per sample. Taxonomic classification was
performed using a pretrained naive Bayes classifier against the Greengenes 13_8 database at an OTU cluster-
ing level of 99%. Feature tables were rarefied to a sampling depth of 10,000. The shotgun metagenomic
data were trimmed and quality filtered using Atropos v1.1.25 (67), resulting in an average of 1.07 million
paired-end sequences per sample. They were aligned to the WoL database using SHOGUN v1.0.8. An OGU
table was generated using the current approach. As a comparison, Bracken v2.5 with Kraken v2.0.8 was used
to infer taxonomic profiles using the same WoL database. These analyses were the same as the correspond-
ing analyses of the HMP shotgun metagenomic data set, as described above.

Supervised regression for age prediction. We performed machine learning analysis of microbial
profiles derived from both 16S amplicon sequencing and shotgun metagenomics sequencing, at distinct
levels of resolution. These included taxonomic ranks (phylum, class, order, family, genus, and species)
for both 16S rRNA and shotgun metagenomic data (the latter of which were inferred by either SHOGUN
or Bracken), ASVs for 16S rRNA data, and OGU for shotgun metagenomic data (inferred by SHOGUN with
Woltka). In each profile, features with a study-wide prevalence less than 0.001 were excluded. Random
forest regressors for predicting chronological age were trained based on each profile with tuned hyper-
parameters with a stratified 5-fold cross-validation approach using the R package ranger v0.12.1 (68).
Each data set was split into five groups with similar age distributions, and we trained the classifier on
80% of the data and made predictions on the remaining 20% of the data in each fold iteration. We next
evaluated the performance of age prediction using mean absolute error (MAE), calculated as

Xn

i¼1
jyi 2 xij
n

where y denotes the predicted age, x denotes the chronological age, and n is the total number of sam-
ples. Based on the MAE evaluation, we next determined the most predictive taxonomic levels derived
from both 16S and shotgun metagenomics.

To identify the most important taxonomic features that contributed to the age prediction, we visual-
ized the 128 top-ranked important features by built-in random forest importance scores and their phylo-
genetic relationships using EMPress (33). We next performed the feature selection analysis to identify a
set of important microbial features that can maximize the model performance. We built age regressors
using a series of reduced sets (n = 2, 4, 8, 16, 32, 64, 128, 256, 512, 1,024, and the number of all features)
of the most predictive taxonomic features (namely, OGU) and compared their performance. The ration-
ale was to observe an optimized MAE while adding features into the regression model.

Simulated data set and assignment accuracy.We evaluated the assignment accuracy of OGUs and
species using a simulated metagenomic data set, generated following the protocol described in refer-
ence 44. Specifically, this data set has 25 samples simulated to represent the real microbial communities
collected from a variety of habitats (n = 5 each): built environment, human gut, mouth, skin, and vagina.
We first fixed the species-level richness for each habitat and selected representative genomes for each
species as previously identified in these habitats. Their abundances were created randomly from a log-
normal distribution. Using the ground truth as reference, we calculated three metrics: (i) AUPR (area
under the precision-recall curve), which evaluates the presence/absence of features (41); (ii) Bray-Curtis,
which evaluates the abundance of features, and (iii) weighted UniFrac, which also evaluates the abun-
dance and used the WoL phylogeny. It should be noted that the abundance evaluated here was the
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sequence abundance (see reference 44 for a thorough discussion). We evaluated both OGU and species
profiles predicted by SHOGUN and species profiles predicted by Bracken and MIDAS. All three tools used
the WoL database so that their results are comparable (see above). Strictly speaking, the results of OGUs
and species are not directly comparable because they used different references (genomes or species).
Nevertheless, they implicated what to expect with individual methods.

UniFrac with a taxonomic tree. The taxonomic hierarchies of the WoL reference genomes were
converted into a Newick-formatted tree, in which the branches connecting two adjacent taxonomic
ranks have a constant length. Only the seven standard tanks (kingdom, phylum, class, order, family, ge-
nus, and species) were considered. This ensures that all taxa at the same rank have the same tip-to-root
length. This tree was used as a replacement of the phylogenetic tree for UniFrac analyses.

Collapsing phylogenetic tree to taxonomic ranks. The WoL reference phylogeny (18) was col-
lapsed such that each tip represents a taxonomic unit at a given rank. We used the taxonomy curated
during the WoL project (see reference 18 for details) so that every taxonomic unit is a monophyletic
group in the phylogenetic tree, which allowed consistent conversion of the tree of genomes into trees
of each of the six taxonomic ranks. The resulting trees were used in the UniFrac analyses of the taxo-
nomic profiles.

Generating the half-sized and double-sized genome pools. The WoL database contains 10,575
genomes sampled from 86,200 nonredundant microbial genomes available from NCBI at the time of
construction (18). They were sampled using a combination of criteria, the center of which was a “proto-
type selection” algorithm we developed, which ensures that the total biodiversity (measured by
MinHash distance) covered by a fixed number of genomes is maximized (18). We used the same algo-
rithm to sample half of the genomes (5,287) from the WoL genome pool. Next, we used the same algo-
rithm to sample twice as many genomes (21,150) from the original pool of 86,200 genomes, with the
WoL genomes as “seeds” (detailed in reference 18). These procedures ensured that the half-sized ge-
nome pool is a subset of the WoL pool, which in turn is a subset of the double-sized pool.

Building reference phylogenies of the half-sized and double-sized genome pools. The reference
phylogeny of the half-sized genome pool was pruned from the original WoL reference phylogeny. For
the double-sized genome pool, we started with the same sequence data that were used for building the
original WoL reference phylogeny (18). They were the 381 global marker genes inferred by PhyloPhlAn
and curated by the authors. Next, we adopted a relatively scalable protocol (to overcome the significant
size of the genome pool) that was implemented in PhyloPhlAn 3.0 (22) to build a phylogenomic tree
from the 381 genes by 21,150 genomes. Specifically, we used MAFFT v7.480 (69) to align protein
sequences of each marker gene family, then used trimAl v1.4.rev15 (70) to conduct quality trimming of
the multiple sequence alignments, and then used PhyloPhlAn 3.0’s built-in algorithm (corresponding to
the parameters –fast and –diversity high) to further trim the alignments and to select 10% sites that
carry the strongest phylogenetic signals. The processed alignments were concatenated into a master
alignment of 14,583 sites. We then used the maximum-likelihood method implemented in FastTree
v2.1.10 (71). The parameter settings for MAFFT, trimAl, and FastTree followed the default protocol of
PhyloPhlAn 3.0.

Subsampling of OGU tables. To assess the impact of sequencing depth on analysis results, we ran-
domly subsampled the OGU tables to lower depths (sum of OGU frequencies per sample). This process
mimicked lower sequencing depths in the original data, because the sum of OGU frequencies is equal to
the number of aligned sequences (see above). This process further considered the unaligned part of the
sequencing data. For example, if m out of n sequences in a sample were aligned to at least one refer-
ence genome (therefore, the sum of OGU frequencies was m), we added an extra “unaligned” feature of
frequency of n2 m to the OGU table, prior to random subsampling, and removed this extra feature after
sampling. For each sampling depth, we generated 10 replicates using random seeds 0 to 9.

Subsampling of Bracken results. To simulate the effect of subsampling original sequencing data,
we performed random subsampling of the lines in the Kraken2 mapping files, which record the frequen-
cies of k-mers that match individual taxonomic units for each query sequence. Similarly (see above), the
unclassified portion was considered, and 10 replicates were generated for each depth. Bracken was then
executed on the subsampled Kraken2 mapping files to generate species-level profiles.

Subsampling of MIDAS results. We performed random subsampling on the temporary files gener-
ated in the original MIDAS runs. These temporary files record the BLAST search results of the sequencing
data against predefined marker gene sequences. Because one query sequence may match multiple tar-
gets, the subsampling process took each query sequence as the unit instead of each line of the file.
Similarly (see above), the unclassified portion was considered, and 10 replicates were generated for each
depth. MIDAS was then executed on the subsampled BLAST search results to generate species-level
profiles.

Statistical analysis. All data analysis was performed using QIIME 2 release 2020.6. PERMANOVA was
performed using the adonis command (which wraps the adonis function in vegan v2.5-6). The P value
was calculated using one million permutations. A paired t test was performed using the ttest_rel func-
tion in SciPy v1.4.1.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 0.03 MB.
FIG S2, PDF file, 0.6 MB.

OGUs for Diversity Analysis of Metagenomic Data mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.00167-22 20

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00167-22


FIG S3, PDF file, 0.02 MB.
FIG S4, PDF file, 0.02 MB.
FIG S5, PDF file, 0 MB.
FIG S6, PDF file, 0.03 MB.
FIG S7, PDF file, 1.3 MB.
FIG S8, PDF file, 0.1 MB.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.01 MB.

ACKNOWLEDGMENTS
We are grateful to Evguenia Kopylova, Stefan Janssen, Tomasz Kosciolek, Holly Lutz,

Se Jin Song, Zachary Burcham, Shalisa Hansen, Emily Kobayashi, Gabriel Al-Ghalith,
Cameron Martino, Siavash Mirarab, James Morton, Oriane Moyne, Wayne Pfeiffer,
Daniel Roush, and Jeff DeReus for valuable testing of the methodology, insightful
discussions on this study, and additional assistance.

This work was supported in part by an Arizona State University start-up grant (to
Q.Z.), Sloan Foundation G-2017-9838, IBM Research AI through the AI Horizons
Network-AI for Healthy Living A1770534, DARPA JUMP/CRISP, NIH P30DK120515,
DP1AT010885, U19AG063744, U24CA248454, Emerald Foundation Distinguished
Investigator Award, Crohn’s and Colitis Foundation 675191, NSF RAPID 2038509, IBM
Research AI through the AI Horizons Network and the UC San Diego Center for
Microbiome Innovation (to S.H., I.M., Y.V.-B., and R.K.). G.D.S.-P. is supported by a
fellowship from the National Institutes of Health (F30 CA243480). T.N. was funded by
the Emil Aaltonen Foundation, the Finnish Medical Foundation, the Finnish Foundation
for Cardiovascular Disease, and the Academy of Finland (grant 321351). L.L. was funded
by the Academy of Finland (grant 295741). V.S. was supported by the Finnish
Foundation for Cardiovascular Research. J.P.S. was supported by NIH/NIGMS IRACDA
K12 GM068524. This work used the Comet supercomputer at the San Diego
Supercomputer Center through allocation BIO150043 through the Extreme Science and
Engineering Discovery Environment (XSEDE).

Q.Z. and R.K. conceived the project. Q.Z. led the development of the methodology
and software. S.H. and Q.Z. led the analysis and interpretation of the data sets
presented in this article. S.H., A.G., D.M., and Y.V.-B. contributed to the design of the
method. A.G., D.M., and G.A. contributed to the development and deployment of the
software. G.D.S.-P., A.D.S., P.D., and F.L. contributed to the test of the method. P.B.-F.,
A.S.H., G.M., T.N., L.L., and V.S. contributed to data collection. A.G., I.M., J.Y., Y.V-B., and
J.K. contributed to data analysis. N.H., G.D.S.-P., A.S.H., G.M., T.N., L.L., V.S., H.-C.K., M.J.,
M.I., J.A.G., and R.K. contributed to result interpretation. R.K. and Q.Z. managed the
project. All the authors contributed to the discussion and writing of the manuscript.

We declare that we have no competing interests.

REFERENCES
1. Hugenholtz P, Chuvochina M, Oren A, Parks DH, Soo RM. 2021. Prokary-

otic taxonomy and nomenclature in the age of big sequence data. ISME J
15:1879–1892. https://doi.org/10.1038/s41396-021-00941-x.

2. Huson DH, Auch AF, Qi J, Schuster SC. 2007. MEGAN analysis of metage-
nomic data. Genome Res 17:377–386. https://doi.org/10.1101/gr.5969107.

3. Ounit R, Wanamaker S, Close TJ, Lonardi S. 2015. CLARK: fast and accurate
classification of metagenomic and genomic sequences using discriminative
k-mers. BMC Genomics 16:236. https://doi.org/10.1186/s12864-015-1419-2.

4. Kim D, Song L, Breitwieser FP, Salzberg SL. 2016. Centrifuge: rapid and sensi-
tive classification of metagenomic sequences. Genome Res 26:1721–1729.
https://doi.org/10.1101/gr.210641.116.

5. Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with
Kraken 2. Genome Biol 20:257. https://doi.org/10.1186/s13059-019-1891-0.

6. Breitwieser FP, Lu J, Salzberg SL. 2019. A review of methods and data-
bases for metagenomic classification and assembly. Brief Bioinform 20:
1125–1136. https://doi.org/10.1093/bib/bbx120.

7. Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F,
Manghi P, Tett A, Ghensi P, Collado MC, Rice BL, DuLong C, Morgan XC,
Golden CD, Quince C, Huttenhower C, Segata N. 2019. Extensive Unex-
plored Human Microbiome Diversity Revealed by Over 150,000 Genomes
from Metagenomes Spanning Age, Geography, and Lifestyle. Cell 176:
649–662.e20. https://doi.org/10.1016/j.cell.2019.01.001.

8. Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P.
2020. A complete domain-to-species taxonomy for Bacteria and Archaea.
Nat Biotechnol 38:1079–1086. https://doi.org/10.1038/s41587-020-0501-8.

9. Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA, Kultima
JR, Coelho LP, Arumugam M, Tap J, Nielsen HB, Rasmussen S, Brunak S,
Pedersen O, Guarner F, de Vos WM, Wang J, Li J, Doré J, Ehrlich SD,
Stamatakis A, Bork P. 2013. Metagenomic species profiling using universal
phylogenetic marker genes. Nat Methods 10:1196–1199. https://doi.org/
10.1038/nmeth.2693.

10. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. 2016. An integrated
metagenomics pipeline for strain profiling reveals novel patterns of bacterial

OGUs for Diversity Analysis of Metagenomic Data mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.00167-22 21

https://doi.org/10.1038/s41396-021-00941-x
https://doi.org/10.1101/gr.5969107
https://doi.org/10.1186/s12864-015-1419-2
https://doi.org/10.1101/gr.210641.116
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1093/bib/bbx120
https://doi.org/10.1016/j.cell.2019.01.001
https://doi.org/10.1038/s41587-020-0501-8
https://doi.org/10.1038/nmeth.2693
https://doi.org/10.1038/nmeth.2693
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00167-22


transmission and biogeography. Genome Res 26:1612–1625. https://doi.org/
10.1101/gr.201863.115.

11. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA,
Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K,
Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM,
Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall
DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM,
Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes
S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L,
Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, et al. 2019.
Reproducible, interactive, scalable and extensible microbiome data sci-
ence using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/
s41587-019-0209-9.

12. Callahan BJ, McMurdie PJ, Holmes SP. 2017. Exact sequence variants
should replace operational taxonomic units in marker-gene data analysis.
ISME J 11:2639–2643. https://doi.org/10.1038/ismej.2017.119.

13. Janssen S, McDonald D, Gonzalez A, Navas-Molina JA, Jiang L, Xu ZZ,
Winker K, Kado DM, Orwoll E, Manary M, Mirarab S, Knight R. 2018. Phylo-
genetic placement of exact amplicon sequences improves associations
with clinical information. mSystems 3:e00021-18. https://doi.org/10.1128/
mSystems.00021-18.

14. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A,
Andersen GL, Knight R, Hugenholtz P. 2012. An improved Greengenes
taxonomy with explicit ranks for ecological and evolutionary analyses of
bacteria and archaea. ISME J 6:610–618. https://doi.org/10.1038/ismej
.2011.139.

15. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner
FO. 2013. The SILVA ribosomal RNA gene database project: improved data
processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://
doi.org/10.1093/nar/gks1219.

16. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput
B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao
Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell
CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali
VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O'Neill K,
Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS,
Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D,
Wu W, Landrum MJ, Kimchi A, et al. 2016. Reference sequence (RefSeq)
database at NCBI: current status, taxonomic expansion, and functional
annotation. Nucleic Acids Res 44:D733–D745. https://doi.org/10.1093/
nar/gkv1189.

17. Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard
KS, Sakharova E, Parks DH, Hugenholtz P, Segata N, Kyrpides NC, Finn RD.
2021. A unified catalog of 204,938 reference genomes from the human
gut microbiome. Nat Biotechnol 39:105–114. https://doi.org/10.1038/
s41587-020-0603-3.

18. Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, Belda-Ferre P,
Al-Ghalith GA, Kopylova E, McDonald D, Kosciolek T, Yin JB, Huang S,
Salam N, Jiao J-Y, Wu Z, Xu ZZ, Cantrell K, Yang Y, Sayyari E, Rabiee M,
Morton JT, Podell S, Knights D, Li W-J, Huttenhower C, Segata N, Smarr L,
Mirarab S, Knight R. 2019. Phylogenomics of 10,575 genomes reveals evo-
lutionary proximity between domains Bacteria and Archaea. Nat Com-
mun 10:5477. https://doi.org/10.1038/s41467-019-13443-4.

19. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil
P-A, Hugenholtz P. 2018. A standardized bacterial taxonomy based on ge-
nome phylogeny substantially revises the tree of life. Nat Biotechnol 36:
996–1004. https://doi.org/10.1038/nbt.4229.

20. Washburne AD, Silverman JD, Morton JT, Becker DJ, Crowley D,
Mukherjee S, David LA, Plowright RK. 2019. Phylofactorization: a graph
partitioning algorithm to identify phylogenetic scales of ecological data.
Ecol Monogr 89:e01353. https://doi.org/10.1002/ecm.1353.

21. Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. 2017. Microbial
strain-level population structure and genetic diversity from metage-
nomes. Genome Res 27:626–638. https://doi.org/10.1101/gr.216242.116.

22. Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, Zhu Q,
Bolzan M, Cumbo F, May U, Sanders JG, Zolfo M, Kopylova E, Pasolli E,
Knight R, Mirarab S, Huttenhower C, Segata N. 2020. Precise phylogenetic
analysis of microbial isolates and genomes from metagenomes using
PhyloPhlAn 3.0. Nat Commun 11:2500. https://doi.org/10.1038/s41467
-020-16366-7.

23. Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y,
Ackermann G, DeReus J, Janssen S, Swafford AD, Orchanian SB, Sanders
JG, Shorenstein J, Holste H, Petrus S, Robbins-Pianka A, Brislawn CJ, Wang
M, Rideout JR, Bolyen E, Dillon M, Caporaso JG, Dorrestein PC, Knight R.

2018. Qiita: rapid, web-enabled microbiome meta-analysis. Nat Methods
15:796–798. https://doi.org/10.1038/s41592-018-0141-9.

24. Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S,
Kosciolek T, Janssen S, Metcalf J, Song SJ, Kanbar J, Miller-Montgomery S,
Heaton R, Mckay R, Patel SP, Swafford AD, Knight R. 2020. Microbiome
analyses of blood and tissues suggest cancer diagnostic approach. Nature
579:567–574. https://doi.org/10.1038/s41586-020-2095-1.

25. Gauglitz JM, Morton JT, Tripathi A, Hansen S, Gaffney M, Carpenter C, Weldon
KC, Shah R, Parampil A, Fidgett AL, Swafford AD, Knight R, Dorrestein PC.
2020. Metabolome-informedmicrobiome analysis refines metadata classifica-
tions and reveals unexpected medication transfer in captive cheetahs. mSys-
tems 5:e00635-19. https://doi.org/10.1128/mSystems.00635-19.

26. Ha CWY, Martin A, Sepich-Poore GD, Shi B, Wang Y, Gouin K, Humphrey
G, Sanders K, Ratnayake Y, Chan KSL, Hendrick G, Caldera JR, Arias C,
Moskowitz JE, Ho Sui SJ, Yang S, Underhill D, Brady MJ, Knott S, Kaihara K,
Steinbaugh MJ, Li H, McGovern DPB, Knight R, Fleshner P, Devkota S.
2020. Translocation of viable gut microbiota to mesenteric adipose drives
formation of creeping fat in humans. Cell 183:666–683.e17. https://doi
.org/10.1016/j.cell.2020.09.009.

27. Shaffer JP, Nothias L-F, Thompson LR, Sanders JG, Salido RA, Couvillion
SP, Brejnrod AD, Huang S, Lejzerowicz F, Lutz HL, Zhu Q, Martino C,
Morton JT, Karthikeyan S, Nothias-Esposito M, Dührkop K, Böcker S, Kim
H, Aksenov AA, Bittremieux W, Minich JJ, Marotz C, Bryant MM, Sanders K,
Schwartz T, Humphrey G, Vásquez-Baeza Y, Tripathi A, Parida L, Carrieri
AP, Haiminen N, Beck KL, Das P, González A, McDonald D, Karst SM,
Albertsen M, Ackermann G, DeReus J, Thomas T, Petras D, Shade A,
Stegen J, Song SJ, Metz TO, Swafford AD, Dorrestein PC, Jansson JK,
Gilbert JA, Knight R, the Earth Microbiome Project 500 (EMP500) Consor-
tium. 2021. Multi-omics profiling of Earth’s biomes reveals that microbial
and metabolite composition are shaped by the environment. bioRxiv.
https://doi.org/10.1101/2021.06.04.446988.

28. The Human Microbiome Project Consortium. 2012. Structure, function
and diversity of the healthy human microbiome. Nature 486:207–214.
https://doi.org/10.1038/nature11234.

29. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM, Beckman
KB, Knight R, Knights D. 2018. Evaluating the information content of shal-
low shotgun metagenomics. mSystems 3:e00069-18. https://doi.org/10
.1128/mSystems.00069-18.

30. Lu J, Breitwieser FP, Thielen P, Salzberg SL. 2017. Bracken: estimating spe-
cies abundance in metagenomics data. PeerJ Comput Sci 3:e104. https://
doi.org/10.7717/peerj-cs.104.

31. Morton JT, Toran L, Edlund A, Metcalf JL, Lauber C, Knight R. 2017. Uncov-
ering the horseshoe effect in microbial analyses. mSystems 2:e00166-16.
https://doi.org/10.1128/mSystems.00166-16.

32. Washburne AD, Silverman JD, Leff JW, Bennett DJ, Darcy JL, Mukherjee S,
Fierer N, David LA. 2017. Phylogenetic factorization of compositional data
yields lineage-level associations in microbiome datasets. PeerJ 5:e2969.
https://doi.org/10.7717/peerj.2969.

33. Cantrell K, Fedarko MW, Rahman G, McDonald D, Yang Y, Zaw T, Gonzalez
A, Janssen S, Estaki M, Haiminen N, Beck KL, Zhu Q, Sayyari E, Morton JT,
Armstrong G, Tripathi A, Gauglitz JM, Marotz C, Matteson NL, Martino C,
Sanders JG, Carrieri AP, Song SJ, Swafford AD, Dorrestein PC, Andersen
KG, Parida L, Kim H-C, Vázquez-Baeza Y, Knight R. 2021. EMPress enables
tree-guided, interactive, and exploratory analyses of multi-omic data sets.
mSystems 6:e01216-20. https://doi.org/10.1128/mSystems.01216-20.

34. Ma B, Forney LJ, Ravel J. 2012. Vaginal microbiome: rethinking health and
disease. Annu Rev Microbiol 66:371–389. https://doi.org/10.1146/annurev
-micro-092611-150157.

35. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD.
2015. Analysis of composition of microbiomes: a novel method for study-
ing microbial composition. Microb Ecol Health Dis 26:27663. https://doi
.org/10.3402/mehd.v26.27663.

36. Borodulin K, Tolonen H, Jousilahti P, Jula A, Juolevi A, Koskinen S,
Kuulasmaa K, Laatikainen T, Männistö S, Peltonen M, Perola M, Puska P,
Salomaa V, Sundvall J, Virtanen SM, Vartiainen E. 2018. Cohort profile: the
National FINRISK Study. Int J Epidemiol 47:696–696i. https://doi.org/10
.1093/ije/dyx239.

37. Breiman L. 2001. Random forests. Mach Learn 45:5–32. https://doi.org/10
.1023/A:1010933404324.

38. Zhang X, Zhong H, Li Y, Shi Z, Ren H, Zhang Z, Zhou X, Tang S, Han X, Lin Y,
Yang F, Wang D, Fang C, Fu Z, Wang L, Zhu S, Hou Y, Xu X, Yang H, Wang J,
Kristiansen K, Li J, Ji L. 2021. Sex- and age-related trajectories of the adult
human gut microbiota shared across populations of different ethnicities. Nat
Aging 1:87–100. https://doi.org/10.1038/s43587-020-00014-2.

OGUs for Diversity Analysis of Metagenomic Data mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.00167-22 22

https://doi.org/10.1101/gr.201863.115
https://doi.org/10.1101/gr.201863.115
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1038/ismej.2017.119
https://doi.org/10.1128/mSystems.00021-18
https://doi.org/10.1128/mSystems.00021-18
https://doi.org/10.1038/ismej.2011.139
https://doi.org/10.1038/ismej.2011.139
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.1038/s41467-019-13443-4
https://doi.org/10.1038/nbt.4229
https://doi.org/10.1002/ecm.1353
https://doi.org/10.1101/gr.216242.116
https://doi.org/10.1038/s41467-020-16366-7
https://doi.org/10.1038/s41467-020-16366-7
https://doi.org/10.1038/s41592-018-0141-9
https://doi.org/10.1038/s41586-020-2095-1
https://doi.org/10.1128/mSystems.00635-19
https://doi.org/10.1016/j.cell.2020.09.009
https://doi.org/10.1016/j.cell.2020.09.009
https://doi.org/10.1101/2021.06.04.446988
https://doi.org/10.1038/nature11234
https://doi.org/10.1128/mSystems.00069-18
https://doi.org/10.1128/mSystems.00069-18
https://doi.org/10.7717/peerj-cs.104
https://doi.org/10.7717/peerj-cs.104
https://doi.org/10.1128/mSystems.00166-16
https://doi.org/10.7717/peerj.2969
https://doi.org/10.1128/mSystems.01216-20
https://doi.org/10.1146/annurev-micro-092611-150157
https://doi.org/10.1146/annurev-micro-092611-150157
https://doi.org/10.3402/mehd.v26.27663
https://doi.org/10.3402/mehd.v26.27663
https://doi.org/10.1093/ije/dyx239
https://doi.org/10.1093/ije/dyx239
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1038/s43587-020-00014-2
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00167-22


39. Schmidt TS, Hayward MR, Coelho LP, Li SS, Costea PI, Voigt AY, Wirbel J,
Maistrenko OM, Alves RJ, Bergsten E, de Beaufort C, Sobhani I, Heintz-
Buschart A, Sunagawa S, Zeller G, Wilmes P, Bork P. 2019. Extensive trans-
mission of microbes along the gastrointestinal tract. Elife 8:e42693.
https://doi.org/10.7554/eLife.42693.

40. Huang S, Haiminen N, Carrieri A-P, Hu R, Jiang L, Parida L, Russell B,
Allaband C, Zarrinpar A, Vázquez-Baeza Y, Belda-Ferre P, Zhou H, Kim H-C,
Swafford AD, Knight R, Xu ZZ. 2020. Human skin, oral, and gut micro-
biomes predict chronological age. mSystems 5:e00630-19. https://doi
.org/10.1128/mSystems.00630-19.

41. Ye SH, Siddle KJ, Park DJ, Sabeti PC. 2019. Benchmarking metagenomics
tools for taxonomic classification. Cell 178:779–794. https://doi.org/10
.1016/j.cell.2019.07.010.

42. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Knight R, Knights D.
2020. SHOGUN: a modular, accurate and scalable framework for micro-
biome quantification. Bioinformatics 36:4088–4090. https://doi.org/10
.1093/bioinformatics/btaa277.

43. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A,
Huttenhower C, Segata N. 2015. MetaPhlAn2 for enhanced metagenomic
taxonomic profiling. Nat Methods 12:902–903. https://doi.org/10.1038/
nmeth.3589.

44. Sun Z, Huang S, Zhang M, Zhu Q, Haiminen N, Carrieri AP, Vázquez-Baeza
Y, Parida L, Kim H-C, Knight R, Liu Y-Y. 2021. Challenges in benchmarking
metagenomic profilers. Nat Methods 18:618–626. https://doi.org/10
.1038/s41592-021-01141-3.

45. Mukherjee S, Seshadri R, Varghese NJ, Eloe-Fadrosh EA, Meier-Kolthoff JP,
Göker M, Coates RC, Hadjithomas M, Pavlopoulos GA, Paez-Espino D,
Yoshikuni Y, Visel A, Whitman WB, Garrity GM, Eisen JA, Hugenholtz P,
Pati A, Ivanova NN, Woyke T, Klenk H-P, Kyrpides NC. 2017. 1,003 refer-
ence genomes of bacterial and archaeal isolates expand coverage of the
tree of life. Nat Biotechnol 35:676–683. https://doi.org/10.1038/nbt.3886.

46. Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, Wu D,
Paez-Espino D, Chen I-M, Huntemann M, Palaniappan K, Ladau J,
Mukherjee S, Reddy TBK, Nielsen T, Kirton E, Faria JP, Edirisinghe JN,
Henry CS, Jungbluth SP, Chivian D, Dehal P, Wood-Charlson EM, Arkin AP,
Tringe SG, Visel A, Woyke T, Mouncey NJ, Ivanova NN, Kyrpides NC, Eloe-
Fadrosh EA, IMG/M Data Consortium. 2021. A genomic catalog of Earth’s
microbiomes. Nat Biotechnol 39:499–509. https://doi.org/10.1038/s41587
-020-00769-4.

47. Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioin-
formatics 34:3094–3100. https://doi.org/10.1093/bioinformatics/bty191.

48. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I,
Majda S, Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jørgensen
TS, Shapiro N, Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi
R, Nagarajan N, Quince C, Meyer F, Balvo�ciūtėM, Hansen LH, Sørensen SJ,
Chia BKH, Denis B, Froula JL, Wang Z, Egan R, Don Kang D, Cook JJ, Deltel
C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu Y-W,
Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD,
Lingner T, Lin H-H, Liao Y-C, et al. 2017. Critical assessment of metage-
nome interpretation—a benchmark of metagenomics software. Nat
Methods 14:1063–1071. https://doi.org/10.1038/nmeth.4458.

49. Jiang Y, Balaban M, Zhu Q, Mirarab S. 2022. DEPP: deep learning enables
extending species trees using single genes. bioRxiv. https://doi.org/10
.1101/2021.01.22.427808.

50. Castelle CJ, Banfield JF. 2018. Major new microbial groups expand diver-
sity and alter our understanding of the tree of life. Cell 172:1181–1197.
https://doi.org/10.1016/j.cell.2018.02.016.

51. Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biol
Conserv 61:1–10. https://doi.org/10.1016/0006-3207(92)91201-3.

52. Armstrong G, Cantrell K, Huang S, McDonald D, Haiminen N, Carrieri AP,
Zhu Q, Gonzalez A, McGrath I, Beck KL, Hakim D, Havulinna AS, Méric G,
Niiranen T, Lahti L, Salomaa V, Jain M, Inouye M, Swafford AD, Kim H-C,
Parida L, Vázquez-Baeza Y, Knight R. 2021. Efficient computation of Faith’s
phylogenetic diversity with applications in characterizing microbiomes.
Genome Res 31:2131–2137. https://doi.org/10.1101/gr.275777.121.

53. McCoy CO, Matsen FA, IV. 2013. Abundance-weighted phylogenetic di-
versity measures distinguish microbial community states and are robust
to sampling depth. PeerJ 1:e157. https://doi.org/10.7717/peerj.157.

54. Sanders JG, Nurk S, Salido RA, Minich J, Xu ZZ, Zhu Q, Martino C,
Fedarko M, Arthur TD, Chen F, Boland BS, Humphrey GC, Brennan C,
Sanders K, Gaffney J, Jepsen K, Khosroheidari M, Green C, Liyanage M,
Dang JW, Phelan VV, Quinn RA, Bankevich A, Chang JT, Rana TM, Conrad
DJ, Sandborn WJ, Smarr L, Dorrestein PC, Pevzner PA, Knight R. 2019.
Optimizing sequencing protocols for leaderboard metagenomics by
combining long and short reads. Genome Biol 20:226. https://doi.org/10
.1186/s13059-019-1834-9.

55. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie
2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923.

56. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup.
2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics
25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

57. Li H, Durbin R. 2009. Fast and accurate short read alignment with Bur-
rows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10
.1093/bioinformatics/btp324.

58. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local
alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/
S0022-2836(05)80360-2.

59. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile
open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10
.7717/peerj.2584.

60. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment
using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth
.3176.

61. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2019. GTDB-Tk: a tool-
kit to classify genomes with the Genome Taxonomy Database. Bioinfor-
matics 36:1925–1927. https://doi.org/10.1093/bioinformatics/btz848.

62. Federhen S. 2012. The NCBI Taxonomy database. Nucleic Acids Res 40:
D136–D143. https://doi.org/10.1093/nar/gkr1178.

63. Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for com-
paring microbial communities. Appl Environ Microbiol 71:8228–8235. https://
doi.org/10.1128/AEM.71.12.8228-8235.2005.

64. Estaki M, Jiang L, Bokulich NA, McDonald D, González A, Kosciolek T,
Martino C, Zhu Q, Birmingham A, Vázquez-Baeza Y, Dillon MR, Bolyen E,
Gregory Caporaso J, Knight R. 2020. QIIME 2 enables comprehensive end-
to-end analysis of diverse microbiome data and comparative studies with
publicly available data. Curr Protoc Bioinformatics 70:e100. https://doi
.org/10.1002/cpbi.100.

65. McDonald D, Vázquez-Baeza Y, Koslicki D, McClelland J, Reeve N, Xu Z,
Gonzalez A, Knight R. 2018. Striped UniFrac: enabling microbiome analy-
sis at unprecedented scale. Nat Methods 15:847–848. https://doi.org/10
.1038/s41592-018-0187-8.

66. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z,
Kightley EP, Thompson LR, Hyde ER, Gonzalez A, Knight R. 2017. Deblur
rapidly resolves single-nucleotide community sequence patterns. mSys-
tems 2:e00191-16. https://doi.org/10.1128/mSystems.00191-16.

67. Didion JP, Martin M, Collins FS. 2017. Atropos: specific, sensitive, and
speedy trimming of sequencing reads. PeerJ 5:e3720. https://doi.org/10
.7717/peerj.3720.

68. Wright MN, Ziegler A. 2017. ranger: a fast implementation of random for-
ests for high dimensional data in C11 and R. J Stat Softw 77:1–17.

69. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment soft-
ware version 7: improvements in performance and usability. Mol Biol Evol
30:772–780. https://doi.org/10.1093/molbev/mst010.

70. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for
automated alignment trimming in large-scale phylogenetic analyses. Bioin-
formatics 25:1972–1973. https://doi.org/10.1093/bioinformatics/btp348.

71. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—approximately maxi-
mum-likelihood trees for large alignments. PLoS One 5:e9490. https://doi
.org/10.1371/journal.pone.0009490.

OGUs for Diversity Analysis of Metagenomic Data mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.00167-22 23

https://doi.org/10.7554/eLife.42693
https://doi.org/10.1128/mSystems.00630-19
https://doi.org/10.1128/mSystems.00630-19
https://doi.org/10.1016/j.cell.2019.07.010
https://doi.org/10.1016/j.cell.2019.07.010
https://doi.org/10.1093/bioinformatics/btaa277
https://doi.org/10.1093/bioinformatics/btaa277
https://doi.org/10.1038/nmeth.3589
https://doi.org/10.1038/nmeth.3589
https://doi.org/10.1038/s41592-021-01141-3
https://doi.org/10.1038/s41592-021-01141-3
https://doi.org/10.1038/nbt.3886
https://doi.org/10.1038/s41587-020-00769-4
https://doi.org/10.1038/s41587-020-00769-4
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1101/2021.01.22.427808
https://doi.org/10.1101/2021.01.22.427808
https://doi.org/10.1016/j.cell.2018.02.016
https://doi.org/10.1016/0006-3207(92)91201-3
https://doi.org/10.1101/gr.275777.121
https://doi.org/10.7717/peerj.157
https://doi.org/10.1186/s13059-019-1834-9
https://doi.org/10.1186/s13059-019-1834-9
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1093/nar/gkr1178
https://doi.org/10.1128/AEM.71.12.8228-8235.2005
https://doi.org/10.1128/AEM.71.12.8228-8235.2005
https://doi.org/10.1002/cpbi.100
https://doi.org/10.1002/cpbi.100
https://doi.org/10.1038/s41592-018-0187-8
https://doi.org/10.1038/s41592-018-0187-8
https://doi.org/10.1128/mSystems.00191-16
https://doi.org/10.7717/peerj.3720
https://doi.org/10.7717/peerj.3720
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/bioinformatics/btp348
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1371/journal.pone.0009490
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00167-22

	RESULTS
	OGUs maximize resolution of community structures.
	OGUs enhance body environment and host sex-associated microbiome patterns.
	OGUs improve prediction of host age from the gut microbiome.
	The OGU method is robust against common artifacts in metagenomics.
	OGUs are useful indicators of community composition.
	The OGU method is generally effective with flexible protocol design.
	The OGU method remains effective at very low sequencing depths.
	Underlying rationales for taxonomy-independent microbiome analysis.

	DISCUSSION
	MATERIALS AND METHODS
	Protocol details.
	Implementation.
	Deployment.
	The HMP data set.
	Taxonomic profilers.
	Reference genome databases.
	DNA sequence aligners.
	Beta diversity analysis.
	Site clustering by environment.
	Phylogenetic factorization.
	The FINRISK 2002 data set.
	Supervised regression for age prediction.
	Simulated data set and assignment accuracy.
	UniFrac with a taxonomic tree.
	Collapsing phylogenetic tree to taxonomic ranks.
	Generating the half-sized and double-sized genome pools.
	Building reference phylogenies of the half-sized and double-sized genome pools.
	Subsampling of OGU tables.
	Subsampling of Bracken results.
	Subsampling of MIDAS results.
	Statistical analysis.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

