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ABSTRACT Membrane transport proteins perform crucial roles in cell physiology. The
obligate intracellular parasite Plasmodium falciparum, an agent of human malaria, relies
on membrane transport proteins for the uptake of nutrients from the host, disposal of
metabolic waste, exchange of metabolites between organelles, and generation and
maintenance of transmembrane electrochemical gradients for its growth and replica-
tion within human erythrocytes. Despite their importance for Plasmodium cellular physi-
ology, the functional roles of a number of membrane transport proteins remain
unclear, which is particularly true for orphan membrane transporters that have no or
limited sequence homology to transporter proteins in other evolutionary lineages.
Therefore, in the current study, we applied endogenous tagging, targeted gene disrup-
tion, conditional knockdown, and knockout approaches to investigate the subcellular
localization and essentiality of six membrane transporters during intraerythrocytic de-
velopment of P. falciparum parasites. They are localized at different subcellular struc-
tures—the food vacuole, the apicoplast, and the parasite plasma membrane—and four
out of the six membrane transporters are essential during asexual development.
Additionally, the plasma membrane resident transporter 1 (PMRT1; PF3D7_1135300), a
unique Plasmodium-specific plasma membrane transporter, was shown to be essential
for gametocytogenesis and functionally conserved within the genus Plasmodium.
Overall, we reveal the importance of four orphan transporters to blood stage P. falcipa-
rum development, which have diverse intracellular localizations and putative functions.

IMPORTANCE Plasmodium falciparum-infected erythrocytes possess multiple compart-
ments with designated membranes. Transporter proteins embedded in these mem-
branes not only facilitate movement of nutrients, metabolites, and other molecules
between these compartments, but also are common therapeutic targets and can con-
fer antimalarial drug resistance. Orphan membrane transporters in P. falciparum with-
out sequence homology to transporters in other evolutionary lineages and divergent
from host transporters may constitute attractive targets for novel intervention
approaches. Here, we localized six of these putative transporters at different subcellu-
lar compartments and probed their importance during asexual parasite growth by
using reverse genetic approaches. In total, only two candidates turned out to be
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dispensable for the parasite, highlighting four candidates as putative targets for thera-
peutic interventions. This study reveals the importance of several orphan transporters
to blood stage P. falciparum development.

KEYWORDS Plasmodium falciparum, apicomplexan parasites, membrane proteins,
membrane transport, reverse genetic analysis, subcellular localization, transporters

alaria parasites inhabit diverse intracellular niches and need to import nutrients

and export waste across both host cell and parasite membranes. Despite this,
there are less than 150 putative membrane transporters encoded in the genome of
Plasmodium falciparum, the most virulent malaria parasite, making up only 2.5% of all
coding genes (P. falciparum 3D7 v3.2: 5,280 genes) (1-8), which is a reduced level com-
pared to those of other unicellular organisms of similar genome size. The loss of redun-
dant transporters is a typical feature of many intracellular parasites (9), and as a result,
the proportion of transporters that are indispensable for parasite survival increases (2),
some of which have been shown to be critical for the uptake of several antiplasmodial
compounds and/or to be involved in drug resistance (10-23). Moreover, the parasite’s
intracellular lifestyle resulted in the evolution of additional specialized transporters
without human homologues (1). During its intraerythrocytic development, the parasite
relies on the uptake of nutrients, such as amino acids, pantothenate, or fatty acids,
from its host erythrocyte as well as from the extracellular blood plasma (24-27). As
P. falciparum resides in a parasitophorous vacuole (PV) in the host erythrocyte,
nutrients acquired from the extracellular milieu must traverse multiple membranes:
the erythrocyte plasma membrane, the parasitophorous vacuole membrane (PVM), the
parasite plasma membrane (PPM), and eventually membranes of intracellular organ-
elles, such as those of the apicoplast or mitochondria (24, 28-30). The unique require-
ments of malaria parasite survival have led to the evolution of a number of orphan
transporters, whose localization or function cannot be predicted based on sequence
homology to transporters in other organisms (4, 31). Despite the likely importance of
uniquely adapted transporters to P. falciparum survival, subcellular localization, essen-
tiality, function, and substrate specificity for most P. falciparum transporters have not
been directly determined (2, 24, 29). The best functional evidence available for many
Plasmodium-specific transporters comes from a recent knockout screen of these
orphan transporters in the rodent malaria parasite Plasmodium berghei (31). However,
whether observations for different transporters in the P. berghei model are directly
transferrable to P. falciparum have yet to be examined. Therefore, in this study, we
explore the localization and essentiality of four predicted orphan transporters that had
been partially characterized in P. berghei and include two additional transporters with
no experimental characterization available.

RESULTS

To date, the predicted “transportome” of P. falciparum consists of 117 putative trans-
port systems (encoded by 144 genes) classified as channels (n = 19), carriers (n = 69), and
pumps (n = 29) (2). The functions of the vast majority of transporter genes were inferred
from sequence homology to model organisms; however, given their lack of homology, 39
gene products could not be associated with any function or subcellular localization and
were categorized accordingly as orphan transporters (4). A subset of orphan transporters
characterized in the P. berghei malaria model was selected for further characterization in
P. falciparum. The four transporters selected were reported to be important at different
stages of rodent malaria parasite growth with (i) P. berghei drug/metabolite transporter 2
(PDMT2; PF3D7_0716900) found to be essential for asexual blood stage development, (ii)
P. berghei zinc transporter 1 (PfZIP1; PF3D7_0609100) was essential across transmission
stages but not blood stages, where there was only a slight growth defect, (iii) P. berghei
cation diffusion facilitator family protein (PfCDF; PF3D7_0715900) knockout parasites had
a defect during transmission stages but not during asexual stages, and (iv) P. berghei
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major facilitator superfamily domain-containing protein (PMFS6; PF3D7_1440800) was
found to be essential for parasite transmission from mosquitos to a new host, with a
growth defect observed at asexual and gametocyte stages but not during mosquito stage
parasite growth (31, 32). In order to confirm expression of these four, initially selected,
transporters in P. falciparum asexual stages, we searched the list of “Genes coding for
transport proteins” included in the Malaria Parasite Metabolic Pathways (MPMP) database
(1, 33) for proteins with (i) transcriptome sequencing (RNA-seq) (34, 35) and (ii) proteo-
mics evidence (36, 37) in asexual blood stages. During our initial searches of the MPMP
database, but also including PlasmoDB (38) and the most recent P. falciparum 3D7 ge-
nome (v3.2) and annotations, we identified two additional putative transporters in P. fal-
ciparum (PF3D7_0523800 and PF3D7_1135300), whose P. berghei homologs were not
targeted and functionally characterized by Kenthirapalan et al. (31) or investigated in
any other experimental model. Given their obvious lack of sequence homology to trans-
porter proteins in other evolutionary lineages and clear classification as orphan mem-
brane transporters, both proteins were subsequently included in our characterization
of P. falciparum orphan transporters and named “food vacuole resident transporter
1" (FVRT1; PF3D7_0523800) and “plasma membrane resident transporter 1” (PMRT1;
PF3D7_1135300) based on their subcellular localization. AlphaFold-based structure
predictions (39) and results from a structure homology search (40) of all six selected
transporters are provided in Fig. S1 in the supplemental material.

Localization of putative P. falciparum transporters. To determine subcellular
localization, we tagged the six putative transporters endogenously with green fluores-
cent protein (GFP) using the selection-linked integration (SLI) system (41) (Fig. TA).
Additionally, a gImS ribozyme sequence was included in the 3’ untranscribed region
(3" UTR), which enabled conditional gene knockdown upon addition of glucosamine
(42). Correct integration of the plasmid into the respective genomic locus was verified
by PCR and expression of the GFP-fusion protein was confirmed by Western blotting
for each generated cell line (see Fig. S2A and B in the supplemental material).

All transgenic cell lines expressed the GFP-fusion protein, demonstrating that these
transporters are expressed in asexual blood stage parasites (Fig. 1B to G; Fig. S2A).
Expression levels were sufficient to allow determination of subcellular localization (Fig. 1B
to G): (i) PF3D7_0523800-GFP localized to the food vacuole, (i) PAIDMT2-GFP and PMFS6-
GFP showed apicoplast localization, and (iii) PfZIP1-GFP and PF3D7_1135300-GFP showed
PPM localization. However, PfCDF-GFP showed an obscure staining pattern with a weak
spot within the parasite cytosol in ring and trophozoite stage parasites, but multiple foci
in schizont stages (Fig. 1D). To pinpoint this localization, an additional cell line with endo-
genously 3x hemagglutinin (3xHA)-tagged PfCDF was generated, confirming the focal
localization of PfCDF in asexual stages (Fig. S2C).

Except for PCDF, the observed localizations of the other five transporters were con-
firmed by colocalization studies using appropriate episomally expressed marker proteins:
P40PX-mCherry (43, 44) for the food vacuole, ACP-mCherry (45, 46) for the apicoplast,
and Lyn-mCherry (41, 47) for PPM. The focal distribution of PfCDF-GFP was colocalized
with a rhoptry marker (ARO-mCherry [48, 49]) and a microneme marker (AMA1-mCherry
[50, 51]), but PfCDF-GFP did not colocalize with either marker (Fig. 1H). Additionally, for
PfZIP and PF3D7_1135300, the PPM localization was further confirmed in free merozoites
(Fig. S2D and E) and by confocal microscopy-based colocalization of PF3D7_1135300-GFP
with the PPM marker Lyn-mCherry (Fig. S2F). Accordingly, as noted above, we named
PF3D7_0523800 as “food vacuole resident transporter 1” (FVRT1) and PF3D7_1135300 as
“plasma membrane resident transporter 1” (PMRT1).

Targeted gene disruption, conditional knockdown, and conditional knockout
of putative transporters. In order to test whether the putative transporters are essen-
tial for P. falciparum during its intraerythrocytic cycle, we first tried to functionally inac-
tivate them by targeted gene disruption (TGD) using the SLI system (41) (see Fig. S3A
in the supplemental material). TGD cell lines were successfully obtained for PfZIP1 and
PfCDF (Fig. S3B and Q). For PfZIP1-TGD, the correct integration of the plasmid into the
genomic locus and absence of wild-type locus were verified by PCR, and subsequent
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FIG 1 Subcellular localization of six putative P. falciparum transporters during asexual blood stage development. (A) Schematic representation
of endogenous tagging strategy using the selection-linked integration system (SLI). Pink, human dihydrofolate dehydrogenase (hDHFR); gray,
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growth experiments revealed no growth defect compared to P. falciparum 3D7 wild-type
parasites (Fig. S2B), suggesting its redundancy during asexual parasite proliferation. For
PfCDF-TGD, the correct integration of the plasmid into the genomic locus was also verified,
but wild-type DNA was still detectable and remained even upon prolonged culturing
under G418/WR selection and limited dilution cloning (Fig. S3C). In contrast, six (PfPMRT1
and PDMT2) or eight (PFVRT1 and PVIFS6) independent attempts to obtain TGD cell lines
for the other four transporters with the respective plasmids failed, indicating that these
genes have an indispensable role in blood stage parasite growth.

To probe the function of the putative transporters where we were unable to generate
gene disruptions, we utilized the glmS ribozyme sequence. The corresponding sequence
was integrated into the 3’ UTR of the targeted genes. This enabled the induction of con-
ditional degradation of respective mRNAs upon addition of glucosamine (42) and the
assessment of the phenotypic consequences. Upon addition of 2.5 mM glucosamine to
young ring stage parasites, we found a 76.8% * 3.7% (mean = standard deviation [SD])
reduction in GFP fluorescence intensity in P(DMT2-GFP parasites, a 72.7% *+ 9.4% reduc-
tion in PAMFS6-GFP, and a 77.7% =+ 6.1% reduction in PPMRT1-GFP in schizonts of the
same cycle (Fig. 2A to G see Fig. S4A to C in the supplemental material). No measurable
reduction in fluorescence intensity could be detected for PFVRT1-GFP or PfCDF-GFP
expressing parasite lines (Fig. S4D to F). The presence of the glmS cassette in both plas-
mids was confirmed by PCR (Fig. S4H). For parasite cell lines with a significant reduction
in the expression of the endogenously tagged protein, proliferation was analyzed in the
absence and presence of 2.5 mM glucosamine (Fig. 2D; Fig. S4G). While no significant
effect on growth was observed for PAMIFS6, a growth reduction of 68.5% *+ 2.1% over two
cycles was observed upon knockdown of PDMT2. For PPPMRT1, a minor growth delay
was measurable, which resulted in a significantly reduced parasitemia at day 3 upon
knockdown using 2.5 mM glucosamine (two-tailed Wilcoxon rank sum test, W = 15, n, =
5, n, = 3, P = 0.03), but was not significant when using 5 mM glucosamine (two-tailed
Wilcoxon rank sum test, W =10, n, = 4, n, = 3, P = 0.16) (Fig. 2E). Additionally, significantly
fewer newly formed ring stage parasites were observed at 84 h postinvasion (hpi)
(Fig. 2F), and multiple pairwise post hoc comparisons using the Conover-Iman rank sum
test and Benjamini-Hochberg method to control the false discovery rates showed signifi-
cant stepwise reductions of ring stage parasites after induction of glmS-based knockdown
of PPMRT1 using both 2.5 mM glucosamine (adjusted P = 0.0078) and 5 mM glucosamine
(adjusted P = 0.0005) in comparison to untreated control cell cultures.

To better characterize the minor growth phenotype of P/PMRT1-GFP-gImS parasites that
might be due to incomplete knockdown, we generated a conditional PiPMRT1 knockout cell
line (condAPMRT1) using the dimerizable Cre (DiCre) system (52, 53). Again, using the SLI
system (41), the endogenous PPMRT1 was disrupted upstream of the region encoding the
N-terminal transmembrane domain, but at the same time introducing a recodonized second
functional copy of PPPMRT1 flanked by loxP sites in the genomic locus. This loxP-flanked
allelic copy of PiPMRT1 encodes an additional 3xHA tag, which can be conditionally excised
upon addition of a rapamycin analog (rapalog) via the enzymatic activity of an episomally
expressed DiCre (Fig. 3A). First, correct integration of the plasmid into the genomic locus
was verified by PCR (Fig. 3B). Second, expression and localization of the recodonized HA-
tagged protein at the PPM was verified by colocalization with the merozoite plasma mem-
brane marker MSP1 (54) (Fig. 3C). Third, excision of the recodonized gene upon rapalog
addition was confirmed at the genomic level by PCR (Fig. 3D) and at the protein level by
Western blotting at 24 hpi and 48 hpi (Fig. 3E). To assess the effect of conditional PPMRT1
knockout on parasite proliferation, we determined growth of the transgenic parasite cell line

FIG 1 Legend (Continued)

homology region (HR); green, green fluorescent protein (GFP) tag; dark gray, T2A skip peptide; blue, neomycin resistance cassette; orange,
glmS cassette. Stars indicate stop codons, and arrows depict primers (P1 to P4) used for the integration check PCR. (B to G) Localization of (B)
PfFVRT1-GFP-gImS, (C) PfZIP1-GFP-glmS, (D) PfCDF-GFP-gImS, (E) PDMT2-GFP-gImS, (F) PAMIFS6-GFP-gImS, and (G) PPMRT1-GFP-gImS by live
cell microscopy in ring, trophozoite, and schizont stage parasites. Nuclei were stained with Hoechst 33342. (H) Colocalization of the GFP-
tagged putative transporters with marker proteins P40PX-mCherry (food vacuole), ACP-mCherry (apicoplast), Lyn-mCherry (parasite plasma
membrane), ARO-mCherry (rhoptry), and AMA1-mCherry (microneme) as indicated. Nuclei were stained with Hoechst 33342. Scale bar, 2 um.
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FIG 2 Conditional knockdown of putative transporter indicates the importance of PIDMT2 and PPMRT1 for
parasite fitness. (A to C) Live cell microscopy and quantification of knockdown by measuring mean fluorescence
intensity (MFI) density and size (area) of (A) PADMT2-GFP-glmS (B) PAMFS6-GFP-gImS, and (C) PPPMRT1-GFP-gimS
parasites 40 h after treatment without (control) or with 2.5 mM glucosamine. Scale bar, 2 um. Statistics are
displayed as mean = SD from three (A and B) or four (C) independent experiments, and individual data points are
color-coded by experiments according to SuperPlots guidelines (101). The P values displayed were determined by
two-tailed unpaired t test. (D) Growth of parasites treated without (control) or with 2.5 mM glucosamine
determined by flow cytometry is shown as relative parasitemia values after two cycles. Shown are means * SD
from three (PfPMRT1-GFP-gImS, PDMT2-GFP-gimS, and PfMFS6-GFP-gimS) and five (3D7 wild-type parasites)
independent growth experiments. The P values displayed were determined by unpaired t test with Welch
correction and Benjamin-Hochberg for multiple-testing correction. Individual growth curves are shown in Fig. S4G.
(E) Growth of PPMRT1-gImS and 3D7 parasites after treatment with 2.5 mM (left panel) and 5 mM (right panel)
glucosamine compared to untreated control parasites over 5 consecutive days. The P values displayed were
determined for comparison between PPMRT1-gimS and 3D7 parasites at day 3 using the two-tailed Wilcoxon rank
sum test. (F) Mean = SD distribution of ring and schizont stage parasites in PPPMRT1-glmS and 3D7 cell lines
treated without (control) or with 2.5 mM or 5 mM glucosamine at 84 hpi (80 h postaddition of glucosamine) of
three independent experiments. The P values displayed were determined using the Conover-Iman rank sum test
and Benjamini-Hochberg method for multiple-testing correction after Kruskal-Wallis testing.

with and without rapalog over 5 days (Fig. 3F; see Fig. S5A in the supplemental material). In
contrast to the glmS-based knockdown experiment, DiCre-based gene excision (induced by
the addition of rapalog to young ring stages of condAPMRT1 parasite cell cultures) abol-
ished growth within the first replication cycle (Fig. 3F; Fig. S5A). The specificity of the
observed growth phenotype was verified by gene complementation. To achieve this, we
episomally expressed recodonized PPMRT1 with a TY1-epitope tag under either the consti-
tutive nmd3 or the weaker sf3a2 promoter (55) in the condAPMRT1 cell line (Fig. 3D and F;
Fig. S5B and Q). Correct localization of the TY1-tagged PPMRT1 at the PPM was verified by
immunofluorescence assays (IFAs) (Fig. 3G). Notably, both complementations of the
PPPMRT1 knockout cell line (condAPMRT1) with recodonized PPMRT1 under the control of
either the constitutive nmd3 or the weaker sf3a2 promoter restored parasite growth (Fig. 3F;
Fig. S5B and C). The level of growth restoration with low-level expression of recodonized
PPMRT1 is in line with the results from glmS knockdown experiments, which showed that a
reduction of about 75% in protein expression resulted only in a minor growth perturbation
(Fig. 2C and D).

Loss of the PPM-localized PfPMRT1 leads to an arrest of parasite development
at the trophozoite stage and the formation of PPM-derived protrusions. To deter-
mine, which particular parasite stages are affected by the knockout of P/PMRT1, we
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FIG 3 PPMRT1 is essential for asexual blood stage development. (A) Simplified schematic of DiCre-based conditional P/PMRT1 knockout using selection-
linked integration (SLI). Pink, human dihydrofolate dehydrogenase (hDHFR); gray, homology region (HR); green, T2A skip peptide; light blue, recodonized
PPMRT1; dark blue, 3xHA tag; yellow, neomycin phosphotransferase resistance cassette; orange, loxP sequence. Scissors indicate DiCre-mediated excision
sites upon addition of rapalog. Stars indicate stop codons, and arrows depict primers (P1 to P5) used for the integration check PCR and excision PCR. (B)
Diagnostic PCR of unmodified wild-type and transgenic condAPMRT1 knock-in (KI) cell line to check for genomic integration using Primer P1-P4 as
indicated in panel A. (C) Immunofluorescence assay (IFA) of condAPMRT1 late stage schizont parasites showing localization of PfPMRT1-3xHA at the
parasite plasma membrane (PPM) colocalizing with the merozoite surface protein 1 (MSP1). (D) Diagnostic PCR to verify the excision at the genomic level
at 24 hpi/20 h post-rapalog addition for condAPMRT1 and at 48 hpi for condAPMRT1, c-""**PfPMRT1-ty1, and c-*??2PfPMRT1-ty1 parasites using primers P1
to P5 as indicated in panel A. Black arrowhead, original locus; red arrowhead, excised locus. (E) Western blot using anti-HA to verify knockout of PfPMRT1
on the protein level 4, 24, and 48 hpi. The expected molecular weight of PfPMRT1-3xHA is 53.3 kDa. Antibodies detecting aldolase and SBP1 were used as
loading controls. (F) Growth curves of condAPMRT1, c¢-""®#PPMRT1-ty1, and c-?%>PfPMRT1-ty1 parasites * rapalog monitored over 5 days by flow
cytometry. One representative growth curve is depicted (replicates in Fig. S5). The summary is shown as relative parasitemia values, which were obtained
by dividing the parasitemia of rapalog-treated cultures by the parasitemia of the corresponding untreated ones. Shown are means *= SD from three
(condAPMRT1 and c-""®PfPMRT1-ty1) or four (c-***?PfPMRT1-ty1) independent growth experiments. (G) IFA of condAPMRT1 complemented with C-terminal
TY1-tagged PPMRT1 constructs expressed under either the constitutive nmd3 or the weak sf3a2 promoter to verify PPM localization. Scale bar, 2 um.

added rapalog to tightly synchronized parasites at different time points (4, 20, and 32
hpi) (Fig. 4A) and monitored parasite growth by flow cytometry. Additionally, we quan-
tified growth perturbation by microscopy of Giemsa smears at 4, 20, 24, 32, 40, 48, 72,
and 96 hpi (Fig. 4B; see Fig. S6A and B in the supplemental material). When rapalog
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FIG 4 Knockout of PPMRT1 results in accumulation of PPM-derived protrusions and growth arrest at the trophozoite stage. (A) Parasite stage distribution
in Giemsa smears displayed as a heat map showing the percentage of parasite stages for tightly synchronized (+2 h) 3D7 control and condAPMRT1
(rapalog treated at 4 hpi, 20 hpi, or 32 hpi) parasite cultures over two consecutive cycles. A second replicate is shown in Fig. S6A. (B) Giemsa smears of the
control and at 4 hpi rapalog-treated condAPMRT1 parasites over two cycles. Scale bar, 5 um. (C) Live cell microscopy of 4-h window synchronized 3D7
control and condAPMRT1 parasites = rapalog stained with dihydroethidium (DHE) at 20 to 32 hpi. (D) Quantification of parasites displaying protrusions
(green) for 4-h window synchronized 3D7 control and rapalog-treated condAPMRT1 parasites. Shown are percentages of normal parasites versus parasites
displaying protrusions as means * SD from three independent experiments. (E) Live cell microscopy of 8-h window synchronized 3D7 control and rapalog-
treated condAPMRT1 parasites, episomally expressing the PPM marker Lyn-mCherry at 24 to 40 hpi. (F) Live cell microscopy of 3D7 control and
condAPMRT1 parasites * rapalog stained with BODIPY TR C5 ceramide at 32 hpi. Scale bar, 2 um.
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was added at 4 hpi, parasite development progressed through the ring and early
trophozoite stages up to 24 hpi with no visible abnormality. Afterwards, parasites with
deformed and enlarged protrusions started to appear, and further development
stalled. At 32 hpi, almost all parasites had developed to late trophozoites/early schiz-
onts in the control, whereas these stages were completely absent in P/PMRT1-deficient
parasites. Over 50% of the parasites were pycnotic or possessed large protrusions; the
remaining parasites stayed arrested at the trophozoite stage. Quantification of the per-
centage of parasites with protrusions between 20 hpi and 32 hpi revealed 94.8% =+
4.0% protrusion-positive parasites (Fig. 4C). The activation of gene excision at later
time points by adding rapalog at 20 hpi or 32 hpi resulted in no or minor growth per-
turbation in the first cycle with successful reinvasion, but again led to parasites arrest-
ing at the trophozoite stage in the second cycle with an accumulation of protrusions
(Fig. 4A; Fig. S6A and B).

In order to gain further insights into the morphological changes in P/PMRT1-defi-
cient parasites, we incubated these parasites with dihydroethidium (DHE) to visualize
the parasite cytosol (44). We observed an absence of staining within the protrusions,
suggesting they are not filled with parasite cytosol (Fig. 4D). Next, we transfected the
condAPMRT1 cell line with a plasmid encoding the PPM marker Lyn-mCherry (41) and
observed Lyn-mCherry-positive protrusions upon knockout of PPMRT1 starting to
become visible at 24 hpi, indicating that the protrusions originate from the PPM
(Fig. 4E). In line with this, protrusion membranes were also stainable with BODIPY TR
C5 ceramide in condAPMRT1 parasites at 32 hpi (Fig. 4F).

Depletion of PfPMRT1 results in an early arrest of gametocyte development.
RNA-seq data suggest P/PMRT1 is also expressed during other developmental stages,
such as gametocytes (56, 57). Therefore, we assessed expression of PfPMRT1-GFP dur-
ing gametocytogenesis by reengineering PPMRT1-GFP-gIlmS in the inducible gameto-
cyte producer (iGP) 3D7-iGP (58) parasite line, which allows the robust induction of sex-
ual commitment by conditional expression of gametocyte development 1 protein
(GDV1) upon addition of shield-1 (58) (see Fig. S7A in the supplemental material). We
show that PPMRT1 is indeed expressed during all stages of gametocytogenesis and
again localizes to the PPM, colocalizing with the PPM marker Lyn-mCherry (41) (Fig. 5A
and B). Conditional knockdown of P/PMRT1 via the glmS ribozyme system (Fig. S7B)
resulted in a reduction in PfPMRT1-GFP fluorescence intensity of 79.4% = 9.2% at
7 days postinduction (dpi) or 75.5% = 23.2% at 10 dpi, without an effect on gameto-
cyte development (Fig. S7C to F). In order to exclude that a role of PAPMRT1 in gameto-
cytogenesis is covered up by only a partial knockdown, resulting in low levels of
expressed protein, and to determine if PAPMRT1 is essential for gametocytogenesis, we
episomally expressed GDV1-GFP-DD in the condAPMRT1 parasite line, enabling condi-
tional induction of sexual commitment upon addition of shield-1 in these parasites
(59). Conditional knockout of PfPMRT1 in these transgenic parasites at day 3 post-
gametocyte induction resulted in pycnotic parasites from day 5 onwards, while exci-
sion of PfPMRT1 at day 5 postinduction had no effect on gametocyte development
(Fig. 5C and D). Excision of the recodonized gene upon rapalog addition was confirmed
at a genomic level by PCR for both conditions (Fig. 5E). Quantification of parasite
stages at day 10 postinduction of GDV1 expression revealed 77.9% = 7.7% gameto-
cytes and 22.1% =+ 7.7% pycnotic parasites in the control, while 100% of parasites
were already pycnotic in the cultures, with induced knockout by addition of rapalog at
day 3 post-gametocyte induction by GDV1 expression (Fig. 5F). This data indicates that
PfPMRT1 is important for early gametocyte development.

PMRT1 is unique to the genus Plasmodium, and interspecies complementation
assays showed partial functional conservation. P/PMRT1 shows a lack of sequence
similarities to known or putative transporters and/or conserved domains shared with
known transporter families (2, 5). Our phylogenetic analysis revealed that homologs of
PfPMRT1 are present across Plasmodium species with amino acid sequence identities
of about 90% in the subgenus Laverania, but about 50% outside Laverania (Fig. 6A).
However, prediction of the protein structure using AlphaFold (39) indicates two
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FIG 5 PfPMRT1 is essential for early gametocyte development. (A) Live cell microscopy of 3D7-iGP-PfPMRT1-
GFP parasites across the complete gametocyte development. White arrowheads indicate remaining GDV1-GFP
signal observed in close proximity to the Hoechst signal, as previously reported (59, 94, 102, 103). (B) Live cell
microscopy of PfPMRT1-GFP parasites expressing the PPM marker Lyn-mCherry. Nuclei were stained with
Hoechst 33342. Scale bar, 2 um. (C) Experimental setup of gametocyte induction upon GDV1-GFP-DD
expression (+shield-1) and conditional PiPMRT1 knockout (+rapalog) and elimination of asexual blood stage
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bundles of four transmembrane helices with reasonable similarity of the C-terminal
bundle to the photosynthetic reaction center Maquette-3 protein (60) (root mean
square deviation [RMSD] of 3.12) (Fig. 6B; Fig. S1B). In order to test for functional con-
servation, we expressed the PlPMRT1 homologs of Plasmodium vivax (PVP01_0936100)
and Plasmodium knowlesi (PKNH_0933400) episomally as C-terminal Ty-1 fusion pro-
teins under the nmd3 promoter in the condAPMRT1 parasites. Both fusion proteins are
expressed. They were again localized at the PPM, as shown by IFA (Fig. 6C; see Fig. S8
in the supplemental material), and, importantly, were able to partially restore growth
after two cycles to 64.8% *+ 9.8% and 65.1% * 7.4% compared to condAPMRT1 para-
sites (Fig. 6D; Fig. S8). Excision of the recodonized endogenous Pfpmrt1 gene upon
rapalog addition was confirmed at a genomic level by PCR (Fig. 6E). These data indicate
that PMRT1 is functionally conserved within the genus Plasmodium.

DISCUSSION

In this article, we have functionally described four so-called “orphan transporters”
(31) in P. falciparum, which were partially characterized in P. berghei, and include two
additional so-far-uncharacterized proteins with a transporter sequence signature.

We localized PfFVRT1-GFP—annotated on PlasmoDB (38) as a putative divalent
metal transporter—at the food vacuole of the parasite, which is in line with a previ-
ously predicted food vacuole association (1) and its reported homology (1, 61) to the
conserved eukaryotic endosomal/lysosomal natural resistance-associated macrophage
protein (NRAMP) transporter (62) in our structure similarity search. Repeated attempts
to generate a TGD cell line failed, indicating an important role of this transporter dur-
ing asexual blood stage development, which is in agreement with data from a P. falcip-
arum genome-wide essentiality screen (63).

In concordance with recently published data identifying PODMT2 and PbMFS6 as
leaderless apicoplast transporters (32), we localized GFP-fusion proteins of PADMT2 and
PfMFS6 at the apicoplast. Successful knockdown of PDMT2 resulted in a growth defect
in the second cycle after induction, resembling the described delayed death pheno-
type of other apicoplast genes that were functionally inactivated (32, 64-66). This sug-
gests an essential role of PADMT2 in apicoplast physiology, as observed by Sayers et al.
(32) for the rodent malaria organism P. berghei. This is further supported by our failed
attempts to disrupt this gene using the SLI system.

We also failed to disrupt the PAMFS6 locus, which is in agreement with the gene
knockout studies in P. berghei that led to a markedly decreased multiplication rate (31,
32, 67). Nevertheless, glmS-based knockdown, although comparable to PIDMT2-GFP
knockdown (72.7% versus 76.8% reduction in GFP fluorescence, respectively) had no
effect on parasite proliferation in our study. This might indicate that these reduced lev-
els of PAMFS6, in contrast to reduced levels of PIDMT2, are sufficient for normal asexual
replication in vitro.

Another candidate, PfCDF, annotated as a putative cation diffusion facilitator family
protein, showed multiple cytosolic foci within the parasite with no colocalization with api-
cal organelle markers. The homologue in Toxoplasma gondii, TgZnT (TgGT1_251630),
shows a similar cellular distribution (68). It has recently been shown to transport Zn?*, to
localize to vesicles at the plant-like vacuole in extracellular tachyzoites, and to be present

FIG 5 Legend (Continued)

parasites (+GlcNac). (D) Gametocyte development over 12 days of condAPMRT1/GDV1-GFP-DD or 3D7-iGP
parasites without (control) or with rapalog addition at day 3 (3 dpi) or day 5 (5 dpi) after induction of sexual
commitment by conditional expression of GDV1-GFP upon addition of shield-1. Scale bar, 5 um. (E) Diagnostic
PCR to verify the excision at the genomic level at 5 dpi and 12 dpi. Black arrowhead, original locus; red
arrowhead, excised locus. (F) Representative Giemsa smears and quantification of parasite stage distribution at
day 10 postinduction for parasites treated without (control) or with rapalog at day 3 postinduction. For each
condition, the distributions of parasitemia and parasite stages in erythrocytes of three independent
experiments were determined and are displayed as percentage (APMRT1, n .o = 3,370, 2,304, and 2,759, and
Mrapatog = 3:010, 1,830, and 2,387; 3D7-iGP, N = 4,985, 4,685, and 5,206, and n = 4,930, 4,332, and
5,384). Nuclei were stained with Hoechst 33342. Scale bar, 10 um.
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FIG 6 PMRT1 is a genus-specific transporter with conserved function. (A) Phylogenetic tree of haemosporidian
parasites (including information previously presented in 95) containing PMRTT homologous sequences
associated with data on pairwise amino acid sequence identity to PfPMRT1. The phylogeny is derived from
Bayesian inference using BEAST with a fully partitioned amino acid data set and log-normal relaxed molecular
clock (95). Silhouettes depict representatives of the vertebrate hosts for each lineage, and white bars indicate
pairwise identities of PMRT1 homologs used for subsequent complementation assays. (B) Structural alignment
of predicted PFPMRT1 structure with Maquette-3 protein (PDB accession no. 5vjt) (60). Both structures have a
root mean square deviation (RMSD) over the aligned a-carbon position of 3.12 over 184 residues calculated in
PyMol. (C) IFA of c¢-"®Pk-tyl and c-""*Py-tyl parasites to verify correct localization of the expressed
complementation fusion proteins at the parasite plasma membrane. Nuclei were stained with Hoechst 33342.
Scale bar, 2 um. (D) Growth of condAPMRT1 parasites complemented with P/PMRT1 homologs from P. vivax
(PVP01_0936100) and P. knowlesi (PKNH_0933400). Shown are relative parasitemia values, which were obtained
by dividing the parasitemia of rapalog-treated cultures by the parasitemia of the corresponding untreated
controls together with means * SD from three c¢-""®Pf-ty1 (2c-""*PfPMRT1-ty1) (Fig. 3D; Fig. S5B) and six
(c-"93Pk-ty1 and c-"™%Py-ty1) independent growth experiments. A one-sample t test was performed. (E)
Diagnostic PCR to verify the excision of PfPMRT1 at the genomic level at 48 hpi for c-"™%Pf-ty1, c-"m93pk-ty1,
and c,™Pv-ty1 parasites. Black arrowhead, original locus; red arrowhead, excised locus.
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at dispersed vesicles throughout the cytoplasm of intracellular tachyzoites (68). The
essentiality of PfCDF for in vitro blood stage growth is debatable. We were not able to
generate a clonal wild-type-free TGD cell line, although correct integration of the plasmid
into the genomic locus could be verified (Fig. S3C). This points toward its dispensability
for in vitro blood stage growth, which is supported by (i) its high (1.0) mutagenesis index
score in a P. falciparum genome-wide mutagenesis screen (63) and (ii) gene deletion
experiments in rodent malaria species showing that CDF proteins are nonessential for in
vivo blood stage development in Plasmodium yoelii (69) and P. berghei (31, 67).

Finally, two putative transporters, PfZIP1 and PfPMRT1, localized to the PPM. We show
that PfZIP1 is nonessential for P. falciparum in vitro blood stage development, in line with
a high (0.7) mutagenesis index score in a P. falciparum genome-wide mutagenesis screen
(63). However, this is in contrast to the reported strong fitness loss in P. berghei (67)
knockout mutants and failed knockout attempts in P. yoelli and P. berghei in vivo mouse
models (32, 69). These observations may reflect differences between Plasmodium species
or differing requirements for in vitro and in vivo growth conditions.

PPMRT1 is annotated as a conserved Plasmodium membrane protein with unknown
function. It has been described as a protein showing structural characteristics of a trans-
porter, without sharing sequence similarities with known or putative transporters and/or
conserved domains of known transporter families (2, 5). It encompasses 410 amino acids
with eight predicted (70) transmembrane domains (Fig. S1). The N- and C-terminal parts of
PPMRT1 are both predicted (71) to be facing the cytosolic side of the parasite. Surface elec-
trostatics indicate a clear polarity of PPMRT1 with negative charges facing the PV lumen
and positive charges inside the parasite cytosol (Fig. S8F). The loops protruding into the PV
lumen of PPMRT1 are generally larger than the cytosolic loops and possess stretches of
negatively charged amino acids likely relevant for its transport function. Further functional
characterization of PAMRT1 will deliver insight into its transporter capabilities and physiolog-
ical role.

Our phylogenetic analysis confirmed PMRT1 as unique for Plasmodium species, with
high sequence conservation only within the Laverania subgenus (72). In line with data
from genome-wide mutagenesis screens (63, 67) and reported failed knockout attempts
in P. yoelii (69), we found that P/PMRT1 is essential for parasite growth, as its functional
inactivation resulted in growth arrest at the trophozoite stage accompanied by the accu-
mulation of PPM-derived protrusions within the parasite. In contrast, conditional knock-
down resulted only in a growth delay, indicating that minor residual P/PMRT1 protein
levels appear to be sufficient to promote parasite growth. This finding was validated by
episomal expression of an allelic copy under the control of the weak sf3a2 promoter (55)
in the P/PMRT1 knockout parasites. Additionally, we found that PiPMRT1 is essential for
early gametocytogenesis. Interestingly, the induction of the knockout at stages Il to Il
had no effect on gametocytogenesis. This might be due to sufficient amounts of
PPMRT1 already present at the PPM, but could also indicate that the function of the
transporter is not required for later stage gametocyte maturation.

For future work, further functional and pharmacological characterization of this
transporter will provide insights into its biological role in different stages of the para-
site’s life cycle, as transcriptomic data indicate—along with expression in blood stages
(34, 35)—PfPMRT1 is expressed in oocysts of P. falciparum (73, 74) and P. berghei (75).

MATERIALS AND METHODS

Cloning of plasmid constructs for parasite transfection. For endogenous tagging using the SLI
system (41), homology regions (HRs) with lengths of 889 bp (PfPMRT1; PF3D7_1135300), 905 bp
(PfFVRT1; PF3D7_0523800), 827 bp (PfZIP1; PF3D7_0609100), 873 bp (PADMT2; PF3D7_0716900), 877 bp
(PMFS6; PF3D7_1440800), and 785 bp (PfCDF; PF3D7_0715900) were amplified using 3D7 genomic DNA
(gDNA) and cloned into pSLI-GFP-gImS (76) (derived from pSLI-GFP [41]), using the Notl/Mlul restriction
site. In order to generate P/PMRT1-2xFKBP-GFP, a 1,000-bp-long HR was amplified using 3D7 gDNA and
cloned into pSLI-2xFKBP-GFP (41).

For SLI-based targeted gene disruption (SLI-TGD) (41), HRs with lengths of 501 bp (PfPMRT1),
378 bp (PfFVRT1), 511 bp (PfZIP1), 399 bp (PDMT2), 396 bp (PfMFS6), and 741 bp (PfCDF) were
amplified using 3D7 gDNA and cloned into the pSLI-TGD plasmid (41), using Notl and Mlul restric-
tion sites.
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For conditional deletion of PfPMRT1, the first 492 bp of the P/PMRT1 gene were PCR amplified to
append a first loxP site and a recodonized T2A skip peptide. The recodonized full-length coding region
of PfPMRT1 was synthesized (GenScript, Piscataway, NJ, USA) and PCR amplified with primers to add a
second loxP site after the gene to obtain a second fragment. Both fragments were cloned into pSLI-
3xHA (55), using Notl/Spel and Avrll/Xmal sites. This resulted in plasmid pSLI-PfPMRT1-loxP, and the
resulting transgenic cell line after successful genomic modification was transfected with pSkip-Flox (41)
using 2 ug/mL blasticidin S to obtain a line expressing the DiCre fragments (condAPMRT1).

For complementation constructs, the recodonized PfPMRT1 gene was PCR amplified using primers to
append the TY1 sequence and cloned via Xhol and Avrll or Kpnl into pEXP1comp (55) containing yDHODH
as a resistance marker and different promoters (nmd3 [PF3D7_0729300] and sf3a2 [PF3D7_0619900]) driving
expression of the expression cassette. This resulted in plasmids c-"™"PfPMRT1-ty1 and c-"PfPMRT1-ty1.

PfPMRT1 homologues of P. vivax (PVP01_0936100) (77) and P. knowlesi (PKNH_0933400) (78) were
amplified from parasite gDNA and cloned into p"™#EXP1comp (55) via the Xhol/Avrll restriction site. For
colocalization experiments, the plasmids pLyn-FRB-mCherry (41), P40PX-mCherry (44), pARL-"*ACP-
mCherry (46), pARL-“"9"ARO-mCherry (49), and pARL-""’AMA1-mCherry (51) were used. For conditional
gametocyte induction, yDHODH was amplified by PCR from pARL-“""AMA1-mCherry-yDHODH (51) and
cloned into GDV1-GFP-DD-hDHFR (59), using the Xhol/Xhol restriction site.

The oligonucleotides and plasmids used in this study are listed in Table S1 in the supplemental
material.

P. falciparum culture and transfection. Blood stages of P. falciparum 3D7 were cultured in human
erythrocytes (O*). Cultures were maintained at 37°C in an atmosphere of 1% O,, 5% CO,, and 94% N,
using RPMI complete medium containing 0.5% Albumax according to standard protocols (79). To main-
tain synchronized parasites, cultures were treated with 5% sorbitol (80).

Induction of gametocytogenesis was done as previously described (58, 59). Briefly, GDV1-GFP-DD
expression was achieved by addition of 4 uM shield-1 to the culture medium, and gametocyte cultures
were treated with 50 mM N-acetyl-p-glucosamine (GIcNAc) for 5 days, starting 72 h post-shield-1 addi-
tion to eliminate asexual parasites (81). Alternatively, asexual ring stage cultures with >10% parasitemia
were synchronized with sorbitol (80), cultured for 24 h, and treated with 50 mM N-acetyl-o-glucosamine
(GIcNAc) (81) for 5 days.

For transfection, Percoll-purified (82) late schizont stage parasites were transfected with 50 ng of plas-
mid DNA, using Amaxa Nucleofector 2b (Lonza, Switzerland) as previously described (83). Transfectants were
selected either using 4 nM WR99210 (Jacobus Pharmaceuticals), 2 uwg/mL blasticidin S (Life Technologies,
USA), or 0.9 uM DSM?1 (84) (BEI Resources; https://www.beiresources.org). In order to select for parasites car-
rying the genomic modification using the SLI system (41), G418 (Sigma-Aldrich, St. Louis, MO) at a final con-
centration of 400 wg/mL was added to the 5% parasitemia culture. The selection process and testing for
integration were performed as previously described (41).

For SLI-TGD, a total of six (PfPMRT1, PDMT2, PfZIP1, and PfCDF) or eight (PfFVRT1 and PfMFS6) inde-
pendent 5-mL cultures containing the episomal plasmid were selected under G418 for at least 8 weeks.

Imaging and immunofluorescence analysis (IFA). Fluorescence images of infected erythrocytes
were observed and captured using a Zeiss Axioskop 2 Plus microscope with a Hamamatsu digital camera
(Model C4742-95), a Leica D6B fluorescence microscope equipped with a Leica DFC9000 GT camera and
a Leica Plan Apochromat 100x/1.4 oil objective, or an Olympus FV3000 with a 100x MPLAPON oil objec-
tive (NA 1.4). Confocal microscopy was performed using a Leica SP8 microscope with laser excitation at
405 nm, 490 nm, and 550 nm for DAPI (4',6-diamidino-2-phenylindole), GFP, and mCherry excitation,
respectively. An HC PL APO 63x NA 1.4 oil immersion objective was used, and images were acquired
with the HyVolution mode of the LASX microscopy software. After recording, images were deconvolved
using Huygens (express deconvolution, setting “Standard”).

Microscopy of unfixed P. falciparum-infected erythrocytes (IEs) was performed as previously described
(85). Briefly, parasites were incubated in RPMI 1640 culture medium with Hoechst 33342 (Invitrogen) for 15
min at 37°C prior to imaging. Seven microliters of IEs was added on a glass slide, and the slide was covered
with a coverslip. Control images of 3D7 wild-type parasites across the intraerythrocytic developmental cycle
(IDQ) are included in Fig. S8D and E.

BODIPY TR C5 ceramide (Invitrogen) staining was performed by adding the dye to 32-hpi parasites
in a final concentration of 2.5 uM in RPMI as previously described (85). For DHE staining of the parasite
cytosol (44), 80 uL of resuspended parasite culture was incubated with DHE at a final concentration of
4.5 ug/mL in the dark for 15 min prior to imaging.

IFAs were performed as described previously (86). Briefly, IEs were smeared on slides and air dried.
Cells were fixed in 100% ice-cold methanol for 3 min at —20°C. Afterwards, cells were blocked with 5%
milk powder for 30 min. Next, primary antibodies were diluted in phosphate-buffered saline (PBS)-3%
milk powder and incubated for 2 h, followed by three washing steps in PBS. Secondary antibodies were
applied for 2 h in PBS-3% milk powder containing 1 ug/mL Hoechst 33342 (Invitrogen) or DAPI (Roche)
for nuclei staining, followed by 3 washes with PBS. One drop of mounting medium (Mowiol 4-88;
Calbiochem) was added, and the slide was sealed with a coverslip for imaging.

To assess the localization of the endogenously HA-tagged PfPMRT1, IFAs were performed in suspen-
sion with Compound 2-stalled schizonts (87) to distinguish protein located at the PPM from that located
at the PVM, as previously described (55, 88). For this, trophozoite stages were treated with Compound 2
(1 M) overnight, and arrested schizonts were harvested, washed in PBS, and fixed with 4% paraformal-
dehyde-0.0075% glutaraldehyde in PBS. Cells were permeabilized with 0.5% Triton X-100 in PBS,
blocked with 3% bovine serum albumin (BSA) in PBS, and incubated overnight with primary antibodies
diluted in 3% BSA in PBS. Cells were washed 3 times with PBS and incubated for 1 h with Alexa 488- or
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Alexa 594-conjugated secondary antibodies specific for human and rat IgG (Invitrogen) diluted 1:2,000
in 3% BSA in PBS and containing 1 ug/mL DAPI. Cells were directly imaged after being washed 5 times
with PBS.

The following antisera were used: 1:200 mouse anti-GFP clones 7.1 and 13.1 (Roche), 1:500 rat anti-HA
clone 3F10 (Roche), 1:1,000 human anti-MSP1 (89), and 1:10,000 mouse anti-TY1 (Thermo Fischer Scientific,
catalog no. MA5-23513). Contrast and intensities were linearly adjusted if necessary, and cropped images
were assembled as panels using Fiji (90), Corel Photo-Paint X6, and Adobe Photoshop CC 2021.

Immunoblots. For immunoblotting, parasites were released from erythrocytes by incubation with
0.03% saponin in PBS for 10 min on ice, followed by three wash steps with Dulbecco’s PBS (DPBS).
Proteins were then extracted with lysis buffer (4% SDS, 0.5% Triton X-100, 0.5x DPBS in distilled water
[dH,0]) in the presence of protease cocktail inhibitor (Roche) and 1 mM phenylmethylsulfonyl fluoride
(PMSF), followed by addition of reducing SDS sample buffer and 5 min of incubation at 55°C. Parasite
proteins were separated on a 10% SDS-PAGE gel using standard procedures and transferred to a nitro-
cellulose membrane (Amersham Protran 0.45-um pore NC; GE Healthcare) using a Trans-Blot device
(Bio-Rad) according to manufacturer’s instructions or to a nitrocellulose membrane (Licor) in a Tankblot
device (Bio-Rad) using transfer buffer (0.192 M glycine, 0.1% SDS, 25 mM Tris-HCI [pH 8.0]) with 20%
methanol.

Rabbit anti-aldolase (91) and anti-SBP1 (91) antibodies were diluted 1:2,000, mouse anti-GFP clone 7.1
and clone 13.1 (Roche) antibody was diluted 1:500 or 1:1,000, mouse anti-TY1 (Sigma) was diluted 1:20,000,
rabbit anti-BIP (92) was diluted 1:2,500, and rat anti-HA clone 3F10 (Roche) antibody was diluted 1:1,000.

The chemiluminescent signal of the horseradish peroxidase (HRP)-coupled secondary antibodies
(Dianova) was visualized using a Chemi Doc XRS imaging system (Bio-Rad) and processed with Image
Lab Software 5.2 (Bio-Rad). To perform loading controls and ensure equal loading of parasite material,
antialdolase antibodies were used. The corresponding immunoblots were incubated two times in strip-
ping buffer (0.2 M glycine, 50 mM dithiothreitol [DTT], 0.05% Tween 20) at 55°C for 1 h and washed 3
times with Tris-buffered saline (TBS) for 10 min. For the Western blots shown in Fig. S8C, fluorescent sig-
nals of secondary goat anti-rabbit IgG coupled to IRDye 680CW and goat anti-mouse IgG coupled to
IRDye 800CW were visualized using an Odyssey Fc imager by LI-COR Biosciences.

Growth assay. A flow cytometry-based assay adapted from previously published assays (44, 93) was
performed. For this, parasite cultures were resuspended, and 20-uL samples were transferred to a centri-
fuge tube (Eppendorf AG, Germany). Eighty microliters of RPMI containing Hoechst 33342 and dihydroe-
thidium (DHE) was added to obtain final concentrations of 5 ug/mL and 4.5 ug/mL, respectively.
Samples were incubated for 20 min (protected from UV light) at room temperature, and parasitemia was
determined using an LSRII flow cytometer by counting 100,000 events using the FACSDiva software (BD
Biosciences) or using an ACEA NovoCyte flow cytometer.

Stage distribution assay. In order to obtain tightly synchronized parasite cultures, Percoll-purified
schizonts (82) were cultured for 4 h together with fresh erythrocytes, followed by sorbitol synchroniza-
tion and resulting in a 4-h age window of parasites. Next, the culture was divided into four dishes, and
rapalog was added at a final concentration of 250 nM immediately to one dish and at 20 h postinvasion
(hpi) and 32 hpi to the respective dishes. Giemsa smears and samples for flow cytometry were collected
at the indicated time points. The parasitemia was determined using a flow cytometry assay, and the
stages were determined microscopically by counting at least 50 infected erythrocytes per sample and
time point.

Gametocyte stage distribution assay. Giemsa-stained blood smears 10 days postinduction of
GDV1 expression were obtained, and at least 10 fields of view were recorded using a 63 x objective per
treatment and time point. Erythrocyte numbers were then determined using the automated Parasitemia
software (http://www.gburri.org/parasitemia/), while the numbers of gametocytes and pycnotic and
asexual parasites were determined manually in >1,800 erythrocytes per sample. This assay was done
blind.

glmS-based knockdown. The glmS-based knockdown assay was adapted from previously pub-
lished assays (42, 76). To induce knockdown, 2.5 or 5 mM glucosamine was added to highly synchronous
early ring stage parasites. As a control, the same amount of glucosamine was also added to 3D7 wild-
type parasites. For all analyses, the growth medium was changed daily, and fresh glucosamine was
added every day.

Knockdown was quantified by fluorescence live cell microscopy at days 1 and 3 of the growth assay.
Parasites of similar size were imaged, and fluorescence was captured with the same acquisition settings
to obtain comparable measurements of the fluorescence intensity. Fluorescence intensity (integrated
density) was measured with Fiji (90), and background was subtracted in each image. The data were ana-
lyzed with GraphPad Prism version 8.

glmS-based knockdown experiments in gametocytes were performed as described previously (94).
Briefly, synchronized ring stage cultures were induced by the addition of shield-1. At day 3 postinduc-
tion, the culture was spilt into two dishes, and one dish was cultured in the presence of 2.5 mM glucosa-
mine for the remaining 10 days. Knockdown was quantified by fluorescence live cell microscopy at days
7 and 10 postinduction, as described above, and gametocyte parasitemia was determined at day 10
postinduction by using the automated Parasitemia software (http://www.gburri.org/parasitemia/).

DiCre-mediated conditional knockout. The parasites containing the integrated pSLI-PfPMRT1-loxP
construct were transfected with pSkip-Flox (41) by using 2 ug/mL blasticidin S to obtain a line express-
ing the DiCre fragments. To induce excision, the tightly synchronized parasites (for a detailed descrip-
tion, see “Growth assay” above) were split into 2 dishes, and rapalog was added to one dish (Clontech,
Mountain View, CA) to a final concentration of 250 nM. The untreated dish served as the control culture.
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Excision was verified at the genomic level after 24 and 48 h of cultivation by PCR and at the protein level
by Western blotting using anti-HA antibodies.

Phylogenetic analysis. A BLASTp search of the PMRT1 sequence (PlasmoDB [38]: PF3D7_1135300;
UniProt accession no. Q8I112) was performed against the nr database (9 May 2021) using Geneious
Prime 2021.2.2 (https://www.geneious.com) and an E value of 10e—0 (BLOSUM62 substitution ma-
trix). BLAST hits were filtered for sequences from taxa represented in the currently favored haemo-
sporidian parasite phylogeny (95). The phylogeny derived from an amino acid alignment using
Bayesian framework with a partitioned supermatrix and a relaxed molecular clock (18_amino_
acid_partitioned_BEAST_relaxed_clock_no_outgroup.tre) (95) was visualized with associated data
using the R package ggtree v3.3.0.900 (96, 97). A multiple-protein-sequence alignment of PMRT1 and
homologous sequences was performed using MAFFT v7.490 (98) with the G-INS-I algorithm to obtain
a highly accurate alignment. Protein statistics were calculated using Geneious Prime 2021.2.2
(https://www.geneious.com) and EMBOSS pepstats v6.6.0.0 (99).

Prediction of protein structures. AlphaFold structure predictions (39) were retrieved from https://
alphafold.ebi.ac.uk and the PDB and used for a DALI protein structure homology search (40). PyMOL
Molecular Graphics System v2.5.2 Schrodinger was used for visualization of all structures, generation of
figures, and the calculation of the root mean square deviation (RMSD) between the predicted crystal
structure of PAPMRT1 and the Maquette-3 protein (PDB accession no. 5vjt) (60) by cealign. The Adaptive
Poisson-Boltzmann Solver (APBS) within PyMOL was used to predict the surface electrostatics of PiPMRT1.

Parasite icons were generated using BioRender (biorender.com), plasmids and oligonucleotides
were designed using ApE (100), and statistical analysis was performed using GraphPad Prism version 8
(GraphPad Software, USA).
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