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Abstract

Background: Pantoea is a genus within the Enterobacterales whose members encompass free-living and
host-associated lifestyles. Despite our growing understanding of the role of mobile genetic elements in the
biology, ecology, and evolution of this bacterial group, few Pantoea bacteriophages have been identified and
characterized.

Materials and Methods: A bacteriophage that could infect Pantoea agglomerans was isolated from barnyard
soil. We used electron microscopy and complete genome sequencing to identify the viral family, and eval-
uated its host range across 10 different Pantoea species groups using both bacterial lawn and phage lawn
assays. The latter assays were carried out using a scalable microplate assay to increase throughput and enable
spectrophotometric quantitation. We also performed a phylogenetic analysis to determine the closest relatives
of our phage.

Results: Phage vB_PagP-SK1 belongs to the genus Teseptimavirus of the Podoviridae family in the order
Caudovirales. The 39,938 bp genome has a modular structure with early, middle, and late genes, along with
the characteristic direct terminal repeats of 172 bp. Genome composition and synteny were similar to that of
the Erwinia amylovora phage, vB_EamP-L1, with the exception of a few loci that are most similar to genes of
phage infecting other members of the Enterobacteriaceae. A total of 94 Pantoea strains were surveyed and
vB_PagP-SK1 was found to infect 15 Pantoea strains across three species, predominantly P. agglomerans,
along with one Erwinia billingiae strain.

Conclusions: vB_PagP-SK1 belongs to the Teseptimavirus genus and has a host range that spans multiple
species groups, and is most closely related to the E. amylovora phage, vB_EamP-L1. The presence of xeno-
logous genes in its genome indicates that the genome is a mosaic of multiple Teseptimavirus phages that infect
members of the Enterobacteriaceae.
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Introduction characterized.” Bacteriophages capable of infecting Pan-

toea, however, remain underexplored despite the importance
PANTOEA IS A genus within the Enterobacterales whose  of these mobile genetic elements in shaping the general bi-

members frequently form associations with plants and ology, ecology, and evolution of bacteria.®

animals, often leading to disease in plant and animal hosts, as To date, very few bacteriophages capable of infecting
well as opportunistic infections in humans.'™ Strains of species of Pantoea have been described and characterized.
Pantoea have also been harnessed for a variety of biotech- LIMEzero and LIMElight were isolated using Pantoea ag-
nological applications, including biocontrol, bioremediation, glomerans as the host, and were assigned to the genus
and therapeutic products.* Many of the genetic factors con-  Phikmvvirus (PhiKMV-like viruses) in the Podoviridae
tributing to these capabilities, including specific genetic de- family using both imaging approaches and genome analy-
terminants as well as plasmids, have been identified and sis.'® Host range assays of these phages using a selection of
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Pantoea and Erwinia strains showed that LIMEzero was only
able to infect the P. agglomerans strain from which it was
isolated, while LIMElight also infected a second P. ag-
glomerans strain, LMG 2660."° No plaque formation was
observed for either phage on overlays of Erwinia amylovora
strain GBBC 403, Erwinia mallotivora strain LMG 1271, and
Pantoea stewartii strains LMG 2717 and LMG 2719; how-
ever, some Erwinia phages have been reported to infect
strains of Pantoea. Phage L1 and S2 (Podoviridae), identified
as E. amylovora phage, are able to also infect representative
strains of P. agglomerans and Pantoea ananatis."' The
E. amylovora phage S10 and M7 (Myoviridae) infected only
P. ananatis or P. agglomerans, respectively, while phage S7
(Podoviridae) exhibited an even broader host range, infecting
not only E. amylovora but also Erwinia billingiae, P. ag-
glomerans, Pantoea vagans, and P. ananatis."!

Here we report the isolation, characterization, and com-
plete genome sequence of vB_PagP-SK1; a lytic bacterio-
phage that was identified as a member of the genus
Teseptimavirus of the Podoviridae family in the order Cau-
dovirales. vB_PagP-SK1 has a genome size of 39,938 bp and
is most closely related to the E. amylovora phage vB_EamP-
L1 despite having been isolated on a strain of P. agglomer-
ans. Our host range assays revealed that vB_PagP-SK1 is
capable of infecting 15 strains of Pantoea across three spe-
cies groups along with one E. billingiae strain, suggesting
that vB_PagP-SK1 is a broad host range phage.

Materials and Methods
Bacterial strains and culturing conditions

Bacterial strains (Table 1) were revived from —80°C
glycerol stocks and cultured on lysogeny broth (LB) agar
plates. Plates were incubated aerobically at 30°C for 2448 h
after which they were transferred to a 4°C fridge for storage.
Log-phase liquid cultures were prepared by inoculating 5 mL
LB tubes with a single colony and placing in a 220 rpm
shaking incubator at 30°C for 12—-18 h.

Phage isolation, amplification, and visualization

A 50¢g soil sample taken from a barnyard near Craven,
Saskatchewan, Canada, was gently agitated with 150 mL of
deionized water for 30 min at room temperature. The mixture
was then vacuum filtered using a Buchner funnel fitted with a
glass fiber filter (934AH; Whatman, Reeve Angel). The fil-
tered sample was transferred to sterile 50 mL conical tubes
and centrifuged at 4000 g in a Sorvall ST16R centrifuge with
a 3655-swinging bucket rotor for 20 min. The supernatant
was filtered through a 0.22 um bottle filter (Nalgene) and
1 mL of the sample was spread onto an LB agar plate with a
top agar overlay containing 100 uLL P. agglomerans SNO1121
(ODgponm=0.6), 1 mL of 1xLB, and 4 mL of 0.5% molten
agar. The spread plate was incubated at 30°C for 24-72h
before plaque formation was scored. A single plaque was
purified as per Sambrook and Russell,'* and suspended in
I mL of phage buffer (10 mM Tris-HCI pH 8§, 10 mM MgSO,,
150 mM NacCl) with 50 uL of CHCI; and stored overnight at
4°C. The single plaque suspension was then diluted in 100-
fold steps from 10° to 10~° and standard top agar overlays were
prepared with 10 uLL of phage suspension to determine which
dilution reached 80-90% plaque confluence for amplification.

MCDOUGALL ET AL.

The isolated phage was amplified by preparing 30 top
agar plates using the appropriate phage dilution. Plates were
incubated at 30°C for 24h and 5mL of phage buffer was
pipetted onto the surface of the plates. Plates were shaken
gently for 1h at room temperature to allow the phage to
diffuse into the buffer. Phage buffer was then transferred
from the plates to sterile SO0 mL conical tubes and centri-
fuged at 4000 g for 20 min. Supernatant was then cleared
with chloroform in accordance with Sambrook and Russell,12
filtered through a 0.22 um polyethersulfone syringe filter
(VWR International), and phage lysate titered. Aliquots of
the high titer lysate were frozen with glycerol at —20°C and
—80°C, and the remainder was stored at 4°C. Phage lysate
was negatively stained by first applying a small drop of ly-
sate onto carbonized formvar-coated grids (#FF300-CU-50;
Electron Microscopy Sciences), and removing the excess
liquid by blotting with filter paper. Staining was then per-
formed by adding 2% (wt/vol) phosphotungstic acid (pH 6.8)
containing ~0.01% bovine albumin, and after a 10-s incu-
bation, blotting to remove excess liquid. The phage was then
imaged with a JEOL JEM-1011 transmission electron mi-
croscope using a Gatan-ES1000W Digital Camera at the Roy
Romanow Provincial Laboratory.

DNA extraction

Phage genomic DNA was extracted using a modified zinc
chloride phage precipitation protocol described by Santos.'?
High titer lysate (>1.0x10” PFU/mL) was cleared with
chloroform as per Sambrook and Russell,12 and 1.5 mL was
added to a sterile 2mL conical tube. DNAse I and RNAse I
were added to final concentrations of 100 pug/mL followed by
incubation at 37°C for 30 min. Then, 30 uL of sterile 2.0 M
ZnCl, was added to the reaction and the mixture was incu-
bated at 20°C for 5 min followed by centrifugation at 21,000
g on a Sorvall Legend Micro 21R centrifuge for 1 min. Su-
pernatant was discarded, and the pellet was resuspended in
500 uL of TES solution (0.1 M Tris-HCI pH 8, 0.1 M EDTA,
0.3% SDS) and incubated at 68°C for 20 min.

Subsequently, 90 uLL of 3 M potassium acetate pH 4.8 was
added and the mixture was vortexed gently for 30 s followed
by incubation on ice for 20 min. The debris was pelleted by
centrifugation at 21,000 g for 1 min. Supernatant was trans-
ferred to a sterile 1.5 mL microfuge tube and an equal volume
of absolute isopropanol was added. The solution was gently
vortexed for 10s followed by incubation on ice for 5 min.
DNA was pelleted by centrifugation at 21,000 g for 10 min,
and the pellet washed twice with 70% ethanol and allowed to
air dry. DNA was resuspended in deionized water. Re-
suspended DNA was further purified by the use of an Omega
Bio-tek E.Z.N.A. Cycle-Pure PCR cleanup kit.

Genome sequencing and in silico analysis

Library preparation was performed using the NEBNext
Fast DNA Library Prep Set as per the manufacturer’s re-
commended protocols. The phage sequencing library was
then sequenced on an Ion PGM (Life Technologies) with
200 bp reads on an Ion 314 v2 chip. Ion Torrent average
sequence coverage for vB_PagP-SK1 was 369-fold. The
genome was assembled using the MIRA software suite
(v3.9) on the Ion PGM server. Putative genes were identified
using GeneMark.hmm'* and genome maps generated with
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ISOLATION OF A P. AGGLOMERANS PHAGE

FIG. 1. (A) Top agar overlay showing
plaque morphology of vB_PagP-SK1 on
Pantoea agglomerans SNO1121. Scale bar
represents 1 cm. (B) Transmission electron
micrographs of negatively stained vB_PagP-
SK1. Scale bar represents 100 nm.

VectorNTI Advance v10 (Thermo Fisher). Sequences were
compared with the PHASTER prophage and virus data-
base'® using standalone BLASTp, and to the NCBI nr da-
tabase using BLASTx. Genome comparison was performed
using progressiveMauve with default parameters.'® Multi-
locus sequence alignment (MLSA) was performed using the
nucleotide sequence of four core genes; RNA polymerase,
DNA polymerase, head-to-tail joining protein, and termi-
nase large subunit. Bacteriophage phiKMV was used as an
outgroup. The MLSA was performed with ClustalX?2 using
iteration after each alignment step.'” A maximum likelihood
tree was created in MEGAX using the maximum composite
likelihood algorithm with complete gap deletion, 8 gamma
rate categories, and 500 bootstrap replicates.'® Pairwise
alignments and dot plots were performed with the NCBI
BLAST bl2seq tool. The full genome sequence of phage
vB_PagP-SK1 has been deposited in GenBank under ac-
cession number MN450150.

Host range assays

Plaque formation was assessed using bacterial lawn over-
lays for each of the 94 strains of Pantoea and 17 strains from
other genera. Diluted phage lysate (10 uL) that had been
cleared with chloroform was mixed with 100 uL of log phase
bacterial culture in 1 mL of 1 X LB and 5 mL of overlay agar at
40°C before being poured onto LB agar plates that had been
held at room temperature. The overlay plates were incubated at
30°C for 24 h before plaque formation was scored. Phage lawn
overlays were carried out in Greiner flat-bottomed 96-well
microplates. Each well contained 250 ul. of SM agar (1L: 10 g
glucose, 10 g peptone, 1 g yeast extract, 0.5 g MgSO, mono-
hydrate, 1.9 g KH,PO,, 0.6 g K,HPO,, and 20 g agar). Once
solidified, 3.6 uL of 1.87 x 10® PFU/mL phage lysate was ad-
ded to each well and excess moisture was allowed to evapo-
rate. The plates were inoculated with 5 ul. of liquid bacterial
culture at an optical density (OD) 600nm of 0.6 (~1.0x 10°
cfu/mL). Controls for each isolate consisted of 3.6 L of sterile
phage buffer instead of phage lysate. Plates were incubated for
24 h at 30°C and then refrigerated for 24-48 h at 4°C. OD for
each well on the microplates was read using a Biotek Gen5
microplate reader using endpoint scan at a wavelength of
600 nm, and each reading was standardized using the average
OD value from the wells of a 96-well plate containing 250 uLL
of SM agar only. Strains showing a reduction in OD of >2¢
relative to control were scored as susceptible.

Results

Phage isolation and morphology

Filtered supernatants taken from washed barnyard soil
were mixed with a single target strain, P. agglomerans
SNO1121 (SNO1121), in a standard bacterial lawn overlay
assay. A single plaque was then isolated, amplified, and re-
tested on a lawn of SNO1121, resulting in the formation of
2 mm clear plaques with no halos (Fig. 1A). Imaging of the
phage lysate by transmission electron microscopy revealed a
phage that appeared to have an isometric icosahedral capsid
~ 60 nm in diameter, a short noncontractile tail, and multiple
tail fibers, consistent with the members of the Podoviridae
family (Fig. 1B). The phage was named vB_PagP-SK1.

Genome analysis

DNA sequencing of vB_PagP-SK1 revealed a genome of
39,938 bp with 44 predicted open reading frames flanked by
direct terminal repeats of 172 bp (Table 2). The organization
of putative early, middle, and late genes was consistent with
that of other members of Teseptimavirus'' (Fig. 2). The early
genomic region consists of genes required to initiate an in-
fection,'” and includes an S-adenosyl-L-methionine hydro-
lase (SAMase), protein kinase, phage RNA polymerase, and
phage DNA ligase, which are followed by a predicted T7
early transcription terminator. The middle genomic region
consists of bacterial RNA polymerase inhibitor, DNA me-
tabolism genes, and phage DNA replication genes. The late
genomic region consists of phage structural proteins, DNA
packaging genes, and the holin and endopeptidase lysis-
associated genes. Several hypothetical genes are predicted
throughout the genome, which have weak hits to phage from
other species, including Citrobacter, Cronobacter, Pseu-
domonas, and Stenotrophomonas (Table 2). vB_PagP-SK1
shares 88% sequence coverage and 94% identity with
vB_EamP-L1 at the nucleotide level. A MAUVE compari-
son of vB_PagP-SK1 and vB_EamP-L1 highlights this high-
sequence identity between these phages, with the exception
of the SAMase, gp0.65, protein kinase, type II holin, the
carboxyl-terminal domain of gpl7 (tail fiber/EPS depoly-
merase), and several of the predicted hypothetical genes that
are less than 300 bp (Fig. 2 and Table 2).

A phylogenetic analysis was carried out on vB_PagP-SK1
and related Teseptimavirus genomes (Table 3) using the
concatenated amino acid sequences of the RNA polymerase,
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TABLE 2. ANNOTATION OF PREDICTED GENES OF PANTOEA PHAGE VB_PAGP-SK1

Gene* CDS position Strand Function Best blast/PHASTER hit  Accession number E-value
MFO01 1..172 5’ Direct terminal repeat
1 928..1401 (+) S-adenosyl-L-methionine Klebsiella phage K5 NC_028800 1.50E-42
hydrolase
2 1794.1976  (+) gp0.65 Erwinia phage vB_EamP-L1 NC_019510 1.00E-16
3 2101.3306  (+) Protein kinase Stenotrophomonas phage YP_006990206.1 4.16E-68
IME15
4 3368..6037 (+) RNA polymerase Erwinia phage vB_EamP-L1  YP_007005430.1 0
5 6843..7000  (+) Hypothetical head protein EBPR podovirus 2 AEI70915.1 1.00E+00
6 7070..8083 (+) DNA ligase Erwinia phage vB_EamP-L1  YP_007005433.1 0
MF02 8093..8120 T7 early terminator
7 8106..8243 (+) Hypothetical phage protein  Citrobacter phage CR8 CDM21618.1 1.20E-01
8 8773.9093  (+) gpl.65 Erwinia phage vB_EamP-L1 YP_007005436.1 6.78E-57
9 9093..9209  (+) Hypothetical protein Cronobacter phage NC_029070 5.47E-05
GAP227 28 Dev_CD_23823
10 9206..9361 (+) Bacterial RNAP inhibitor Erwinia phage vB_EamP-L1 YP_007005437.1 1.12E-17
11 9444..10154 (+) ssDNA binding protein Erwinia phage vB_EamP-L1 YP_007005438.1 2.61E-129
12 10154..10606 (+) Endonuclease Erwinia phage vB_EamP-L1 YP_007005439.1 4.73E-106
13 10606..11055 (+) Lysozyme Erwinia phage vB_EamP-L1 YP_007005440.1 1.41E-106
14 11247..12836 (+) DNA primase/helicase Erwinia phage vB_EamP-L1 YP_007005441.1 0
15 12948..13160 (+) gp4.3 Erwinia phage vB_EamP-L1 YP_007005444.1 3.94E-38
16 13265..13450 (+) gp4.5 Erwinia phage vB_EamP-L1  YP_007005445.1 1.62E-27
17 13504..15630 (+) DNA polymerase Erwinia phage vB_EamP-L1 YP_007005446.1 0
18 15640..15861 (+) Hypothetical protein Cronobacter phage Dev2 CDM12546.1 4.00E-04
19 15851..16171 (+) Hypothetical protein gp5.5  Klebsiella phage NC_028977 6.71E-30
vB_KpnP_KpV289
20 16234.16377 (+) gp5.7 Erwinia phage vB_EamP-L1  YP_007005448.1 7.01E-22
21 16386..16664 (-) Hypothetical protein Pseudomonas phage MR299-2 AFD10713.1 4.70E+00
I7C 035¢
22 16744..17652 (+) Exonuclease Erwinia phage vB_EamP-L1 YP_007005450.1 0
23 17649..17753 (+) gp6.3 Erwinia phage vB_EamP-L1 YP_007005451.1 5.29E-07
24 17852..18097 (+) gp6.5 Erwinia phage vB_EamP-L1  YP_007005452.1 1.01E-54
25 18102..18338 (+) gp6.7 Erwinia phage vB_EamP-L1  YP_007005453.1 9.26E-50
26 18325..18597 (+) gp7.3 Erwinia phage vB_EamP-L1 YP_007005454.1 1.46E-55
27 18611..20221 (+) Head-to-tail joining protein  Erwinia phage vB_EamP-L1  YP_007005455.1 0
28 20273..21238 (+) Capsid assembly protein Erwinia phage vB_EamP-L1 YP_007005456.1 0
29 21423.22463 (+) Capsid protein Erwinia phage vB_EamP-L1 YP_007005458.1 0
30 22481..22588 (+) Hypothetical protein Stenotrophomonas phage YP_006990234.1 8.00E-06
IME15
31 22751..23335 (+) Tail tubular protein A Erwinia phage vB_EamP-L1  YP_007005459.1 4.23E-142
32 23354.25753 (+) Tail tubular protein B Erwinia phage vB_EamP-L1 YP_007005461.1 0
33 25823..26236 (+) Tail internal virion protein A Erwinia phage vB_EamP-L1 YP_007005462.1 4.51E-100
34 26248.26829 (+) Tail internal virion protein B Erwinia phage vB_EamP-L1 YP_0070705463.1 5.20E-135
35 26841.29102 (+) Tail internal virion protein C Erwinia phage vB_EamP-L1  YP_007005464.1 0
36 29117.33115 (+) Tail internal virion protein D Erwinia phage vB_EamP-L1 YP_007005465.1 0
37 33177.35675 (+) gpl7 tail fiber - EPS Erwinia phage vB_EamP-L1  YP_007005466.1 0
depolymerases
38 35680..35886 (+) gpl7.5 (type II holin) Enterobacteria phage BA14  YP_002003494.1 5.10E-33
39 35879.36136 (+) Terminase small subunit Erwinia phage vB_EamP-L1 YP_007005468.1 2.80E-52
40 36239.36703 (+) Endopeptidase Erwinia phage vB_EamP-L1 YP_007005469.1 2.51E-107
41 36705.37385 (+) gpl8.9 Erwinia phage vB_EamP-L1  YP_007005471.1 2.94E-152
42 37397.39157 (+) Terminase large subunit Erwinia phage vB_EamP-LL1 YP_007005472.1 0
43 39419..39565 (+) gpl9.5 Erwinia phage vB_EamP-L1 YP_007005475.1 1.20E-26
MF03 39767..39938 3’ Direct terminal repeat
“MF

MF, miscellaneous feature.

DNA polymerase, head-to-tail joining protein, and terminase
large subunit (genes 4, 17, 27, 43). The resulting phylogeny,
rooted on bacteriophage phiKMV (Phikmvvirus, a sister ge-
nus to Teseptimavirus), places vB_PagP-SK1 and vB_EamP-
L1 in their own lineage among phages that infect members of
mostly the Enterobacterales (Fig. 3).

Host range

The host range of vB_PagP-SK1 was evaluated against
94 strains of Pantoea representing 10 known species using a
bacterial lawn overlay method. A total of 15 strains were found
to be susceptible (Table 1). In addition to the environmental
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FIG. 2. Genomic organization of vB_PagP-SK1 with predicted early (orange), middle (green), and late (blue) genes.
Genes without shading (white) are predicted hypothetical genes with weak hits to other phages, and miscellaneous features
are indicated with a purple vertical line. The lower panel shows the results of a Mauve analysis'® comparing the sequence
identity between vB_PagP-SK1 and the Erwinia amylovora phage, vB_EamP-L1.

strain SNO1121, which was used as the original strain to
identify and enrich the phage, 12 other P. agglomerans
strains were found to be susceptible, including 4 clinical and
8 environmental strains (Table 1). Outside of the P. ag-
glomerans group, one of three Pantoea brenneri strains and
one of nine P. septica strains tested were also susceptible. The
closely related E. billingiae was susceptible, while E. amy-
lovora was found to be resistant. All six tested strains of
Mixta calida, another close relative of Pantoea, were resis-
tant (Table 1). Also resistant were the other included enterics,

TABLE 3. TESEPTIMAVIRUS BACTERIOPHAGE GENOMES

USED FOR PHYLOGENETIC AND COMPARATIVE GENOMIC

ANALYSES
Phage Accession number
Enterobacteria phage 13a NC_011045.1
Enterobacteria phage 285P NC_015249.1
Enterobacteria phage BA14 NC_011040.1
Enterobacteria phage EcoDS1 NC_011042.1
Enterobacteria phage K1F NC_007456.1
Enterobacteria phage K30 NC_015719.1
Enterobacteria phage T7 NC_001604.1
Erwinia phage FE44 NC_022744.1
Erwinia phage vB_EamP-L1 NC_019510.1
Klebsiella phage K11 NC_011043.1
Klebsiella phage KP32 NC_013647.1
Kluyvera phage Kvpl NC_011534.1
Morganella phage MmP1 NC_011085.3
Pseudomonas phage gh-1 NC_004665.1
Pseudomonas phage phil5 NC_015208.1
Pseudomonas phage phiKMV NC_005045.1
Pseudomonas phage philBB-PF7A NC_015264.1
Pseudomonas phage Phi-S1 NC_021062.1
Salmonella phage phiSG-JL2 NC_010807.1
Salmonella phage Vi06 NC_015271.1
Stenotrophomonas phage IME15 NC_019416.1
Vibrio phage 1CP3 NC_015159.1
Vibrio phage N4 NC_013651.1
Vibrio phage VP4 NC_007149.1
Yersinia pestis phage phiA1122 NC_001604.1
Yersinia phage Berlin NC_008694.1
Yersinia phage phiYeO3-12 NC_001271.1
Yersinia phage Yepe2 NC_011038.1
Yersinia phage Yep-phi NC_023715.1

two Escherichia coli strains and a single Kosakonia cowanii
strain, along with the nonenteric gram-negative bacteria,
Aeromonas and Pseudomonas, and the gram-positive Strep-
tococcus and Staphylococcus strains (Table 1).

We then evaluated host range using a phage lawn, which
was used by Luria and Delbruck® to assess the number of
resistant bacteria in their populations. This method has the
advantage of being more efficient for identifying host range
as many strains can be tested simultaneously, and it was ex-
pected to recover similar results as the standard bacterial lawn
overlay assay. In this assay, we first applied phage to the agar
surface in 96-well microplates, and then applied bacteria over
the phage lawn. Susceptibility was scored following a spec-
trophotometric comparison of bacteria with and without
phage. Using this assay, 12 strains had a reduction in ODggg
of more than 0.413 (-20) between the no-phage bacterial
control and bacteria that had been exposed, and were there-
fore scored as susceptible (Table 1). Of the 16 strains scored
as susceptible by the traditional bacterial lawn method,
7 were also susceptible by the phage lawn method (E. bill-
ingiae, P. brenneri B014130, and P. agglomerans strains
3-770398, G4032547, SNO1121, SP00303, and SP05051)
(Table 1).

Discussion

A T7-like phage, vB_PagP-SK1, capable of infecting
P. agglomerans SNO1121 was isolated from barnyard soil.
Imaging using TEM highlighted an icosahedral capsid,
short tail, and multiple tail fibers that are characteristic of
the members of the Podoviridae (Fig. 1A). Genomic anal-
ysis revealed the absence of an integrase or other lysogeny-
related genes, suggesting that vB_PagP-SK1 is strictly a
lytic phage.®' Our first host range assay used the bacterial
lawn overlay method, which identifies those strains in
which vB_PagP-SK1 can successfully initiate infection and
produce viral progeny. This approach identified 16 sus-
ceptible strains, the majority being P. agglomerans, along
with 1 P. brenneri, P. septica, and E. billingiae strain
(Table 1). Although vB_PagP-SK1 was initially identified
as a phage of P. agglomerans, it did not infect most P. ag-
glomerans strains indicating that vB_PagP-SK1 may not be a
strict P. agglomerans phage. This is supported by the fact that
the genome of vB_PagP-SK1 shared high identity with the
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Erwinia phage, vB_EamP-L1, and the fact that the host range
of vB_PagP-SK1 encompassed E. billingiae. This suggests
that vB_PagP-SK1 is a phage of Erwinia that may transiently
infect select Pantoea strains. The vB_EamP-L1 phage host
range had been shown to span a large number of E. amylovora
strains, although the E. billingiae and Erwinia persicina
strains tested by the authors were resistant.'! The authors also
showed that the host range of vB_EamP-L1 included one P.
agglomerans and one P. ananatis strain, although the P. va-
gans strain was resistant.'!

The genomes of vB_PagP-SK1 and vB_EamP-L1 shared
extensive conservation, but contained multiple variable re-
gions (Fig. 2). Many of these regions corresponded to genes
that have been implicated in host specificity and phage—host
interactions, including the SAMase, gp0.65, protein kinase,
type II holin, and the carboxyl-terminal domain of gp17 (tail
fiber/EPS depolymerase).”>>’ SAM hydrolases are responsi-
ble for inactivating host restriction enzymes thereby bypassing
restriction enzyme-mediated host defence mechanisms.”®
Protein kinases (gp0.7) are responsible for inactivation of
host RNAse E that can degrade viral mRNA, and for inac-
tivation of the })rotein CasB of the host CRISPR defence
mechanism.***> Homologues of the gene, gp5.5 (gene 19),
have been shown to affect the nucleoid-associated protein

MCDOUGALL ET AL.
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H-NS, which is a bacterial defence mechanism against
foreign genetic material, including phage.??

By disrupting H-NS, silencing of exogenous DNA is dis-
rupted allowing transcription of phage genes to continue
unrestricted.”> Type II holins (gene 39, gp17.5) are respon-
sible for the timed permeability of the cellular membrane to
endopeptidase or other lysis proteins resulting in the degra-
dation of the cell wall and subsequent lysis of the host bac-
teria.>” The carboxyl-terminal domain of %p17 is responsible
for binding with host lipopolysaccharide.” The variability of
these specific regions may modify the host range of vB_
PagP-SK1 to encompass other species and/or genera.

We also identified several predicted hypothetical genes in
vB_PagP-SKI1 that were not found in vB_EamP-L1, but have
been identified in phage infecting other members of the En-
terobacteriaceae, Xanthomonadaceae, and Pseudomonada-
ceae,® including Cronobacter, Citrobacter, Pseudomonas,
and Stenotrophomonas (Table 1). This suggests that vB_
PagP-SK1 is a mosaic of vB_EamP-L1 and other closely
related phage species of Teseptimavirus, having exchanged
specific genetic determinants throughout its genome. The
host range of this phage may therefore extend to other
members of the Enterobacteriaceae. This is consistent with a
recent comparative genomics study of 60 Erwiniaceae phage



ISOLATION OF A P. AGGLOMERANS PHAGE

genomes, which found considerable genomic variation and a
large proportion of phage proteins with an unknown function.?’

The plaque morphologies of vB_PagP-SK1 and vB_EamP-
L1 were markedly different. The plaques produced by
vB_PagP-SK1 lacked secondary halos that had been de-
scribed for vB_EamP-L1.'! Halos are usually caused by a
diffusible enzyme, such as EPS depolymerase,***! although
both vB_PagP-SK1 and vB_EamP-L1 carry a predicted EPS
depolymerase/tail fiber protein (gp17). The predicted EPS
depolymerase/tail fiber protein (gpl7) of the two phages
share conservation over the first 60% of their ~2.5kb nu-
cleotide sequence, with the 3" end of the gene being diver-
gent. This variability may result in an EPS depolymerase
enzyme that has reduced diffusibility or a reduced speci-
ficity toward the EPS capsule of the bacterial strains that
were evaluated.

We carried out the phage lawn assay of Luria and Del-
bruck, as carried out in their 1943 landmark article in which
they evaluated the number of phage-resistant bacteria in their
populations.?® This method has the advantage of being more
efficient for identifying host range as many strains can be
tested simultaneously on a single phage lawn, as opposed to
using a single plate per strain; however, we found that only 7
of the original 16 strains identified as susceptible by the
standard bacterial lawn method were susceptible by the phage
lawn method, along with four additional P. agglomerans and
one Pantoea eucalypti strain that were not identified by the
bacterial lawn method (Table 1). These discrepancies may be
due to lysis of normally resistant bacteria caused by phage-
encoded exopolysaccharide depolymerases in phage lysates,
or the presence of enzymes, antibiotics, or bacteriocins in
phage lysates, which were produced by the original bacte-
rial host.

It is also possible that in some cases, lysis was caused
by ‘““virion-mediated lysis from without,”” a phenomenon
through which high concentrations of phage adsorbing
to bacterial surfaces can induce sufficient damage to the
cell wall, even though there is no successful infection.3>33
Lysis of resistant bacteria was also reported in spot testing
assays with the phage LIMElight on P. stewartii LMG
2717, P. stewartii LMG 2719, E. amylovora GBBC 403,
and E. mallotivora LMG 1271, all of which were resistant
in standard bacterial lawn overlay assays.'® Given the rel-
atively small proportion of strains that were scored as
susceptible with either method, the host range of this phage
within Pantoea is relatively narrow.

Conclusion

We have characterized the bacteriophage vB_PagP-SK1,
which belongs to the Teseptimavirus genus and was initially
purified as a P. agglomerans phage. Our host range analyses
suggest that vB_PagP-SK1 is capable of infecting multiple
Pantoea species along with strains Erwinia. Our genomic
analysis indicated that vB_PagP-SK1 most closely resembles
the Erwinia phage vB_EamP-L1, even though the host ranges
appear to be slightly different. The presence of xenologous
genes in the vB_PagP-SK1 genome originating from phage
that infects a breadth of genera indicates that it may be a
mosaic of vB_EamP-L1 and other phages that infect mem-
bers of the Enterobacteriaceae, which may be impacting host
range.
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