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ABSTRACT

In this work, we propose a new three parameter distribution called
the Burr Xl inverse Rayleigh model, this model is a generalization
of the inverse Rayleigh distribution using the Burr XII family intro-
duced by Cordeiro et al. [The burr XII system of densities: properties,
regression model and applications. J. Stat. Comput. Simul. 88 (2018),
pp. 432-456]. After studying the statistical characterization of this
model, we construct a modified chi-squared goodness-of-fit test
based on the Nikulin—-Rao-Robson statistic in the presence of two
cases: censored and complete data. We describe the theory and the
mechanism of the Y? statistic test which can be used in survival and
reliability data analysis. We use the maximum likelihood estimators
based on initial non grouped data. Then, we conduct numerical sim-
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ulations to reinforce the results. For showing the applicability of our
modelin various fields, we illustrate it and the proposed test by appli-
cations to two real data sets for complete data case and two other
data sets in the presence of right censored.

1. Introduction

An appropriate parametric model is often useful in the analysis of survival data because it
provides insight into the characteristics of failure times and risk functions. In this work,
we first introduce the first generalization of the inverse Rayleigh (IR) distribution using
the Burr XII (XII-G) family originally introduced by Cordeiro et al. (2018). After studying
the statistical characteristics of new model, we construct a modified chi-square goodness-
of-fit tests for this model in the cases where the parameters are unknown, complete and
right-censored data.

First, it is proposed to construct a modified chi-square type test for the BXII-IR model,
in the case where the data are complete and the parameters unknown. This test is based
on the Nikulin—-Rao-Robson (N.R.R) statistic separately proposed by Nikulin (1973) and
Rao and Robson [36]. Based on the maximum likelihood estimator (MLE) on the initial
data, this Y? statistic is a natural modification of the classic chi-square x? test. Then, we
develop another goodness-of-fit test for our new model in the case where the parameters
are unknown using a right-censored data. We use the approach proposed by Bagdonavicius
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and Nikulin [13], based on the MLEs on ungrouped data. This modified chi-square type
test Y2 is a modification of the N.R.R statistic that takes into account both unknown param-
eters and censorship. We calculate the MLEs in case of right censoring and all the elements
constituting the test criteria. We are conducting a very important numerical simulation
study. We end with applications on real data that confirm the results obtained.

The probability density function (PDF) and cumulative distribution function (CDF) of
the IR distribution are given by (for x > 0)

Ta(x) = 2a2x_3exp [— (a/x)z] and TI,(x) = exp [— (a/x)z] , (1)

respectively, where a > 0 is a scale parameter. Let Z be a random variable (rv) having the IR
distribution (1) with parameter a. For r <2, the r ordinary and incomplete moments of
Z are given by ), = a'I'(1 — %r) and ¢,(t) = a" y(1 — %r, (%)2), respectively. Consider
the BXII-G family of distributions is defined by

B Iy (%) “17*
Fa,ﬂ,w(x)—l—{ﬁ[m]} ' B

The PDF corresponding to (2) is given by

Ty () Ty (0! {1 +[ My (%) ]“}‘ﬂ‘l )
[1-1y (0] 1— My (x) ’

fa,ﬂ,w (x) =ap

where 7y (x) is the baseline density. The hazard rate function (HRF) of X reduces to

my (x) Oy ()%} {1 N [ Iy (x) i|a}_l
[1- My 0] 1— Ty (%) '

Ta,B, ¥ (x) =ap

Inserting (1) in to (2) we have
a\ —B
_ L exp [— (a/x)z]

Equation (4) represents the CDF of the proposed model (BXII-IR). The PDF correspond-
ing to (4) is given by

exp [—oc (a/x)z]
{1 — exp [— (a/x)z]}m+1

a\ —p—1
exp [— (a/x)z]
X (1 + { 1 — exp[— (a/x)?] } ) ’ ®

when o = 1, the BXII-IR reduces to the Lomax-IR (Lx-IR), when B8 = 1, the BXII-IR
reduces to the Log-logistic-IR (LL-IR). The HRF corresponding to (5) is given by

2,3 exp [—a (a/x)?] (1+{ exp [= (a/%)°] ]}a)—l

{1—exp[—(a/0?]}*" 1 —exp[—(a/x)?

f(x) =fa,ﬁ,a(x) = Zo(ﬂazx_3

To,pa (X) = af2a
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Figure 1. Plots of the BXII-IR PDF and HRF for selected parameter values.

The BXII-IR density can be symmetric and right-skewed, whereas the BXII-IR HRF can be
upside down (see Figure 1). Hereafter, we denote by X ~ BXII — IR(x, «, 8, a) a rv having

density function (5).
The CDF (4) of X can be expressed as

ay —B
o exp [— (ﬂ/x)z]
F(x) =1 (1+{1—exp[—(“/x)2]} ) ‘

A

First, we consider two power series

—c - —c—hf €
(1+7) =g2 h(h)<r—1)h

and

Z C'(c+h) h
h!T ()

(Itl<1, ¢>0)

Applying (7) for A in Equation (6) gives

o 2 o k
Flx) = 1 — 2ﬁk<—ﬂ) exp [— (a/x)*] )
(%) kXZg k 1 —exp [~ (a/x)?]

Second, using the binomial expansion, the last equation can be expressed as

—(k—i)a

F(x) =1-— i Xk: il (];)(_kﬁ) {1—exp[—(a/%)?]}
ko im0 2P {exp [ (a/x)z]}_(k_i)a ;

(6)

(7)

(8)
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Third, applying (8) for B in the last equation gives
ook

F)=1- > > cijklmioti(x ), ©)

jk=0 =0

T (k= il + ) <k> <—ﬁ>
R ORI (ke — ila) \i )\ k

and I (k—j)a+j(x, a) is the CDF of the IR model with scale parameter a[(k — )& —|—j]%. By
differentiating (8), we obtain

where

00 k
f@ =D Gk kiartj (5.0), (10)
k=0 i=0
j+k>1

where 7T (ki +j(x, @) is the IR density with scale parameter a[(k — ) —|—j]% and ¢k =
—Cijjk-

Ii‘l the statistical literature, there are many useful studies based on the Burr type XII
distribution can be cited, for example: group acceptance sampling plans for resubmitted
lots under Burr Type XII distributions by Aslam et al. [7], double acceptance sampling
plans for Burr type XII distribution percentiles under the truncated life test by Aslam et al.
[9], two-stage group acceptance sampling plan for Burr type X percentiles by Aslam et al.
[4], repetitive acceptance sampling plans for burr type XII percentiles by Aslam et al. [8],
optimal designing of Skip lot sampling plan of type SkSP-2 with group acceptance sam-
pling plan as a reference plan under Burr type XII distribution by Aslam et al. [6], multiple
dependent state repetitive group sampling plan for Burr XII distribution by Aslam et al.
[3] and time-truncated attribute sampling plans using EWMA for Weibull and Burr type
X distributions by Aslam et al. [5], amonge others. On the other hand, man authors studied
the inverse Rayleigh distribution, see for example: Yousof et al. [44], Korkmaz et al. [23],
Aryal and Yousof [2], Merovci et al. [28], Brito et al. [14], Korkmaz et al. [24], Yousof et al.
[45], Chakraborty et al. [15], Yousof et al. [46], among others.

In this work, we are interested in the Burr XII inverse Rayleigh distributions which is a
new generalization of the IR distribution and whose mathematical form of its probability
density is manageable thus allowing to calculate its various characteristics. This flexible
model can describe different lifetimes from reliability, survival analysis, and other areas
(see Section 3.2). Since the results of any statistical analysis depend on the chosen model,
then we have constructed modified chi-square type fit tests to allow users to verify the
adequacy of their observations to these types of distributions (see Section 5). The tests
used take into account the unknown parameters of the models, right censorship generally
present in the reliability and survival analysis studies, and use all the information provided
by the sample. We have shown the applicability of this new model (BXII-IR) by a study
of two real complete data and two others for the case of censored data (see Sections 6
and 7).
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2. Properties
2.1. Moments and generating function

The rth ordinary moment of X say u, = E(X"), is determined from (10) as

ook L 1
= D D G [k=ha+j*'T (1‘7)
jok=0 =0
j+k>1

>

(r<2)

where

FA+0)lgery =4=¢x@-Dx@=2)x--x1=[]@—w

f X letdx =T (2).
0

The rth incomplete moment of X, say ¢,(t), can be determined from (10) as

t 1, 1 /a\2
<0r(t)=f Kf(x) dx = Z Z;“Uka [k— e +4]2"y (1—5r,(?))
- k=0 i=0
]J+k>1

and

where

q e
v (£,9) leto-1-2,..) = /0 #exp(—t)dt = q? {iF1[¢5¢a+ 15—q])
i (= gt
K@+ R

and ;F;[-,-, -] is a confluent hypergeometric function. The moment generating function
M(t) = E(e'X) of X follows from (10) as

1
M(t) = Z Zﬁuk t'/r)a (k—z)oz+]] (1—7)
jok,r=0 i=0
jHk=1

(r<2) ‘

2.2. Probability weighted moments (PWMs)

The PWMs are generally used for estimating parameters of a distribution whose inverse
form cannot be expressed explicitly. The (s, r)th PWM of X denoted by p;, is formally
defined by

]

pur =E[X PO} = [ RFG0 d

—00
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using (4), we have

ay —B"
L exp [— (“/x)z]
F(x)" = {1 <1+{1_exp[—<a/x>2]} ) } '

Expanding z" in Taylor series, we can write

2= D =Y s, (12)
h=0 i=0
where (), =n(n —1)...(n — h+ 1) is the descending factorial and
0 -1 h—i h
G =y ()hﬂo
h=i ’

Applying the Taylor series in 2" for F(x)", we obtain

00 - 2 a\ —if
F<x>V=Z<—1)"ci<r)<1+{ il (“/x)]]}) .

o 1 —exp [— (a/x)2

Second, using (5) and the last equation, we have

{exp [— (a/x)z]}a_1
{1 —exp[— (cz/x)z]}wrl

} ay —(1+i)B—1
Dic exp [~ (a/x)’]
x ) (=D ct(r)<1+{1—exp[—(a/x)2]} ) |

i=0

f (%) F(x)" = ap2a*x~ @ Vexp [— (a/x)z]

C

applying (7) for C in the last equation, we obtain

0 _ 2
FEF@ =ap 3 (~)i 2 1H08615, () a2 D 2P Lo /20 ] ot
k=0 {1 - exp [ (a/2%])

2 ay k .
. exp [— (a/x)?] (—(1—{—1),13—1).
1 — exp [— (a/x)z] k

D

Third, using the binomial expansion for D, the last equation be rewritten as
ook .
i anpk_1 (K (—A+DB—1
x Fxrza x _1 1+]2 (1+1)}3 k 1( )(
f (x) F(x) ﬂg();k:o:g( ) ; L

% & (0 {exp[— @/ 7T {1 — exp[— (a/)?]}

E

(k= 1)art1]
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Applying (8) for E in the last equation gives

f)Fx)" = Z Z T (kg Dt (5.@) | gy

k,m=0 j=0

where ¢!

]km =affb ikmCi(r), §i(r) is defined in (12) and

e D (k= + e+ 1) (Y
20H+DBHH[(k — j+ Do + m]m!

bj,k,m =
i=0

>

where m(™ = I'(m + 1)/ I'(m) denotes the rising factorial. Finally, the (s, r)th PWM of X
can be determined as

psr—ZZ]km (k ]—f—l)oe—i-m]%f‘(l—i)

k,m=0 j=0

(s<2and]<k)

2.3. Residual life and reversed residual life functions

The nth moment of the residual life, say

my] (317) = Bl = 1),

uniquely determines F(x). The nth moment of the residual life of X is given by

mn(t)|<" 12, )= [ x—1 dF(x).

X>t 1 —F(t)
Therefore
o0 k n n a\2
n=1,2,.. 2 - ==
my ()| <X>t ) F(t kZ ZO l]ka —he +J]2 (1 2’ (t> ) (n<2) J

JHk=1

where £y = Giji(1 = 0" T @ Pla=0) = J; 7 e dtand T @) +y (G, =T @),
The mean residual life function or the life expectation at age t defined by ml(t)|(X>t) =
E[(X — t)] which represents the expected additional life length for a unit which is alive at
age t. The mean residual life of X can be obtained by setting n =1 in the last equation. The
nth moment of the reversed residual life, say

M1 (§2) =E[¢ - 0",
uniquely determines F(x). We obtain

fo (t — x)" dF(x)

M) (5= 0) = E(t)
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Then, the nth moment of the reversed residual life of X comes from

—12,.. n n /a\?
M, (D) (?(Sit’zb()) 70 ]kX:O l%kfuku (k - o +]]2 (1 5 (;) >
Jj+k>1

(n<2)

where ;‘l’;"‘k = Cijk pa 0(—1)’(”)t”_’ The mean inactivity time also called the mean

reversed residual life function, is given by M, (¢)| (X =t 1>0) = E[(t — X)] and it represents
the waiting time elapsed since the failure of an item on condition that this failure had
occurred in (0,¢). The mean inactivity time of the BXII-IR model is obtained easily by
setting n =1 in the above equation.

2.4. Order statistics

Let Xi, ..., X, be arandom sample from the BXII-IR model and let X1, . . ., X;,., be the
corresponding order statistics. The PDF of the ith order statistic, say X;.,, is given by

_ f ) =8\ e
fin @) = g IH)Z( 1)( . )F ),

where B(:, -) is the beta function, then we can write

FEFx)™ ! = Z Z J(i:?; T (k—j+Da+m (6 @) | (j<k)»

k,m=0 j=0

where C(ZH U is defined before. So, the PDF of X;., follows using the last expression as

oo n—i k
(r
fin (x) = BGn—it1) Z 2(;20: ( , )];jm T (k—j+ Da+m (@) | (j<k)-
(13)

Then, the density function of the BXII-IR order statistics is a fourth linear combination of
the IR density. Then The rth ordinary moment of X;., say E(X},,), is determined from (13)
as

n—i k ( 1) (fl 1) (r+1 1)

Jk,m % T
)—ZZZ B(z,n—zj-i—l) a' [(k—j+Da+m]>T (1—5)

k,m=0 r=0 j=0

(r<2,j<k) ’

3. Maximum likelihood estimation in case of complete data
3.1. Maximum likelihood estimation

Let x;,...,x, be a RS from the BXII-IR model with parameters o, and a. Let
0 =(a, B,a)T be the 3 x 1 parameter vector. For determining the MLE of 8, we have the
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log-likelihood function

2
L =14£() _nlog2+nloga—l—nlogﬂ—l—znloga—32 xl—az< )

i=1 i=1

— (x + I)Zlog(l —s)—(B+ I)Zlogzi,

i=1 i=1

where

si = exp

1
N
><|Q
N~

[\

| I
[
=]
[a¥
K\

I
1
—
+
N

—
| |2
R
—
[ 38}
| I

the score vector I gy = g—g = (%, g—ﬁ g—)T is given as

n 2 n n .
lo) = = —Z(%) ~ S log(1—s) — (ﬁ+1)22,
= i=1 i=1

n
Iip) = % - logz,
i=1
n n a ) si
I<a>=%”—2a' 1(%)—2(”1)2("“)"’ <ﬂ+1)Z—,

where

si \” Si s\ f?(f)
pi= log and m; = 2o .
1—s5; 1— 1—s5; [1—s]

Setting the nonlinear system of equations Iy = 0,1y = 0 and I,y = 0 and solving them
simultaneously yields the MLE § = (&, 8,a)T. To solve these equations, it is usually more
convenient to use nonlinear optimization methods such as the quasi-Newton algorithm to
numerically maximize £. Since, we cannot find the explicit formulas of the maximum like-
lihood estimators of the parameters, we then use numerical methods such as the Newton
Raphson method, the Monte Carlo method, the BB algorithm or others.

3.2. Data analysis: case of complete data

This section presents two applications of the BXII-IR distribution using real data sets. We
shall compare the fit of the new distribution with the Weibull-inverse Weibull (W-IW)
[1], exponentiated IW (E-IW) [31], Kumaraswamy IW (Kum-IW) [27], beta IW (B-IW)
[30], transmuted IW (T-IW) [26], gamma extended IW (GaE-IW) [38], Marshall-Olkin
IW (MO-IW) [25] and IW distributions with corresponding densities (for x > 0):

W —IW abpox™ P expl—b(a/x) (1 — expl—(a/x)/]) 7"+

expl—(@/f] 1|
ep _“[l—exp[—m/x)ﬁ]] ’




402 H. GOUAL AND H. M. YOUSOF
K—-IW:f(x;a,8,a,b) = abﬂaﬁxf(ﬂH) exp[—a(a/x)ﬁ]{l — exp[—a(a/x)ﬂ]}bfl;

E—-IW f(x0,B,a) = aﬂa’sx_(ﬂH) exp [— (%)ﬁ] {1- exp[—(a/x)ﬁ]}“_l;

B
B—-IW:f(xa B,a,b) = BfaLb)x(ﬁH) exp[—a(a/x)ﬁ]{l - exp[—(a/x)ﬂ]}bfl;

B
GE — IW if (x;, B,a,b) = “F%x‘(ﬂ*” exp[—(a/x)P1{1 — exp[— (/)P }*~!

x {—log{1 — exp[—(@/x) 1}*}*™";
T —IW f (5, B,a) = BaPx™ BTV exp[—(a/x)P1{(a + 1) — 2aexp[—(a/x)P]};
MO — IW :f (x5, B,a) = apaPx~PTD exp[—(a/x)?]

x {a+ (1= a) exp[—(@/x) ) 2.

The unknown parameters of the above PDFs are all positive real numbers except for the
T-IW distribution for which |a| < 1. The first dataset consists of 100 observations of break-
ing stress of carbon fbres (in Gba) given by Nichols and Padgett [32]. The data are: 0.92,
0.928, 0.997, 0.9971, 1.061, 1.117, 1.162, 1.183, 1.187, 1.192, 1.196, 1.213, 1.215, 1.2199,
1.22, 1.224, 1.225, 1.228, 1.237, 1.24, 1.244, 1.259, 1.261, 1.263, 1.276, 1.31, 1.321, 1.329,
1.331, 1.337, 1.351, 1.359, 1.388, 1.408, 1.449, 1.4497, 1.45, 1.459, 1.471, 1.475, 1.477, 1.48,
1.489, 1.501, 1.507, 1.515, 1.53, 1.5304, 1.533, 1.544, 1.5443, 1.552, 1.556, 1.562, 1.566,
1.585,1.586, 1.599, 1.602, 1.614, 1.616, 1.617,1.628, 1.684,1.711, 1.718, 1.733, 1.738, 1.743,
1.759,1.777, 1.794, 1.799, 1.806, 1.814, 1.816, 1.828, 1.83, 1.884, 1.892, 1.944, 1.972, 1.984,
1.987,2.02,2.0304, 2.029, 2.035, 2.037, 2.043, 2.046, 2.059, 2.111, 2.165, 2.686, 2.778, 2.972,
3.504, 3.863, 5.306. The second dataset [39] consists of 63 observations of the strengths of
1.5 cm glass fibers, originally obtained by workers at the UK National Physical Laboratory.
Unfortunately, the units of measurement are not given in the paper. The data are: 1.014,
1.081,1.082,1.185,1.223,1.248,1.267,1.271,1.272,1.275,1.276,1.278, 1.286, 1.288, 1.292,
1.304, 1.306, 1.355, 1.361, 1.364, 1.379, 1.409, 1.426, 1.459, 1.46, 1.476, 1.481, 1.484, 1.501,
1.506, 1.524, 1.526, 1.535, 1.541, 1.568, 1.579, 1.581, 1.591, 1.593, 1.602, 1.666, 1.67, 1.684,
1.691, 1.704, 1.731, 1.735, 1.747, 1.748, 1.757, 1.800, 1.806, 1.867, 1.876, 1.878, 1.91, 1.916,
1.972,2.012, 2.456, 2.592, 3.197, 4.121. In order to compare the distributions, we consider
the following criteria: the —20 (Maximized Log-Likelihood), AIC (Akaike Information
Criterion), CAIC (Consistent Akaike Information Criterion), BIC (Bayesian informa-
tion criterion) and HQIC (Hannan-Quinn information Criterion). These statistics are
given by

AIC = —20 + 2k, BIC = —2( + klog(n), HQIC = —20 + 2klog[log(n)]
and
CAIC = =20 + 2kn/(n — k — 1),

where £ denotes the log-likelihood function evaluated at the MLEs, k is the number of
model parameters and # is the sample size. The model with minimum values for these
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P-P Plot for Breaking Stress of Carbon Fibre Data
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[ —— 00 02 04 06 08 10

Observed Probability

Estimated CDF

Figure 2. Estimated PDF, P-P plot, estimated HRF and estimated CDF for the first data.

Table 1. —ZE,AIC, BIC, HQIC and CAIC for the first data.

Goodness of fit criteria

Model -20 AlC BIC Halc CAIC
BXIHIR 1038 1099 1177 1130  110.1
LL-IR 111.3 115.06 120.27 11717 115.19
W-IW 286.5 2945 304.9 298.7 2949
E-IW 289.7 295.7 303.5 298.9 296.0
Kum-IW  289.1  297.1 307.5 3013 2975
B-IW 3031 311.1 3216 3154 3116
GaE-IW 304 312 3324 316.2 3124
[\ 3443 348.3 3535 3504 348.4
TIW 3445 3505 3583 3536 350.7

MO-IW 3453 3513 359.1 354.5 3516

statistics could be chosen as the best model to fit the data. All results are obtained using the
R PROGRAM (see Appendix 1). Figure 2 gives the estimated PDE, P-P plot, estimated HRF
and estimated CDF for the first data. Figure 3 gives the estimated PDEF, P-P plot, estimated
HRF and estimated CDF for the second data.

Tables 1 and 3 compare the BXII-IR model model with the W-IW, TMO-IW, K-IW, B-
IW, E-IW, GE-IW, T-IW, MO-IW and -IW distributions. The new model gives the lowest
values for the AIC, BIC, HQIC and CAIC statistics (in bold values) among all fitted models
to these data. So, it could be chosen as the best model among them. Figure 3 displays the
plots of estimated density for the proposed model models and estimated CDF of the new
model for the first data. Figure 4 displays the plots of estimated density for the proposed
model models and estimated CDF of the proposed model for the second data. These plots
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P-P Plot for Strengths Data

o < 1
. :
©
e o]
©
@4
o | 2 =)
E o
E) § <7 s
= [<]
2 [in
=
8 3 o
o < | ©
o | g o
o n]
o
P
al
o 7 0
¥_; ’
o
o | — o
o b=
T T T T 1 T T T T T T
1 2 3 4 5 0.0 0.2 04 06 08 1.0
Strengths of Glass Fibres Observed Probability

Estimated COF

BOGR Mode!

Figure 3. Estimated PDF, P-P plot, estimated HRF and estimated CDF for the second data.

reveal that the proposed distribution yields a better ft than other nested and non-nested
models for both data sets (Tables 2 and 4).

3.3. Simulations: case of complete data

We consider the BXII-IR model. The data were simulated N =10,000 times; with sam-
ple sizes n = 30, n =100, n = 250, n = 500, and parameter values « = 0.6, § = 3.7,
a = 1.5. Using the R software and the Barzilai-Borwein (BB) algorithm [37] for calculating
the averages of the simulated values of the maximum likelihood estimators &, 8, @ parame-
ters and their mean squared errors (noted MSE), we obtain the results presented in Table 5
(see the R code in Appendix 2). From Table 5, we can notice that the maximum likelihood
estimators are convergent.

4. Maximum likelihood estimation for censored data
4.1. Maximum likelihood estimation

Consider this time the case of right-censored data. Let T a random variable distributed
according to a BXII-IR distribution with @ = («, B, a)". For i (individual); T; is the lifetime
and C; is the censorship time, where T; and C; are independent random variables. Suppose
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Figure 4. Simulated distribution of the Y2 statistic under the null hypothesis H, with different param-
eters of 6 versus the chi-squared distribution with 13 degrees of freedom, with n = 200, N = 10, 000.

the data consists of n independent observations
t; = min(T;, C;)) fori=1,...,n.

Censorship is assumed to be non-informative (the distribution of C; does not depend on
the unknown parameters of T;). The likelihood function in the case of censored data can
be given by:

n
L(t,0) = l_[)»‘si(ti,O)S(t,-,O); 6 = (a,,B,a)T is the vector of parameters, §; = 11,<c;}-
i=1
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Table 2. MLEs and their standard errors for the first

data.
Estimates
Model a ﬁ a b
BXII-IR 2973 0.697 1.1949
(0.6069) (0.2488) (0.0831)
LL-IR 4.641 2.197
(0.802) (0.102)
W-IW 2.2231 0.355 6.9721 49179
(11.409) 0.411) (113.811) (3.756)
EF 69.1489 0.5019 145.3275
(57.349) (0.08) (122.924)
Kum-Iw 2.0556 0.4654 6.2815 224,18
(0.071) (0.00701) (0.063) (0.164)
B-IW 1.6097 0.4046 22.0143 29.7617
(2.498) (0.108) (21.432) (17.479)
GaE-IW 1.3692 0.4776 27.6452 17.4581
(2.017) (0.133) (14.136) (14.818)
W 1.8705 1.7766
(0.112) (0.113)
T-IW 1.9315 1.7435 0.0819
(0.097) (0.076) (0.198)
MO-IW 2.3066 1.5796 0.5988
(0.498) (0.16) (0.3091)

Table 3. —2¢, AIC, BIC, HQIC and CAIC for second

data.
Measures

Model -2 AlC BIC HQic CAIC
BXII-IR 385 445 50.9 47.04 449
LL-IR 48.6 52.1 56.3 53.7 52.3
Kum-IW 39.6 47.6 56.2 51 483
E-IW 443 50.5 56.7 52.8 50.7
B-IW 60.6 68.6 77.2 72.0 69.3
GaE-IW 61.6 69.6 78.1 72.9 70.3
W 93.7 97.7 102 99.4 97.9
T-IW 94.1 100.1 106.5 102.6 100.5

MO-IW 95.7 101.7 108.2 104.2 102.1

In our case, let T; be a random variable distributed with the vector of parameters § =
(b,a, y, Bo, ,31)T, so the likelihood function reduces to

af2a*t3 exp [_O‘ (a/t,-)z] R
n i _ _ N27et]
L(t,0)=l—[ {1 exp[ (a/tz)z]} -
i=1 w141 [— (a/t)?]

1 —exp [— (a/t;)?]

exp [~ (a/t;)’] 7

1 —exp [— (a/t)?]
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Table 4. MLEs and their standard errors for second
data.

Estimates

Model a B a b

BXII-IR 4.1361 00.5505 1.1601
1.04398 0.23159 0.0702

LL-IR 6.752 2369
(1553)  (0.128)
Kum-W 2116 0.740 5.504 857.343
(4555)  (0.071)  (7.982)  (153.948)
E-IW 7.816 0.999 132.827
(2945)  (0.136)  (116.63)
B-IW 20518 06466  15.0756 36.9397

(0.986) (0.163) (12.057) (22.649)
GaE-IW 1.6625 0.7421 32.112 13.2688
(0.952) (0.197) (17.397) (9.967)

w 1.264 2.888
(0.059) (0.234)
T-w 1.3068 2.7898 0.1298

(0.034) (0.165) (0.208)
MO-IW 1.5441 2.3876 0.4816
(0.226) (0.253) (0.252)

Table 5. Maximum likelihood estimators (&,,3,?1) of the
parameters and their mean squared errors.

N = 10,000 n=30 n=100 n=250 n=500
& 0.6308 0.6247 0.6201 0.5985
MSE 4511079 4111079 2761079 1.83.10793
B 3.7501 3.4822 3.6689 3.6978
MSE 0.0519 0.0308 0.0024 0.0011

a 1.4922 1.4957 1.4971 1.5094
MSE 0.04215 0.0167 0.0021 0.0013

and the loglikelihood function is given by

— N2 o
l(t,0) = —ﬂln <1 + { CXp[ (a/tl) ] } )

1 —exp [ (a/t)?]

( In(@p2a®) —31n(t) — « (a/t;)?
"\= @+ DIn{1 —exp[—(a/t)?]}

Xf; —ln<1+{ exp [~ (a/t)’] }) ’

1 —exp[— (a/1)?]

then

I(t,0) =r [log(a) + log(B) + 4log(a)] —(x+1) Z In {1 — exp [— (a/ti)z]}
ieF

) N exp [— (a/ti)z] )
3 Zlog(tz) Zln (1 + { 1 —exp [— (a/ti)z] } )

ieF ieF
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o
exp [~ (a/t)?]
-« (a/t,-)2 - B In (1+ { >
; gc: 1—exp [— (a/ti)z]
where r is the number of failures, F and C denote the sets of uncensored and censored

observations, respectively. The maximum likelihood estimator 9 for  can be find by
solving the system formed by equalizing the following score functions to zero

MO LS g = Y- e [ @]
ieF ieF

B Z In [m(t;, 0)] m* (4, 0) Z In [m(t;,0)] m*(t;,0)

>

— 14+ m*(t;,0) p 1+ m@(t;,0)
al(t,0) r
=— - In|14+m*(,0)],
=Ll ]
l(t,0)  4r 2a 2a
90 :;—azt—z—(a—i—l)zt—zm(t,ﬂ)
ieF 1 ieF 1
2aam®(t;, 0)
icr {1 —exp[— (a/t)?]) [+ me(1.0)]
2aam®(t;, 0)
— B Z

iec {1 —exp[~ (Cl/ti)z]}2 (14 m*(t,0)]
where
exp [— (a/t)?]
1 —exp [— (a/ti)z]'

To solve the system of score functions, quite complicated, we use numerical methods, such
as the Monte Carlo method, the Barzilai-Borwein (BB) algorithm or others.

m(t;, 0) =

4.2. Simulations: case of censored data

We consider the BXII-IR model. The data were simulated N =10,000 times (with sam-
ple sizes n = 30, n = 100, n = 250, n=500) and parameter values ¢ = 0.58, 8 = 2.64
and a=1.5. The averages of the simulated values of the maximum likelihood estimators
a, ﬁ,& Parameters, and their mean squared errors (MSE) are calculated and presented
in Table 6 (see the R code in Appendix 2). From Table 6, we can notice that the mean
squared errors are very small, which confirms the convergence of the maximum likelihood
estimators.

5. Goodness-of-fit test

In case of complete data, various techniques are used to verify the adequacy of mathe-
matical models to data from observation. The most common tests are those based on
Pearson’s Chi-square statistics. Nevertheless, these cannot be applied in all situations, espe-
cially when the parameters of the model are unknown or when the data is censored. Since
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Table 6. Maximum likelihood estimators (&,3,a) of the
parameters and their mean squared errors (censored data).

N = 10,000 n=30 n=100 n=250 n =500
& 0.59007 0.58511 0.58054 0.58010
MSE 833.107% 69110792 5791079  2.11.107%
B 2.6257 2.6251 26227 2.6514
MSE 0.01974 0.00198 7.12.107%  3,09,10706
a 1.4842 1.4867 1.4895 1.5161
MSE 0.0018 0.0010 0.0005 0.0003

the middle of the last century, researchers have begun to propose modifications of existing
statistics to take into account unknown parameters on the one hand and censorship on the
other. For the complete data, Nikulin (1973) and Rao and Robson [36] separately proposed
a statistic known today as the N.R.R statistic (Nikulin-Rao-Robson). This statistical test,
which follows a chi-square distribution, is a natural modification of the Pearson statistic.

If, in addition to the unknown parameters, the data are censored, the classical tests are
inadequate to verify a hypothesis Hy according to which a series of observations comes
from a parametric family F(¢). Habib and Thomas [22] considered the natural modifica-
tions of the N.R.R statistic. These tests are based on the differences between two probability
estimators, one based on the Kaplan-Meier estimator, the other based on the maximum
likelihood estimators of the unknown parameters of the cumulative distribution function
of the Kaplan-Meier estimator. model tested. When to Bagdonavicius and Nikulin [13];
Bagdonavicius et al. [11], they proposed a modification of the N.R.R statistic that takes
into account random right censorship. This statistic, based on the maximum likelihood
estimators on the initial data, also follows a chi-square distribution at the limit. For more
details on the construction of these statistics, we can see Voinov et al. [42]. These tech-
niques were used to adjust observations to the generalized inverse Weibull model [19], the
distribution of Birbaurm Saunders [34], the kumaraswamy generalized inverse Weibull
distribution [20], Bertholon model [16].

In this work, we construct a modified chi-square type tests for the BXII-IR model case
of complete and censored data. The N.R.R statistic is used on case of complete data. In the
presence of censorship, we work with the modification of the N.R.R statistic proposed by
Bagdonavicius and Nikulin [13].

5.1. Nikulin-Rao-Robson (N.R.R) statistic test

To test the hypothesis Hy according to which Ty, T, .. ., Ty, an n—sample comes from a
parametric family F(t; 0)

Hyo:P{T;<t}=F(0), teR, 6 =01,0,...,0)7,

where 0 represents the vector of unknown parameters, Nikulin (1973) and Rao and Robson
[36] proposed Y? the N.R.R statistic defined as following:

Observations T1, T, . . ., Ty, are grouped in r subintervals Iy, I, . . ., I, mutually disjoint
I :]aj — 1;aj]; where j = Tr.
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The limits aj of the intervals I; are obtained such that

>

p® = [ a6
% (i=1,2,...,7)

li—1

a; = F! <l> .
/ r (j=1,...r—1)

Ifvi=(vi,v2,..., v,)T is the vector of frequencies obtained by the grouping of data in
these I; intervals

SO

n

v = Z Lter) |(j:1 ..... r):

i=1
The N.R.R statistic is given by
200 209 lora ) 0 W11 (P
Y2(0n) = X,(0n) + L7 (0n)AOn) —J(0) " LB0),

where

e = (o ® v =) =)
" Jpi@) T npa@) T /np,(8)

and J(0) is the information matrix for the grouped data defined by
J(6) = B(6)"B(6),

with

>

(i=1,2,...,r and k=1,...,s)

B(6) = [L 3Pi(0)}

Vb

then

r

-
L@) = (Li(#),...,L(0)T withLi@® = 2= 1:8),
2.0

where I, (0:1) represents the estimated Fisher information matrix and 0An is the maximum
likelihood estimator of the parameter vector. The Y? statistic follows a distribution of chi-
square )(7271 with (r — 1) degrees of freedom.

5.2. N.R.R statistic for the BXII-IR model

Consider a sample T = (T1, T, . . ., T)T. To verify if these data are distributed accord-
ing to the BXII-IR model, P{T; < t} = Fpxm—ir(t,0); with unknown parameters 6 =
(@, B,a)T, a chi-square goodness-of-fit test is constructed by fitting the N.R.R statistic
developed in the previous section. The maximum likelihood estimators 8, of the unknown
parameters of the BXII-IR distribution are computed on the initial data. The statistic Y2
does not depend on the parameters, we can therefore use the Fisher information matrix
estimated I, (01,). All the components of the statistic Y2, for the distribution BXII-IR are
provided, therefore Y2 can be deduced easily.
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Table 7. Empirical levels and corresponding theoretical
levels (¢ = 0.02,0.05,0.01,0.1).

N =10,000 € =0.02 € =0.05 € =0.01 e =01

n=30 0.9830 0.9524 0.9952 0.9050
n=>50 0.9823 0.9552 0.9930 0.9032
n=100 0.9820 0.9519 0.9927 0.9028
n=250 0.9807 0.9508 0.9913 0.9010
n=>500 0.9802 0.9501 0.9904 0.8999

5.3. Simulation studies (N.R.R statistics Y?)

To support the results obtained in this work, we conduct an intensive study by numeri-
cal simulations. Thus, to test the null hypothesis Hy that a sample belongs to the BXII-IR
model, we calculate Y2 the N.R.R statistic of 10,000 simulated samples with sizes n =
30, n =50, n =100, n = 250 and n=>500, respectively. For different theoretical levels
(e =0.02,0.05,0.01,0.1); we calculate the average of the non-rejection numbers of the
null hypothesis, when Y? < x2(r — 1) then, we present the results of the corresponding
empirical and theoretical levels in Table 7 (see the R code in Appendix 2). As can be seen,
the values of the empirical levels calculated are very close to those of their corresponding
theoretical levels. Thus, we conclude that the proposed test is well suited to the BXII-IR
distribution.

6. Simulated distribution of Y2 statistic for BXII-IR model

For demonstrating that the Y? statistic follows in the limit; a chi-squared distribution with
k=r—1 degrees of freedom; we compute N = 10,000 times, the simulated distribution of
Y? (é) under the null hypothesis Hy with different values of parameters BXII-IR («, 8, a),
and r= 14 intervals, versus the chi-squared distribution with k=13 degree of freedom.
Their histograms are represented in Figure 4 versus the chi-squared distribution with k
degree of freedom.

From Figure 4, we can observe that the statistical distribution of Y2 with different values
of parameters and different numbers k of grouping cells; in the limit follows a chi-squared
with k degrees of freedom within the statistical errors of simulation. The same results is
obtained for different number of equiprobable grouping intervals and different value of
parameters. It is means that the limiting distribution of the generalized chi-squared Y?
statistic is distribution free.

6.1. Applications to real data

6.1.1. Breaking stress of carbon fibers (in Gba) data

To test the null hypothesis Hy that these data are adjusted by a BXII-IR distribution, we
use the N.R.R statistic obtained previously. Using the R software and the BB algorithm
[37], we compute the maximum likelihood estimators (MLE) & = 23.1482, /§ = 0.9578
and a = 0.095541. The estimated Fisher information matrix is then

0.001547892 0.12487592 8.01975548
I(0) = | 0.12487592 78.0218845 298.845512
8.01975548  98.8455122 187.001587
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We then deduce the value of Y? = 20.128745. For significance level € = 0.01, the critical
value is Xg.m (10 — 1) = 21.66599, then, the N.R.R Y? statistic is less than the critical value,
this allows us to say that these data correspond appropriately to the BXII-IR model.

6.1.2. Strengths of 1.5 cm glass fibers
Assuming that the Strengths of 1.5 cm glass fibers data can be fitted by our BXII-IR model,
we can find (using the BB algorithm) the MLE’s of the # vector of parameters as:

A~ N T
- (&,ﬂ,a) — (9.12547,1.0548, 0.85472)" .

Using the 0 value, the estimated Fisher information matrix is can be writing as:

) 0.01024879  0.032541225  8.12459001
I(0) = | 0.032541225 38.9517789  88.1299547
8.12459001  88.1299547  345.9001756

After calculate, we give the N.R.R statistic test and the critical value as: Y? = 10.96241 and
X30s(7 — 1) = 12.59159, respectively. We can affirm that data of 1.5 cm glass fibers can be
modeled by our BXII-IR model with a satisfactory manner.

6.1.3. Gene expression Breast cancer data
We illustrate the use of our BXII-IR model by applying it to gene expression Breast cancer
data, namely gene expression from breast tumors. We can find this data in R as a Package
‘breastCancerNKI'. Genexpression dataset from a breast cancer study published by van't
Veer et al. [41] and van de Vijver et al. [40], provided as an eSet. The source of this data is
available at: http://www.rii.com/publications/2002/vantveer.html.

Using the BB algorithm and ‘breastCancerNKI’ package; the MLE’s of the 6 vector of
parameters are giving as follow:

A ~ AT
b= (a A, a) — (3.2154,1.18049,1.5417)" .
The estimated Fisher information matrix is can be composing as:

1.095475 0.0431855 432.07822
I(#) = [ 0.0431855 21.99547 53.4446
432.07822  53.4446 108.6587

After calculate, the N.R.R statistic test Y2 is 15.7210 and the critical value X§_05(10 -1 =
16.91898. We can aver that data of Gene expression Breast cancer can fit our BXII-IR model
adequately.

7. Goodness-of-fit test for right censored data

To verify the adequacy of the BXII-IR model when the parameters are unknown and the
data censored, we use the approach proposed by Bagdonavicius and Nikulin [13]; Bagdon-
avicius et al. [12] that we develop in this paragraph. It is a chi-square type test based on a
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modification of the N.R.R statistic. We adapt this test for a BXII-IR model. Let us consider
the composite hypothesis

Hy: F(t) € Fy = {Fo(t,0), t € R', € ® C R},

where 6 = (6y,...,60,)T € ® C R® is an unknown m-dimensional parameter and Fy is a
differentiated completely specified cdf with the support (0, 00). Let us consider a finite
time interval only say [0, 7], where 7 is the maximum time of the study, and divide it into
k > s smaller intervals I; = (a;—1, a;], where

O=<agg<ay - <ag1 <ag=—+oo.

In this case the estimated ; is given by

i—1
aj=A"" ((Ej — > AT, 0)/(n—i+ 1),é) o @k =Tl o1,k

I=1

where 0 is the maximum likelihood estimator of the parameter 6, A7l is the inverse of
cumulative hazard function A, Ty is the i element in the ordered statistics (T(1),,, T(x))
and

i1

Ej = (n—i+1)A@,0)+ ) A(Tq),0),

I=1
and a; are random data functions such as the k intervals chosen have equal expected
numbers of failures e;. Usually in real application, we fix k. Bagdonavicius et al. [10] and
Greenwood and Nikulin [21] give some recommendations for the choice of intervals. The
test is based on the vector

1
—=Uj—¢)

Jn

where U;j represent the numbers of observed failures in these intervals. The test for
hypothesis Hy can be based on the statistic

Z=(Z1,...20"% Zj =

(j:l,z,...,k)

Y2=2"3"'z,
where
A+ CAG eA
and
G=i-cA ¢,
The test statistic can be written in the following form
£ (U —¢)?
Y2 = ]; ! U, ~+Q

where

A — 11T
A]_n UJ,
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G = [grlsxs

i:X;€lj
AT A—1.n
Q=W'G 1w,
Cj = Z S [,\ (t:0)
zX,eI]
k —1
Wl = ZCIJA] Z]’ l> l/ = 1) )
j=1
= (Wl’ LIS VAVS)T)

ir=n 128 —ln [A (t,,0)]

and

k
oA A oA A
fr =i = )y, T

j=1 zX,EI]

calculation of the matrices W and I are given in the Appendix 3. The limit distribution
of the statistic Yﬁ is chi-square with 7 = rank(X) = tr(X~!X) degrees of freedom. If G is
non-degenerate then r = k. The hypothesis is rejected with approximate significance level
e if Yﬁ > xéz(r) where Xéz (r) is the quantile of chi-square with r degrees of freedom. For
more details, see Bagdonavicius and Nikulin [13] and Bagdonavicius et al. [12].

7.1. Goodness-of-fit test for the BXII-IR model in case of censored data

In this section, we study the validity of the BXII-IR model, by a goodness-of-fit test based
on Y2, the modified N.R.R statistic presented in the previous section. Suppose Hy is
checked, that is, the failure rate T; follows an BXII-IR distribution, the survival function is:

exp [— (a/1)’]

[)\ (tI,G)]

lnA (t1,0)

S(t,0) =1—F(t;a, B,a) = (1 + {

The choice of Ezj when the baseline distribution is the BXII-IR model, is obtained as follows:

First, we have

1 —exp [— (a/t)z]

’

exp [— (a/t)?]

Apxn-r(t,0) = —InS(t,0) = B1n (1 + {

and

=1

= (14 [exp 0r8) - 117 ]) 7

1 —exp [— (a/t)z]
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Table 8. Power of Y2 for BXII-IR against.
W-IW(@=102 b=08 a =13, § =05).
N=10000 «=001 «=002 «=005

n=30 0.486 0.511 0.566
n=100 0.549 0.642 0.751
n=200 0.693 0.860 0.895
n=>500 0.892 0.909 0.981

Power of Y2 for BXII-IR against K-IW
(@=13,b=05 a =15 8=09).
N=10,000 o =0.01 =002 «=005

n=30 0.497 0.538 0.551
n=100 0.562 0.687 0.722
n =200 0.699 0.860 0.889
n =500 0.907 0.919 0.989

-1
=1 2

Ej— Y21 Alxq),0) ¢
G=al|lln|1+ ! =1 —1
KA {eXp[ B(n—i+1)

(j=1,...k—1)
ar = tn)>

where

n
Ej= Y (A@jAti,0) — A(gj1,0) and Ex=) A(t,0).
i=1

i:X,'>aj

Under such choice of intervals we have a constant value of ¢; = Ex/k for any j. There is
no explicit form of the inverse hazard function of BXII-IR distribution, so we can estimate
intervals by iterative method.

7.2. Simulation study

7.2.1. Power of Y?

In order to evaluate the powerful of Y? statistic tests for BXII-IR model, we have considered
two alternative hypotheses Weibull-inverse Weibull (W-IW) and Kumaraswamy IW (K-
IW) distributions. The generated samples (N = 10, 000) are assumed to be censored at
25% and r =6 grouping intervals. As expected, the results given in Tables 8 show that our
models BXII-IR model can be used instead of the W-IW and K-IW models.

To test the null hypothesis Hy that a sample comes from a BXII-IR model, we calcu-
late Yﬁ the N.R.R statistic of 10,000 simulated samples with sizes n = 30, n = 150, n =
250, n = 500, respectively. For different levels of meaning (¢ = 0.02,0.05,0.01,0.1); we
calculate the mean of the number of no rejections of the null hypothesis when Y2 < x2(r),
then we present the results of the empirical values and the corresponding theoretical values
in Table 9.

According to this results, we find that the empirical signification levels of the Y?2 statistic
coincide with those corresponding to the theoretical levels of the chi-square distributions at
r degrees of freedom. Therefore, we can say that the proposed test can properly fit censored
data from the BXII-IR distribution.
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Table 9. Empirical levels and corresponding theoretical
levels (¢ = 0.02;0.05;0.01;0.1).

N =10,000 € =0.02 € =0.05 € =0.01 e =01

n=30 0.9831 0.9521 0.9929 0.9022
n=150 0.9815 0.9510 0.9918 0.9018
n=250 0.9803 0.9505 0.9910 0.9011
n =500 0.9798 0.9498 0.9903 0.9898

7.3. Application to real data

7.3.1. Aluminum reduction cells data

The data of Whitmore [43], who considered the times of failures for 20 aluminum reduc-
tion cells, and the numbers of failures in 1,000 days units are : 0.468, 0.725, 0.838, 0.853,
0.965-1.139, 1.142, 1.304, 1.317, 1.427, 1.554, 1.658, 1.764, 1.776, 1.990, 2.010, 2.224,
2.279%, 2.244%, 2.286*. (* censoring). Assuming that these data are distributed according
to the BXII-IR distribution, the maximum likelihood estimator 6 of the parameter vector
0 is:

0 = (@, B,a)" = (1.02587,1.2549,0.94127)"

We choose r =4 a number of classes. The element of the statistic test Y? are presented as:

@ 09432 12109 16681 22945
U; 4 3 5 8

e 28541 28541 28541 28541
C; —0.54876 —0.28891 0.31025 0.01872

S

Cy 021547 —0.23541  0.18759  0.21973
Cs;  0.00458 0.01224  —0.81207 0.06301

The fisher’s estimated matrix is given by:

—1.52403  3.25487  —0.45178
I=1] 325487 —0.98547 0.84512
—0.45178  0.84512 2.00548

Then, we can calculate the value of the statistic test Y2 = 9.1098. The critical value is
X&05(4) = 9.4877 > YZ, we conclude that the data of Aluminum reduction cells is in
concordance with the BXII-IR model.

7.3.2. Arm-A head and neck cancer data

The data considered below (was conducted by northern California oncology group) was
used by Efron [18] for logistic distribution. Mudholkar et al. [29] and Nikulin and Haghighi
[35] reanalysed the same data and give the acceptable fit (chi-square type test) to the
exponentiated Weibull and generalized Weibull distribution families, respectively.

The survival times in days for the patients (n =51) were as below (§ = 42). 7, 34,42, 63,
64, 74%, 83, 84,91, 108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165,
173,176, 185%, 218, 225, 241, 248, 273, 277, 279*, 297, 319%, 405, 417, 420, 440, 523%, 523,
583, 594, 1101, 1116*, 1146, 1226%*, 1349%, 1412%, 1417. * censoring We use the data after
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transforming the survival times in months (I1month = 30.438 days). The maximum like-
lihood estimator @ of the parameter vector 6 is, if we suppose that this data are distributed
according to the BXII-IR distribution:

0 = (& B,a)" = (2.1451,0.9845,3.1477)"

We choose r =7 as a number of classes. The elements of the test statistic Y2 was presented
as follows:

@ 2.742 4.547 9.512 21.008 37.0094  44.479 46.903
U; 7 7 20 10 2 3 2

€ 2.8105 2.8105 2.8105 2.8105 2.8105 2.8105  2.8105
(’I_l\j —0.2014 —0.3225 0.3580 0.0589 —0.2185 0.4001  0.0457
C’,‘_z\j —0.5119 0.4058 0.0984 0.2546 0.6521 —0.2142 0.6300
C;;  0.09447  0.1882  0.0921 0.1163  0.2481 0.0887  0.7102

The fisher’s estimated matrix is:

—1.458702 1.569821 —1.922301
I=|-1922301 3.988510 0.719854 |,
0.3987176  0.719854 —0.249836

after calculate, we find Y2 = 13.67849. The critical value X(§05(7) = 14.06714 > Y? =
13.67849, we can say that this data can be well modelised by the our BXII-IR model.

8. Conclusion

In this work, we are interested in the Burr XII inverse Rayleigh distribution (BXII-IR)
model which is a generalization of the IR distribution and whose mathematical form of
its probability density is manageable thus allowing to calculate its various characteristics.
This flexible model can describe different lifetimes from reliability, survival analysis, and
other areas. Since the results of any statistical analysis depend on the chosen model, then
we have constructed modified chi-square type fit tests to allow users to verify the adequacy
of their observations to these types of distributions. The tests used take into account the
unknown parameters of the models, right censorship generally present in the reliability
and survival analysis studies, and use all the information provided by the sample. We have
shown the applicability of this new model (BXII-IR) by a study of two real complete data
and two others for the case of censored data.
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Appendix 1

Application I (Tables 1-2)

# Application I = = = = = Breaking stress of carbon fibers
x = ¢(0.92,0.928,0.997,0.9971, 1.061, 1.117, 1.162, 1.183, 1.187, 1.192, 1.196, 1.213,
1.215,1.2199, 1.22, 1.224, 1.225, 1.228, 1.237, 1.24, 1.244, 1.259, 1.261, 1.263, 1.276,
1.31,1.321, 1.329, 1.331, 1.337, 1.351, 1.359, 1.388, 1.408, 1.449, 1.4497, 1.45, 1.459,
1.471,1.475, 1.477, 1.48, 1.489, 1.501, 1.507, 1.515, 1.53, 1.5304, 1.533, 1.544, 1.5443,
1.552, 1.556, 1.562, 1.566, 1.585, 1.586, 1.599, 1.602, 1.614, 1.616, 1.617, 1.628, 1.684,
1.711, 1.718, 1.733, 1.738, 1.743, 1.759, 1.777, 1.794, 1.799, 1.806, 1.814, 1.816, 1.828,
1.83,1.884,1.892, 1.944, 1.972, 1.984, 1.987, 2.02, 2.0304, 2.029, 2.035, 2.037, 2.043,
2.046, 2.059, 2.111, 2.165, 2.686, 2.778, 2.972, 3.504, 3.863, 5.306)
hist(x)

cdf BXIIIR < - function(par,x){

alpha = par([1]

beta = par[2]

a=par[3]

g =2%(a"2)*x"(-(2+1))*(exp(-((a/x)"(2))))

G =exp(-((a/x)"(2)))

g.BXII =alpha*beta*g*G” (alpha-1)*(1-G)" (-alpha-1)*(1+(G/(1-G))"alpha)” (-beta-1)
G.BXII = 1-(1+(G/(1-G))" (alpha))” (-beta)

return(G.BXII)

}

pdf_BXIIIR < - function(par,x){

alpha = par([1]

beta = par[2]

a=par[3]

g=b*(a"2)*x"(-(2+1))*(exp(-((a/x)"(2))))

G =exp(-((a/x)"(2)))

g.BXII =alpha*beta*g*G” (alpha-1)*(1-G)” (-alpha-1)*(1+(G/(1-G))"alpha)” (-beta-1)
G.BXII = 1-(1+(G/(1-G))" (alpha))” (-beta)

return(g.BXII)

}
goodness.fit(pdf = pdf_BXIIIR, cdf = cdf BXIIFr, starts = ¢(1,1,1), data=x,
method =”N”, domain = ¢(0,Inf), mle =NULL)

Application Il (Tables 3-4)

# Application I = = = = = Strength of glass fibers
x = ¢(1.014, 1.081, 1.082, 1.185, 1.223,
1.248,1.267,1.271, 1.272, 1.275, 1.276, 1.278, 1.286, 1.288, 1.292, 1.304, 1.306, 1.355,
1.361, 1.364, 1.379, 1.409, 1.426, 1.459, 1.46, 1.476, 1.481, 1.484, 1.501, 1.506, 1.524,
1.526, 1.535, 1.541, 1.568, 1.579, 1.581, 1.591, 1.593, 1.602, 1.666, 1.67, 1.684, 1.691,
1.704, 1.731, 1.735, 1.747, 1.748, 1.757, 1.800, 1.806, 1.867, 1.876, 1.878, 1.91, 1.916,
1.972,2.012, 2.456, 2.592, 3.197, 4.121)
hist(x)

cdf BXIIIR < - function(par,x){
alpha = par([1]

beta = par[2]

a=par|[3]
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g=2*(a"2)*x"(-(2+1))*(exp(-((a/x)"(2))))

G =exp(-((a/x)"(2)))

g.BXII =alpha*beta*g*G” (alpha-1)*(1-G)" (-alpha-1)*(1+(G/(1-G)) alpha)”(-beta-1)
G.BXII = 1-(14+(G/(1-G))" (alpha))” (-beta)

return(G.BXII)

}

pdf_BXIIIR < - function(par,x){

alpha = par([1]

beta = par[2]

a=par[3]

g=b*("2)*x"(-(2+1))*(exp(-((a/x)"(2))))

G = exp(-((a/x)"(2)))

g.BXII =alpha*beta*g*G” (alpha-1)*(1-G)" (-alpha-1)*(1+(G/(1-G))"alpha)” (-beta-1)
G.BXII = 1-(14+(G/(1-G))" (alpha))” (-beta)

return(g.BXII)

}

goodness.fit(pdf = pdf_BXIIIR, cdf = cdf BXIIFr, starts = ¢(1,1,1), data=x,

method =”N”, domain = ¢(0,Inf), mle = NULL)

Appendix 2 (Table 5)

#Dp represents parameters

#dd represents score fonctions

library(BB)

library(nleqslv)

g < - function(p){n = 30;

si < - exp(-((p[31/(1)))"2)

zi <- (1+(((si)/(1-51)))"2)

pi. < - (((s1)/(1-50))) (p[1])*log(((si)/(1-s1)))

mi < - -2*p[1]*(((si)/(1-s1)))" (p[1]-1)*((((sD)/ () ((P[3]/()))/((1-s)"2))

dd < - rep(NA, length(p))

dd[1] < -(n/p[1])-sum((p[3])/(t)" 2)-sum(log(1-si))-(p[2]4+1)*sum((pi/zi))

dd[2] < -(n/p[2])-sum(log(zi))

dd[3] < -(2*n)/p[3])-2*pl1]*sum((1/(p[31/(1))-2*(p 11+1)*sum((((p[31/0) (s1)/())/(1-s))
-(p[2]+1)*sum((mi)/(zi))

dd

}

p0 <-rep(0.7,0.5, 6, 5, 0.5) ##We can chage it##

BBsolve(par = p0, fn = g)

BBsolve(par = p0, fn = g)$par

nlegslv(x=p0,fn=g)

(Table 6)

library(BB)

library(nleqslv)

gg < - function(p){n =100;

mii = ((expl-(pl31/0) 2))/(1-expl-(p[31/6)°2]))

dd < - rep(NA, length(p))

dd[1] < -(r/p[1])-sum(p[3]/t)"2-sum(log(1-exp(-(p[3]/t) *2)))-sum((log(mii)*mii" (p[1]))/(1+
mii” (p[1])*mii))

-p[2]*sum(log(mii)*mii” (p[1])/(14+mii" (p[1])))

dd[2] < - (r/p[2])-sum(log(14+mii”* (p[1])))

dd[3] < - ((4*r)/p[3])-p[1]*sum((2*p[3])/(t" 2))-(p[1]+1)*sum((2*p[3])/t" 2*mii)

-sum((2*p[3]*p[11*mii’ (p[11))/(t" 2*(1-exp(-(p[3]/t /2))2*(1+mii" (p[1])))))
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-pl2]*sum((2*p[3]*p[1]*mii" (p[11))/(t"2(1-exp(-(p[3]/t) *2))"2(1+mii" (p[1]))))
dd

}

p0 < - matrix(runif(300), 100, 3)

BBsolve(par = p0, fn = gg, method =¢(2,3,1))
nlegslv(x=p0,fn=g)

(Table 7)

r < -round(1+2.303*log(n,10))

a<-1:(r-1); p<-lir;a0 < -+1e-50; ar <-10000; v < -1:r
for (j in 1:r) {v[j] <-0}

XX <-1irs

for (i in L:r) {XX[i] < -(v[i]-n*p[i])"2/(n*p[i])};

chi2 < -sum(XX)

WW < -t(informant)%*% solve(mat)%*%(informant)
Y2n < -chi2+(1/n)*WW

ca < -qchisq(0.95,r-1)

ca

if (Y2n < ca) {print(” HO est acceptée ”)} else print(” HO est rejetée”)
Y2n

Appendix 3
Calculation of the matrix W
The elements of the estimated matrix W defined by
u —1
W= Z CiA; Zjl(1=1,23. j=1,...k)
j=1

are obtained as follows

—~ 1 0 ~

Cj=- Z i g In (6, 0),

i.ti€l;

lnk(t,é) =In(a) + In(B) + 4In(a) — o (a/t,~)2 —(@+1ln {1 — exp [— (a/ti)z]}

N exp[—(a/t9?] |"
—3In(#) —In (1 " { 1 — exp [~ (a/t:)’] } ) |

The expressions of the elements of the matrix 67] are given as follows

1 1 m®(t;,0) In (m(t;,0))
Cyj = - é:l 8; |:& — (a/t,-)2 —In {1 — exp [— (a/ti)z]} - |+ mo(t,.0) ] >
(3% i
—~ 1 1
Gi=y Ty
l"t,‘EIj

4
—~ 1 = —2aa/t; — 2a/t? (@ + 1) m(t;, 0
Csi=— E 8i a o/ /al_f“ ) m(t;,0) ’
"iey | —a[—2a/8mt,0)]" T [1+m* (5, 60)] 7
where

exp [— (a/ti)?]
1—exp[— (a/t)?*]

m(t;, 0) =
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Calculation of the matrix |

The formulas of the elements of the Fisher’s information matrix I = Gir)axs is

~ 1 dlnA(t,0) dlnA(t,0)
= Z ! a0, 00y ’

i.t,’EI/'

In our case we have:

~ 1 /1 m (t;,0) In [m(t;,0)]'\
= tZI 3 (& = (a/t)* =In{1 —exp [~ (a/t)’]} = =7 e ) } ’
Ltielj L
~ 1 (1 /1 m® (£;,0) In [m(%;, 6)]
i =— ; 8 B <& — (a/t)* —In{1 —exp[— (a/t)*]} — L . 6) )}
1. ;Ej
1
5 (a/t)* —1n {1 — exp [— (a/t,-)z]}
1 _m®(t;,0) In [m(t;, )]
1/1\3:; 281 4 1+ma(tl’0) >
L€l " o 2a0/t; — 2a/t} (@ + 1) m(t;,0)

—a [—2a/2m(t:,0)]" " [1 4+ m*(6,0)]

—~ 1 1
i22:;ZSi<E>,

i.tiEIj

4
~ 1 511 = —2aa/t; — 2a/t? (o« + 1) m(t;, 0)
i.[,‘EI}' -« [—2{1/1'1 m(tho)] (1 +m (tl)o))

and

~ 1 4
== 4 {7 — 2aa/t; — 2a/t} (@ + 1) m(t;, 0)
n a

i‘tiGI]'
| 2
— o [—2a/m(t,0)]" [1+ma(ti>0)]_1} :

Notice that, the components of the information matrix Tare required for computation of the statistic
YZ.
n
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