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ABSTRACT
In thiswork,wedevelop and studyupper and lower one-sided EWMA
control charts for monitoring correlated counts with finite range.
Often in practice, data of that kind can be adequately described by
a first-order binomial or beta-binomial autoregressive model. Espe-
cially, when there is evidence that data demonstrate extra-binomial
variation, the latter model is preferable than the former. The pro-
posed charts can be used for detecting upward or downward shifts
in process mean level. Practical guidelines concerning the statistical
design of the proposed charts are given, while the effect of the extra-
binomial variation is investigated as well. Comparisons with existing
control charting procedures are also provided. Finally, an illustrative
real-data example is also given.
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1. Introduction

The statistical process monitoring (SPM) methods consist of the basic tools of statisti-
cal process control (SPC). Among them, the control chart is the most widely used SPM
tool. It can be used for the quick and accurate detection of abnormal (usually unwanted)
situations. Traditionally, control charts are used in industry to monitor production pro-
cesses. The basic aim is to detect a possible increase in the percentage of defective items,
which is related to process deterioration. In this case, the Shewhart p and np charts (Mont-
gomery [11]) arewidely used tomonitor the proportion and the number of nonconforming
units, respectively, within a sample of finite size. These monitoring schemes are devel-
oped under the assumption that the number of nonconforming units follows a binomial
distribution B(n,π), where n is the sample size and π is the success probability (i.e. the
probability for a unit to be nonconforming). Moreover, a common assumption when the
p and np charts are applied in practice is that the successive counts are independent and
identically distributed (iid) binomial random variables (rv).

It is well known that Shewhart control charts are not sensitive in the detection of small
andmedium shifts in themean of the process (e.g. average number of defective items). The
cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control
charts, as control charts with memory, detect such changes more quickly than Shewhart
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charts (Montgomery [11]). In addition to the p and np charts, Gan [5], Gan [6], Chang
and Gan [4], Wu et al. [28] and Yeh et al. [29] studied CUSUM and EWMA control charts
for monitoring binomial counts. All the above-mentioned control charts are based on the
assumption of iid binomial rv. Even though the iid assumption is a common assumption,
observations on a processwill be autocorrelatedwhen the sampling rate is very high, which,
in turn, commonly happens because of the technological progress in automated sampling
[13]. Clearly, in a variety of real-life problems, the iid assumption is violated.

In that case, the previously mentioned control charts cannot be used because they
demonstrate an increased false alarm rate (FAR). One solution to this problem is to select
first an appropriate model of integer-valued time series, and then to develop control charts
based on this model. In particular, if it is of interest to monitor the number X of defects in
a sample of n objects, then there is a finite number of possible values for X. Therefore, the
appropriate integer-valued time series model must be such that X takes a finite number of
possible values. Consequently, an appropriate model for correlated binomial counts needs
to be selected first.

The monitoring of correlated binomial counts has been considered by Weiß [20] who
developed and studied Shewhart and Moving Average (MA) control charts for monitor-
ing a process that is properly described by the first-order binomial autoregressive model
(binomial AR(1) or BAR(1)) of McKenzie [10] and Al-Osh and Alzaid [1].

However, in various real-life problems, the counts in the sample are from a population
that contains inhomogeneous units. This is, for example, the case of the monthly number
of districts in an area that are infected by a specific virus (Weiß and Pollett [26], Ristić
et al. [16]). Clearly, it is more realistic to assume that the probability of the occurrence
of the virus is not the same across the districts due to differences attributed to structure,
quality of life and economic status. Another case (see Weiß and Kim [25]) is the monthly
number of country members of the Eurozone which demonstrate price stability (in terms
of inflation rates). Again, it is more realistic to assume that all the country members do not
have the same probability to achieve a monthly inflation rate below a specific limit, due to
the structural differences of their economies.

In those cases, the fixed relation between the mean and variance of the binomial distri-
bution is violated. This relation is expressed in terms of the binomial index of dispersion
(see, e.g. [25]) which is defined for an rv X ∈ {0, 1, . . . , n} with mean μ and variance σ 2 as

Id = nσ 2

μ(n − μ)
∈ (0,∞),

and for the case of binomial distribution it is Id = 1, for every π ∈ (0, 1). For finite-range
count data rv satisfying Id > 1, there is an indication that this rv shows extra-binomial
variation (overdispersionwith regard to the binomial distribution). Therefore, when extra-
binomial variation is present, alternative models to the BAR(1) model must be considered
and the necessary control charts should be designed under the assumption of these
models.

A popular choice to that direction is the first-order beta-binomial autoregressive model
(beta-binomial AR(1) or BBAR(1)), proposed byWeiß and Kim [25]. The BBAR(1) model
is an adequate choice for practical applications in which heterogeneity is observed between
the units. Upper and lower one-sided Shewhart and CUSUMcontrol charts formonitoring
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a process that is properly described by a BBAR(1) process were proposed and studied by
Rakitzis et al. [15].

Motivated by the work of Weiß [21], in this work, we propose and study upper and
lower one-sided EWMA control charts formonitoring correlated counts that are described
by a BAR(1) and a BBAR(1) model. The proposed chart can be considered as an alterna-
tive monitoring scheme to the CUSUM chart. The aim of this study is to investigate its
statistical design as well as its performance in the detection of increasing and decreas-
ing shifts in process mean level. Note also that Weiß [21] considered only the case of
increases (upper one-sided charts). To the best of our knownledge, EWMA-type charts
for monitoring BAR(1) and BBAR(1) processes have not been considered so far in the
literature.

This paper is organized as follows. In Section 2, we present the essential properties of the
BAR(1) ( Section 2.1) and BBAR(1) ( Section 2.1)models. Next, in Section 3 we present the
upper and the lower one-sidedEWMAcharts for BAR(1) andBBAR(1) processes. Section 4
consists of the results of an extensive numerical study on the performance of the upper and
lower one-sided EWMA control charts for monitoring BAR(1) and BBAR(1) processes. In
Section 5, the practical application of the proposed schemes is illustrated via a real-data
example. Finally, conclusion is summarized in Section 6.

2. Models of counts with finite range

2.1. The BAR(1)model

The BAR(1) model, proposed by McKenzie [10], is a simple model for autocorrelated pro-
cesses of counts with a finite range. This model is based on the binomial thinning operator
‘◦’, see [18]. More specifically, if X is a non-negative discrete rv and α ∈ (0, 1) then, by
using the binomial thinning operator, it is possible to define the rv α ◦ X = ∑X

i=1 Yi, as
an alternative to the usual multiplication α · X. However, the result of α ◦ X will always be
integer. The rv Yi, i = 1, 2, . . ., are iid Bernoulli rv with success probability α, independent
also of the count data rvX. Therefore, the conditional distribution of α ◦ X, givenX = x, is
the binomial distribution B(x,α). We will refer to a process {Xt}t∈N, where N = {1, 2, . . .},
as a BAR(1) process if it is of the form

Xt = α ◦ Xt−1 + β ◦ (n − Xt−1), (1)

where β = π · (1 − ρ),α = β + ρ, π ∈ (0, 1), ρ ∈ (max {−π/(1 − π),−(1 − π)/π}, 1)
and n ∈ N is fixed. The condition on ρ guarantees that α,β ∈ (0, 1). Moreover, all
thinnings are performed independently of each other and the thinnings at time t are
independent of Xs, s< t, as well.

It is known (see, e.g. [20]) that the process {Xt}t∈N0 , where N0 = {0, 1, 2, . . .}, is a sta-
tionary Markov chain with marginal distribution B(n,π). Clearly, the marginal mean and
variance are, respectively, equal to

E(Xt) = nπ , V(Xt) = nπ(1 − π). (2)
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Moreover, the transition probabilities are

pk|l = P(Xt = k |Xt−1 = l )

=
min{k,l}∑

m=max{0,k+l−n}

(
l
m

)(
n − l
k − m

)
αm(1 − α)l−mβk−m(1 − β)n−l+m−k, (3)

for k, l ∈ {0, 1, 2, . . . , n}.
The conditional mean and variance, respectively, are equal to (see Weiß [24])

E(Xt |Xt−1 ) = ρ · Xt−1 + nβ , V(Xt |Xt−1 ) = ρ(1 − ρ)(1 − 2π) · Xt−1 + nβ(1 − β),
(4)

while the autocorrelation function is given by ρ(k) = ρk for k ≥ 0.
Parameters π and ρ of the BAR(1) model can be estimated via the method of Condi-

tionalMaximumLikelihood (CML), when time series data are available. Let us assume that
x1, . . . , xT , T ∈ N, is a segment from a stationary BAR(1) process. Then the conditional
likelihood function equals

L(π , ρ) =
(
n
x1

)
πx1(1 − π)n−x1

T∏
t=2

pxt |xt−1 , (5)

where the probabilities pxt−1|Xt are given in Equation (3). There is no closed-form formula
for the maximum likelihood (ML) estimators π̂ML, ρ̂ML of π , ρ and therefore, they are
obtained by maximizing numerically the log-likelihood l(π , ρ) = log L(π , ρ). The corre-
sponding standard errors can be computed from the observed Fisher’s Informationmatrix.
Further details on the estimation of the parameters of a BAR(1) process are given in Weiß
and Kim [24].

2.2. The BBAR(1)model

The Beta-binomial AR(1) model (BBAR(1)) is a simple and discrete model which can be
used for correlated counts with a finite range. This model is appropriate for capturing the
extra-binomial variation in the data as well as the heterogeneity among the n items. The
BBAR(1) model is based on the concept of beta-binomial thinning, a generalization of the
binomial thinning operation discussed previously.

Specifically, let αφ be an rv which follows the beta distribution Beta
(

(1−φ)·α
φ

,
(1−φ)·(1−α)

φ

)
, where α,φ ∈ (0, 1). The αφ is independent of X. We will say that αφ ◦

X is obtained from X by beta-binomial thinning if the operator “◦” is the binomial
thinning operator, performed independently of X and αφ . Hence, the distribution of the
(conditional) rv αφ ◦ X, given X = x, is the beta-binomial distribution BB(x;α,φ) with
probability mass function (pmf) given by

P
(
αφ ◦ X = w |X = x

) =
(
x
w

)B
(
w + 1−φ

φ
· α, x − w + 1−φ

φ
· (1 − α)

)
B

(
1−φ
φ

· α, 1−φ
φ

· (1 − α)
) ,
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where B(θ1, θ2) = ∫ 1
0 uθ1−1(1 − u)θ2−1du is the beta function. Next, we present the

BBAR(1) model, which has one additional model parameter φ ∈ (0, 1), compared to the
BAR(1) model. Further details and properties of the BBAR(1) model can be found inWeiß
and Kim [25].

Similar to the case of the BAR(1) process, let (π ,φ) ∈ (0, 1)2, ρ ∈ (max{−π/(1 −
π),−(1 − π)/π}, 1), n ∈ N fixed, β = π · (1 − ρ) and α = β + ρ. We will refer to a
process {Xt}t∈N as the BBAR(1) process when it is defined by the recursion

Xt = αφ ◦ Xt−1 + βφ ◦ (n − Xt−1), (6)

where all αφ , βφ and all thinnings are performed independently of each other. Also αφ , βφ

and the thinnings at time t are independent of Xs, s< t.
The process {Xt}t∈N0 is a homogeneous and ergodic Markov chain, with the one-step

transition probability given by (for k, l ∈ {0, 1, 2, . . . , n})

pk|l = P(Xt = k |Xt−1 = l )

=
min{k,l}∑

m=max{0,k+l−n}

(
l
m

)(
n − l
k − m

)B
(
m + (1−φ)α

φ
, l − m + (1−φ)(1−α)

φ

)
B

(
(1−φ)α

φ
, (1−φ)(1−α)

φ

)

×
B

(
k − m + (1−φ)β

φ
, n − l − k + m + (1−φ)(1−β)

φ

)
B

(
(1−φ)β

φ
, (1−φ)·(1−β)

φ

) . (7)

The corresponding conditional mean and variance are

E(Xt |Xt−1 ) = α · Xt−1 + β · (n − Xt−1) = ρ · Xt−1 + nβ , (8)

V(Xt |Xt−1 ) = φ · (α(1 − α)) + (β(1 − β)) · X2
t−1 + nβ(1 − β) · (1 + φ(n − 1))

+ Xt−1 · (ρ(1 − ρ)(1 − 2π)(1 − φ) − 2nβ(1 − β) · φ), (9)

while the stationary mean μ = E(Xt) and variance σ 2 = V(Xt) are equal to

E(Xt) = nπ , V(Xt) = nπ(1 − π) · (1 − φ)(1 + ρ) + nφ(1 − 2π(1 − π)(1 − ρ))

(1 − φ)(1 + ρ) + φ(1 − 2π(1 − π)(1 − ρ))︸ ︷︷ ︸
Iφ

(10)

It is not difficult to realize that BAR(1) and BBAR(1) models have the samemarginal mean
μwhile themarginal variance of BBAR(1)model is the usual binomial variance,multiplied
by a factor Iφ , which determines the deviation of the true stationary variance from the
binomial one. As φ → 0, the Iφ → 0.

It should be noted that there is not a closed-form expression for the stationary marginal
distribution of Xt for the BBAR(1) model. However, we can determine it numerically as
follows: First, if the initial count X0 follows the stationary marginal distribution, then the
whole process {Xt}t∈N becomes stationary. Therefore, the vector p = (p0, . . . , pn)ᵀ of the
marginal probabilities px = P(Xt = x), x ∈ {0, 1, . . . , n}, is the solution of the equation
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Pp = p, where P is the (n + 1) × (n + 1) transition probability matrix with conditional
probability pk|l (given in Equation (7)) at the (l, k) entry.

Similar to the case of BAR(1) process, when a segment x1, x2, . . . , xT , T ∈ N is available
from a BBAR(1) process, the parameters π , ρ and φ can be estimated via the method of
CML. The log-likelihood function, conditioned on x1, equals

	(π , ρ,φ) =
T∑
t=2

log pxt |xt−1 ,

where the transition probabilities are now given in (7). Again, theML estimators π̂ML, ρ̂ML
and φ̂ML of π , ρ and φ are obtained by maximizing numerically the 	(π , ρ,φ). Further
details on estimation methods for the parameters of a BBAR(1) model can be found in
Weiß and Kim [25].

3. Methodology

In this section, we develop one-sided EWMA control charts for monitoring BAR(1) and
BBAR(1) processes. The aim is to detect quickly and accurately a change in the mean level
μ ≡ μX = E(Xt) = nπ of the process. When the process is in-control (IC), we will denote
it asμ0,X while in the out-of-control state (OoC) it is denoted asμ1,X . In a similar manner,
the IC (OoC) parameter values of the BAR(1) model are denoted as π0 and ρ0 (π1 and ρ1)
while for the BBAR(1) model, the IC (OoC) parameter values are denoted as π0, ρ0 and φ0
(π1, ρ1 and φ1).

In several applications, practitioners are interested in detecting increases in the pro-
cess mean level, from an IC value μ0,X to an OoC value μ1,X > μ0,X . This is important
because with this displacement, if X is the number of non-conforming items produced
by a process, there is an increase on the average number of them. On the contrary, when
there is a decrease in the mean level of the process, i.e. when μ1,X < μ0,X , then less non-
conforming items are produced, which is an indication of process improvement. In this
work we consider both cases.

The exponentially weighted moving average (EWMA) control chart was introduced by
Roberts [17]. For t = 1, 2, . . ., the values of the following statistic are plotted on the chart

Qt = λXt + (1 − λ)Qt−1, Q0 = q0, (11)

where λ is a smoothing parameter such that 0 < λ ≤ 1. For small values of λ less weight is
given to the most recent observation Xt andmore weight is given to all the available obser-
vations since the beginning of processmonitoring. This is a control chart withmemory and
it is more capable of than a Shewhart control chart in detecting shifts of small or medium
magnitude in the mean level of the process. For λ = 1, the EWMA chart coincides with
the usual Shewhart chart.

Before proceeding with the presentation of EWMA charts for BAR(1) and BBAR(1)
processes, it should be noted that a special characteristic of these processes is that the values
of Xt , t ≥ 1, are integers. Clearly, by applying (11) directly to the data from a BAR(1) or
a BBAR(1) process, the Qt values do not remain integers. In this case, the performance
of the chart can only be calculated approximately, since (see, e.g. [19]) the range of the



JOURNAL OF APPLIED STATISTICS 559

possible values for Qt changes at each time t. Weiß [21] proposed and studied the upper
one-sided s-EWMA control charts, s ∈ {1, 2, 4, . . .} for monitoring a first-order integer-
valued Poisson autoregressive (PINAR(1)) process. Specifically, for s = 1, the EWMAchart
statistic is given by

Qt = round(λXt + (1 − λ)Qt−1), Q0 = q0, t = 1, 2, . . . , (12)

where the Qt values remain integers and q0 ∈ N0. Clearly, this is achieved by applying on
the result of (11) the function of rounding the number x to the nearest integer, i.e. the
round(x) = z, if-f x ∈ [z − 0.5, z + 0.5]. We will refer to this chart as the 1-EWMA, which
gives an OoC signal when for the first timeQt ≥ UCL1. TheUCL1 is an appropriate upper
control limit. In a similar manner, for the lower one-sided 1-EWMA, with a lower control
limit LCL1, an OoC signal is given when Qt ≤ LCL1. It is also noteworthy that in the case
of serial independence of binomial rv, the 1-EWMA chart coincides with the modified
EWMA chart in Gan [6].

In order to evaluate the performance of 1-EWMA chart, it is necessary to determine
its run length distribution, which is defined as the distribution of the rv L = min{j : Qj ≥
UCL1}. The rv L is defined as the number of points plotted on the chart until it gives for the
first time an OoC signal. Since the possible values of the plotted statistic of the 1-EWMA
chart are integers, by using the Markov chain method, it is possible to compute exactly
the entire distribution of rv L. Note also that Gan [5] used the modified EWMA statistic
in (12) in order to preserve the integer character of Xt values (they are integers and the Qt
values remain integers, as well) and therefore, compute exactly the run length properties
of the proposed chart. In addition, in an attempt to extend Gan’s work, we investigate the
performance of the modified EWMA statistic in the case of serially dependent binomial
observations. The Markov chain method is very well documented in the related literature
(see, e.g. Brook and Evans [2], Yontay et al. [30], Knoth [7], Weiß [21], Weiß [22] and
references therein) andwedonot provide further details about it.Here, we used themethod
as described in Weiß [21].

The expected value E(L), also known as average run length (ARL), is the most com-
mon performance measure of a control chart. The ARL expresses the average number of
points to be plotted on the chart until it gives for the first time an OoC signal. Following
Rakitzis et al. [15] (see also Weiß [23]), in this work, the IC performance of the proposed
schemes is evaluated in terms of the zero-state ARL (zsARL) which is the expected num-
ber of points plotted on the chart until the first (false) alarm is given. For an OoC process,
the performance of the proposed schemes is evaluated in terms of the steady-state ARL
(ssARL) which gives an approximation of the true mean delay for detection after a change
in the process, from the IC state to the OoC state. We assume that a change in process
happens at an (unknown) change-point τ ∈ {1, 2, . . .}. Specifically, for t < τ , the process
is in the IC state while for t ≥ τ , the process has shifted to the OoC state. Therefore, the
ssARL expresses the expected number of points to be plotted on the chart until it gives for
the first time an indication of an OoC process, given that the process has been operated for
“sufficient time” in control. According to Weiß and Testik [27], the zsARL and the ssARL
are substantially different in the case of monitoring processes with correlated counts.

The statistical design of the 1-EWMA(either for BAR(1) or BBAR(1) processes) requires
the determination of the values for the design parameters, λ and UCL1. These values
are generally different for different processes. We follow the steps below to design an
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upper one-sided 1-EWMA chart with the desired ARL0 (see also [21]); the case of the
lower one-sided 1-EWMA chart is treated in a similar manner (after some necessary but
straightforward modifications) and, due to space economy, the details are omitted.

Step 1 We choose the IC values of the design parameters n, π0, ρ0 (for BAR(1) process)
or n, π0, ρ0, φ0 (for BBAR(1) process) and the desired in-control ARL0 value for
the zsARL.

Step 2 We choose an initial value for the UCL1 such that the IC zsARL of the cor-
responding upper one-sided Shewhart chart is lower than the desired value
ARL0.

Step 3 We decrease the value of λ ∈ (0, 1] to adjust the IC zsARL until we get a value as
close as possible to the desired value ARL0. So it turns out the pair of the values
(λ,UCL1).

The design procedure continues, by reducing further the initial value ofUCL1 and then
searching again for the value of λ until the IC zsARL value attains a value as close as pos-
sible to the desired value ARL0. The UCL1 decreases so that it is always UCL1 ≥ μ0,X .
Clearly, there is at least one pair of (λ,UCL1) values that satisfies the desired IC perfor-
mance. Finally, among all the possible designs (λ,UCL1), it turns out the optimal pair of
the values (λ,UCL1) for the 1-EWMA chart, which satisfies the following two conditions:
(i) itsARL performance is as close as possible to the desiredARL0 value and (ii) it attains the
minimum possible OoC ssARL value for a pre-defined OoC value μ1,X > μ0,X . It should
be mentioned that since it is not possible, because of the discrete nature of BAR(1) and
BBAR(1) processes, to achieve exactly the desired IC performance, we applied the follow-
ing criterion (see Castagliola et al. [3]) to consider a design (λ,UCL1) as such that gives IC
zsARL as close as possible to the desired ARL0 value:

|zsARL − ARL0|
ARL0

≤ 0.05

In a similar manner, the statistical design of the lower one-sided 1-EWMA chart requires
the determination of the optimal pair (λ, LCL1) such that the achieved IC zsARL is as close
as possible to the desired ARL0 value and the OoC ssARL value is the minimum possible
for an OoC value μ1,X < μ0,X .

It is worth mentioning that we may achieve a better approximation of the desired value
ARL0 by varying appropriately the starting value q0. However, in this work, we assume that
q0 = 0 so as not to give the Fast Initial Response feature [8] in the EWMA charts.

Apart from the 1-EWMA chart, Weiß [21] proposed also the s-EWMA chart, s ∈ N,
where the values of the statistic

Q(s)
t = s − round(λXt + (1 − λ)Q(s)

t−1), Q(s)
0 = q(s)

0 , (13)

are plotted on the chart, for t = 1, 2, . . . and q(s)
0 ∈ N. Likewise the case of 1-EWMA chart,

we assume q(s)
0 = 0. The s−round function is defined as s − round(x) = z if-f x ∈ [z −

0.5 · s, z + 0.5 · s] and can be viewed as an extension of the usual rounding function, since
itmaps x to the nearest fractionwith denominator s. In this way, the exact calculation of the
run length distribution of s-EWMA chart remains feasible via the Markov chain method.
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Furthermore, the s − round(. . .) is a fractional operation rounding; by using larger s values,
it is possible to correct the problem of oversmoothing that arises on the 1-EWMA chart,
due to the rounding of the Qt values, especially for low process mean level and small λ

values. This adds more flexibility on the statistical design of the chart, especially when we
are interested in determining the values for its design parameters, in order to achieve the
desired IC performance.

Successive values of the statistic Q(s)
t , t = 1, 2, . . . are plotted on a chart with an upper

control limit UCLs = u′/s, that is, the process is considered as being IC unless an OoC
signal is triggered, i.e. whenQ(s)

t ≥ UCLs. Note also that in the case of 1-EWMA chart, the
UCL1 = u′/1 = u′. The statistical design of the s-EWMA chart requires the determination
of three design parameters (s, λ,UCLs). We follow the steps below in order to design an
upper one-sided s-EWMA chart with the desired IC performance (for more details, see
also Weiß [21]).

Step 1 We choose the IC values of the process parameters n, π0, ρ0 (for BAR(1) process)
orn,π0,ρ0,φ0 for BBAR(1) process) and the desired ICARL0 value. Furthermore,
we choose the value of s ∈ {2, 3, 4 . . .}.

Step 2 For the given s value, we start from the optimal pair of values (λ1,UCL1), for the
1-EWMAchart, say (λ∗,UCL∗

1), andmodify u′ such that the pair (λ∗, u′/s) results
in an upper one-sided s-EWMA chart with IC zsARL value lower than the desired
ARL0 value. The upper control limit is now UCLs.

Step 3 For the value UCLs obtained in Step 2, we search for a new λ value, say λs with
λs �= λ∗, such that the s-EWMA chart with (λs,UCLs) has an IC zsARL value
as close as possible to the desired ARL0 value. Hence, it turns out the triple
(s, λs,UCLs).

The design procedure continues, by applying the above steps for the remaining pairs
of values (λ,UCL1) that emerged during the study of the 1-EWMA control chart. There-
fore, for the statistical design of the s-EWMA chart, the optimal triple (s, λs,UCLs) that
emerged, for different values of the s, are such that the IC zsARL is as close as possible to
the desired ARL0 value and it attains the minimum possible OoC ssARL value for a pre-
defined OoC value μ1,X > μ0,X . Again, we applied the same criterion as in the case of the
statistical design of the 1-EWMA in order to pick up the designs (s, λs,UCLs) that have an
IC performance as close as possible to the desired ARL0 value. The statistical design for the
lower one-sided s-EWMA chart is similar to the upper one-sided case, after some direct
but necessary modifications. The details are left to the readers.

Remark 3.1: Generally speaking, parameter s is actually another chart parameter, except
for theλ and the control limit. According toWeiß [21], in order to avoid the oversmoothing
of the EWMA values, which affects severely the ability of the chart in the detection of an
OoC situation, s values that are larger than 1 are recommended. Weiß [21] considered
s ∈ {2, 4} as a good trade-off between oversmoothing and time-consuming computations
(for large s and small λ values). Therefore, in this work, we determine the optimal design
(values λs and UCLs or LCLs) for s = 2 and for s = 4 and then, between them, we picked
up the one that optimizes the detection ability of the chart, at the given shift in μ0,X .
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4. Numerical study

In this section, we present the results of an extensive numerical study on the performance
of s-EWMA charts in the monitoring of BAR(1) and BBAR(1) processes. For the IC design
parameters, we assume that μ0 ∈ {5, 10}, ρ0 ∈ {0.25, 0.50, 0.75} and φ0 ∈ {0, 0.025, 0.05}.
With φ0 = 0, we denote the case of BAR(1) process. We also consider two different sample
sizes n ∈ {15, 30}. In addition, when the process is OoC, we assume that ρ1 = ρ0 and φ1 =
φ0 and the presence of assignable causes of variation affects only the parameter π0, which
changes fromπ0 toπ1 = δ · π0, δ > 1, with δ ∈ {1.2, 1.4} (upward shifts) and δ ∈ {0.8, 0.6}
(downward shifts), i.e. we want to detect 20% and 40% changes in the IC mean level of the
process. These are the shifts of interest and we want to obtain the optimal charts for their
detection. The desired ARL0 value is 370.4.

Tables 1 and 2 consist of the optimal statistical design of the upper one-sided (Table 1)
and the lower one-sided (Table 2) s-EWMA chart. The optimal values of the design param-
eters (s, λs,UCLs) for the s-EWMAchart are given in the respective columns. Note also that
UCLs is given in the form u′/s while LCLs = l′/s.

The IC parameter values of the process are given in the columns entitled ‘φ0’, ‘μ0’, ‘n’
and ‘ρ0’ while the IC performance for each chart is given in the column ‘zsARL’ and the
OoCperformance (ssARL values) forμ1,X = δμ0,X (δ ∈ {1.2, 1.4} or δ ∈ {0.8, 0.6}) is given
in the column ‘ssARL’.

Tables 1 and 2 reveal that for s>1 (i.e. for s = 2 or s = 4) the s-EWMA chart has (in the
most of the considered IC scenarios) an IC zsARL value close to the desiredARL0 value. As
already said, because of the discrete nature of the considered models, it was impossible to
achieve exactly the desired ARL0 value. However, the difference in the obtained IC zsARL
values, in almost all cases in Tables 1 and 2 is at most 5%. We observe that in the most
of the cases, optimal values for the set of chart’s parameters are for larger than 1 values
of the rounding parameter s (e.g. s = 2 or s = 4). Also, these values give an IC zsARL
closer to the desired ARL0 value. This is an indication of an increased flexibility as well as
of an optimized detection ability for the s-EWMA chart. From a practical point of view
and regarding the determination of the chart’s parameters λs and UCLs, for a given s, as
the value of UCLs decreases, the value of λs decreases, which is usually desirable, so that
the EWMA charts to be more efficient than Shewhart charts. In a similar manner, for the
lower one-sided charts, as LCLs increases, λs decreases, in order to achieve the desired IC
performance.

Furthermore, when extra-binomial variation is present on the process, larger values for
s and smaller values for λs are needed, in order to achieve the desired IC performance. Oth-
erwise, if the extra-binomial variation is not taken into account and proceedwith the values
(λs,UCLs) (or (λs, LCLs)) obtained under the BAR(1) model (i.e. as if no extra-binomial
is present), the resulting chart will demonstrate an increased FAR. This is, for exam-
ple, the case of upper one-sided s-EWMA charts for (φ0,μ0, n, ρ0) = (0, 10, 15, 0.5) and
(0.05, 10, 15, 0.5), where theUCLs has to be increased from 54/4 (under the BAR(1)model)
to 57/4 (under the BBAR(1) model) in order to preserve the IC performance (as close as
possible) at the desired levels. Note also that a proper adjustment of theλs is necessarywhile
the detection ability of the chart is clearly affected by the presence of extra-binomial varia-
tion; under the BBAR(1) model, the ssARL at δ = 1.2 equals 30.64 while under the BAR(1)
equals 19.05. Both models have the same marginal mean but BBAR(1) is overdispersed.
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Table 1. Design table for the upper one-sided s-EWMA charts.

φ0 μ0 n ρ0 δ s λs u′ UCLs zsARL ssARL φ0 μ0 n ρ0 δ s λs u′ UCLs zsARL ssARL φ0 μ0 n ρ0 δ s λs u′ UCLs zsARL ssARL

0 5 15 0.25 1.2 4 0.15 27 27/4 348.08 30.06 0.025 5 15 0.25 1.2 4 0.61 37 37/4 361.06 65.50 0.05 5 15 0.25 1.2 4 0.53 37 37/4 398.44 71.91
1.4 4 0.15 27 27/4 348.08 10.44 1.4 4 0.61 37 37/4 361.06 19.40 1.4 4 0.53 37 37/4 398.44 21.34

0.50 1.2 4 0.11 27 27/4 345.24 41.55 0.50 1.2 1 0.60 10 10 359.41 79.24 0.50 1.2 2 0.70 21 21/2 366.92 95.37
1.4 4 0.11 27 27/4 345.24 15.62 1.4 1 0.60 10 10 359.41 26.65 1.4 2 0.70 21 21/2 366.92 34.03

0.75 1.2 1 0.25 9 9 371.31 88.76 0.75 1.2 4 0.41 37 37/4 385.18 103.64 0.75 1.2 4 0.62 41 41/4 371.70 119.21
1.4 1 0.25 9 9 371.31 34.03 1.4 4 0.41 37 37/4 385.18 41.16 1.4 4 0.62 41 41/4 371.70 50.74

30 0.25 1.2 4 0.33 33 33/4 352.94 48.55 30 0.25 1.2 4 0.25 33 33/4 365.14 60.07 30 0.25 1.2 4 0.54 45 45/4 372.73 108.10
1.4 4 0.33 33 33/4 352.94 15.09 1.4 4 0.25 33 33/4 365.14 19.73 1.4 4 0.54 45 45/4 372.73 41.04

0.50 1.2 1 0.12 7 7 379.56 67.34 0.50 1.2 2 0.31 19 19/2 372.13 88.46 0.50 1.2 4 0.62 49 49/4 379.84 132.89
1.4 1 0.12 7 7 379.56 25.93 1.4 2 0.31 19 19/2 372.13 32.94 1.4 4 0.62 49 49/4 379.84 57.28

0.75 1.2 2 0.08 14 14/2 374.46 81.85 0.75 1.2 4 0.59 45 45/4 371.75 130.84 0.75 1.2 4 0.58 49 49/4 369.66 150.91
1.4 2 0.08 14 14/2 374.46 35.04 1.4 4 0.59 45 45/4 371.75 59.26 1.4 4 0.58 49 49/4 369.66 73.96

10 15 0.25 1.2 4 0.56 53 53/4 375.92 13.70 10 15 0.25 1.2 4 0.80 57 57/4 366.07 25.12 10 15 0.25 1.2 4 0.13 47 47/4 373.92 11.97
1.4 4 0.56 53 53/4 375.92 3.03 1.4 4 0.80 57 57/4 366.07 4.13 1.4 2 0.15 24 24/2 377.53 4.62

0.50 1.2 4 0.51 54 54/4 352.91 19.05 0.50 1.2 4 0.65 56 56/4 365.26 25.26 0.50 1.2 4 0.67 57 57/4 349.83 30.64
1.4 4 0.51 54 54/4 352.91 4.63 1.4 4 0.65 56 56/4 365.26 5.43 1.4 4 0.67 57 57/4 349.83 6.47

0.75 1.2 2 0.37 27 27/2 390.62 32.77 0.75 1.2 4 0.41 55 55/4 372.72 37.02 0.75 1.2 4 0.59 57 57/4 373.97 47.69
1.4 2 0.37 27 27/2 390.62 9.16 1.4 4 0.41 55 55/4 372.72 10.00 1.4 4 0.59 57 57/4 373.97 12.85

30 0.25 1.2 2 0.26 27 27/2 353.54 20.01 30 0.25 1.2 4 0.58 65 65/4 370.73 41.85 30 0.25 1.2 4 0.74 73 73/4 360.95 61.52
1.4 2 0.26 27 27/2 353.54 6.34 1.4 4 0.58 65 65/4 370.73 10.72 1.4 4 0.74 73 73/4 360.95 16.94

0.50 1.2 4 0.48 61 61/4 364.46 38.90 0.50 1.2 4 0.53 66 66/4 365.93 53.27 0.50 1.2 4 0.16 56 56/4 364.22 42.69
1.4 4 0.48 61 61/4 364.46 10.99 1.4 4 0.53 66 66/4 365.93 15.56 1.4 4 0.16 56 56/4 364.22 14.70

0.75 1.2 4 0.05 47 47/4 349.36 39.03 0.75 1.2 4 0.60 69 69/4 373.90 78.41 0.75 1.2 4 0.60 73 73/4 374.48 93.23
1.4 4 0.05 47 47/4 349.36 17.14 1.4 4 0.60 69 69/4 373.90 27.44 1.4 4 0.60 73 73/4 374.48 34.50
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Table 2. Design table for the lower one-sided s-EWMA charts.

ssARL

φ0 μ0 n ρ0 s λs l′ LCLs zsARL δ = 0.8 δ = 0.6

0 5 15 0.25 4 0.52 7 7/4 366.63 60.64 14.24
0.50 2 0.43 3 3/2 388.09 99.30 24.79
0.75 4 0.25 6 6/4 361.05 256.22 60.87

30 0.25 4 0.53 6 6/4 384.16 74.98 17.65
0.50 4 0.74 3 3/4 379.04 106.21 34.61
0.75 2 0.78 1 1/2 372.40 131.39 25.84

10 15 0.25 4 0.53 23 23/4 367.67 32.08 5.62
0.50 4 0.65 22 22/4 352.29 26.22 6.64
0.75 4 0.67 21 21/4 372.61 41.99 12.39

30 0.25 1 0.93 3 3 359.11 46.42 8.84
0.50 4 0.61 18 18/4 370.63 47.72 11.24
0.75 4 0.38 17 17/4 359.87 129.67 28.53

0.025 5 15 0.25 4 0.86 2 2/4 358.43 83.96 24.73
0.50 1 0.85 0 0 352.30 94.62 31.30
0.75 4 0.36 5 5/4 386.76 122.62 41.93

30 0.25 4 0.74 2 2/4 373.14 90.76 26.53
0.50 4 0.37 5 5/4 384.39 111.56 31.94
0.75 4 0.52 2 2/4 359.15 130.90 52.60

10 15 0.25 4 0.63 22 22/4 369.72 23.15 5.16
0.50 1 0.90 4 4 353.08 32.00 8.16
0.75 1 0.50 5 5 372.04 70.80 17.88

30 0.25 2 0.74 7 7/2 363.02 47.85 10.64
0.50 4 0.69 14 14/4 357.92 57.50 14.83
0.75 2 0.54 7 7/2 363.54 80.21 24.99

0.050 5 15 0.25 2 0.76 1 1/2 355.15 79.91 23.25
0.50 4 0.74 2 2/4 370.84 96.32 31.25
0.75 4 0.61 3 3/4 355.01 121.13 48.20

30 0.25 4 0.48 4 4/4 363.11 96.54 27.21
0.50 4 0.51 2 2/4 364.58 109.52 36.61
0.75 4 0.38 2 2/4 362.52 138.33 56.57

10 15 0.25 4 0.80 18 18/4 370.33 28.94 6.31
0.50 4 0.75 18 18/4 368.05 36.39 9.17
0.75 4 0.66 18 18/4 368.82 53.45 16.16

30 0.25 1 0.64 3 3 378.90 40.22 12.35
0.50 4 0.53 14 14/4 365.52 66.35 17.40
0.75 2 0.75 5 5/2 366.02 91.16 30.87

For the lower one-sided charts, this can be noticed for (φ0,μ0, n, ρ0) = (0, 10, 30, 0.50)
and (0.025, 10, 30, 0.50), where the LCLs has to be decreased from 18/4 (under the BAR(1)
model) to 14/4 (under the BBAR(1) model) in order to preserve the IC performance (as
close as possible) at the desired levels.

Tables 3 and 4 give the results of a comparative study between the one-sided
s-EWMA, CUSUM and Shewhart charts, for both the BAR(1) and BBAR(1) pro-
cesses. For each shift δ ∈ {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 2.0} (upward shifts) and δ ∈
{1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.2} (downward shifts), the ARL profiles are given for the
respective charts. Also, the IC parameter values of the process are given in the columns
‘φ0’, ‘μ0,X ’, ‘n’ and ‘ρ0’. It is worth mentioning that the shifts occur only in μ0,X and it is
μ1,X = δ · μ0,X = n · (δ · π), i.e. only π is affected by the presence of assignable causes.
Once again, because of the discrete nature of the BAR(1) and BBAR(1) models, it was
impossible to have exactly the same zsARL value for all the schemes under comparison.
However, since the IC zsARL value between the different schemes varies, the interpretation
should be made with caution.
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Table 3. ARL comparison, upper one-sided Shewhart, s-EWMA and CUSUM charts.

φ0 μ0 n ρ0 δ Shewhart 1-EWMA 2-EWMA 4-EWMA CUSUM

0 5 30 0.25 1.0 502.72 503.62 492.27 489.95 490.07
1.1 223.27 204.62 135.39 134.48 159.42
1.2 110.34 95.09 55.90 51.95 63.85
1.3 59.68 49.60 30.95 25.86 30.89
1.4 34.85 28.57 20.66 15.51 17.61
1.5 21.74 17.91 15.46 10.59 11.45
1.7 9.92 8.61 10.42 6.29 6.34
2.0 4.13 4.09 7.20 3.93 3.78

UCL 12 11 15/2 31/4
λ 1 0.78 0.18 0.24
h 8
k 7
φ0 μ0 n ρ0 δ Shewhart 1-EWMA 2-EWMA 4-EWMA CUSUM
0.025 5 15 0.75 1.0 393.26 320.84 379.95 385.18 390.13

1.1 208.46 164.18 190.31 185.98 154.32
1.2 119.57 95.28 107.32 103.64 77.85
1.3 73.69 58.44 65.46 61.43 46.76
1.4 48.39 37.75 41.30 41.16 31.99
1.5 33.60 26.68 28.96 28.20 23.99
1.7 18.60 15.41 16.46 16.36 16.01
2.0 9.88 8.69 9.02 9.15 10.98

UCL 11 10 19/2 37/4
λ 1 0.5 0.46 0.41
h 30
k 6
φ0 μ0 n ρ0 δ Shewhart 1-EWMA 2-EWMA 4-EWMA CUSUM
0.05 5 30 0.50 1.0 385.96 369.19 348.06 378.34 385.29

1.1 247.82 217.53 202.43 181.05 150.51
1.2 163.98 135.21 124.80 99.72 74.55
1.3 111.71 87.98 80.83 60.34 44.10
1.4 78.25 59.71 54.75 39.53 29.82
1.5 56.30 42.11 38.64 27.71 22.13
1.7 31.42 23.22 21.44 15.75 14.48
2.0 15.49 11.75 11.01 9.02 9.63

UCL 15 13 25/2 37/4
λ 1 0.69 0.65 0.25
h 34
k 6
φ0 μ0 n ρ0 δ Shewhart 1-EWMA 2-EWMA 4-EWMA CUSUM
0.05 10 30 0.75 1.0 345.27 367.46 351.50 360.94 362.10

1.1 175.59 181.17 167.58 157.92 134.61
1.2 96.96 96.88 89.34 79.83 65.11
1.3 57.95 55.53 52.45 46.79 38.27
1.4 37.23 33.71 33.51 30.08 25.96
1.5 25.51 21.41 23.02 20.78 19.44
1.7 14.04 9.49 12.90 12.20 13.05
2.0 7.60 3.26 7.24 7.39 9.07

UCL 20 20 37/2 66/4
λ 1 0.93 0.63 0.30
h 44
k 12

For the one-sided CUSUM chart (see Rakitzis et al. [15]), the plotted statistic for the
upper one-sided chart is given by

C+
0 = 0

C+
t = max(0,C+

t−1 + Xt − k+), t ≥ 1.
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Table 4. ARL comparison, lower one-sided Shewhart, s-EWMA and CUSUM charts.

φ0 μ0 n ρ0 δ Shewhart 1-EWMA 2-EWMA 4-EWMA CUSUM

0 10 30 0.5 1 332.96 352.21 353.77 370.63 339.04
0.9 124.73 120.79 127.00 131.67 78.11
0.8 53.59 45.59 46.46 47.72 27.16
0.7 24.86 20.65 20.72 21.13 13.45
0.6 14.27 11.09 11.06 11.24 8.50
0.5 8.00 6.88 6.90 6.97 6.22
0.4 5.32 4.80 4.83 4.88 4.97
0.2 2.97 2.97 3.04 3.06 3.67

LCL 3 4 9/2 18/4
λ 1 0.65 0.6 0.61
h 14
k 8
φ0 μ0 n ρ0 δ Shewhart 1-EWMA 2-EWMA 4-EWMA CUSUM
0.025 10 30 0.25 1 378.38 392.10 363.02 373.38 388.22

0.9 150.30 132.53 126.76 127.26 56.47
0.8 64.34 50.04 47.85 48.41 20.13
0.7 29.85 21.84 20.95 21.26 11.41
0.6 15.09 11.02 10.64 10.79 7.93
0.5 8.36 6.37 6.21 6.27 6.12
0.4 5.07 4.15 4.08 4.10 5.02
0.2 2.40 2.32 2.30 2.30 3.76

LCL 2 3 7/2 14/4
λ 1 0.78 0.74 0.76
h 24
k 9
φ0 μ0 n ρ0 δ Shewhart 1-EWMA 2-EWMA 4-EWMA CUSUM
0.05 10 15 0.25 1 507.28 456.25 500.75 502.23 460.43

0.9 143.14 107.49 113.72 115.49 43.23
0.8 48.68 33.32 30.83 33.43 13.98
0.7 19.79 13.48 12.17 13.25 7.88
0.6 9.51 6.48 6.38 6.77 5.53
0.5 5.32 4.16 4.08 4.18 4.31
0.4 3.38 2.89 2.98 2.95 3.58
0.2 1.82 1.80 2.01 1.90 2.74

LCL 3 4 10/2 19/4
λ 1 0.79 0.59 0.69
h 15
k 9

The chart gives an OoC signal when for the first time C+
t > h+. Parameter k+ is known as

reference value and control limit h+ is the decision interval. Rakitzis et al. [15] suggested
for k+ = �μX,0 + 1 or �μX,0 + 2 in order to assure that C+

t values are integers and the
performance of the CUSUM chart can be evaluated exactly by means of the Markov chain
method. Also, these values for k+ guarantee an optimized detection ability for the chart.
In a similar manner, the plotted statistic for the lower one-sided CUSUM chart is

C−
0 = 0

C−
t = max(0,C−

t−1 − Xt + k−), t ≥ 1

and the chart gives an OoC signal when for the first time C−
t > h−. The design parameters

k−, h− are defined analogously; the suggested k− values are �μX,0� − 1 or �μX,0� − 2.
From the ARL profiles of the charts in Tables 3 and 4, it is clear that EWMA-type charts

are superior to the Shewhart-type charts. The superiority is obvious in cases where the IC
zsARL of the Shewhart-type chart is lower than the respective value for the s-EWMA chart
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but the ssARL of the latter, at a given shift, is lower than the one corresponds to the Shewhart
chart. This means that the Shewhart chart signals, on average, more false alarms (which is
not desirable) than the s-EWMA chart whereas the s-EWMA chart detects more quickly
the given shift. Also, this can be verified by comparing directly the respective entries in
Tables 1–2 with Tables 1 and 3 in Rakitzis et al. [15]. Also, either in the upper or the lower
one-sided case, the performance of the respective EWMA control charts becomes better
as the rounding parameter s increases. The comparison of the ARL profiles between the
s-EWMA charts and the CUSUM charts for BAR(1) and BBAR(1) reveals that CUSUM
charts are very powerful charts in the detection of small and moderate shifts in the mean
level of the process. Only for specific IC scenarios, the performance of the proposed s-
EWMA charts is better or at least comparable with the performance of the corresponding
one-sided CUSUM charts; this is mostly happens for moderate to large shifts in μ0,X , i.e.
for δ > 1.5 (upward shifts) or for δ ≤ 0.5 (downward shifts).

5. Application

In this section, we present an application of the proposed s-EWMA charts to real data for
monitoring BAR(1) and BBAR(1) processes. These data refer to the regional spread of an
infection inGermanywithin a year. Specifically, we have theweekly numberXt of regions in
Germany, with a new case of hantavirus infection in 2011, for T = 52 weeks. The number
of regions is n = 38. More details on this dataset can be found inWeiß and Pollett [26] and
Ristić et al. [16].

The time series plot in Figure 1 shows that the values in the sample are between 0
and 11. The sample mean is 4.173 and the sample variance is 7.793. Furthermore, the
binomial index of dispersion is Id = 2.098 > 1, which indicates extra-binomial variation.
In addition, it is reasonable to assume that the probability of the occurrence of a new
infection may not be the same in all regions as they usually differ (e.g. according to var-
ious socio-economic criteria). The empirical first-order autocorrelation function equals
ρ(1) = 0.634. Here, for the sake of illustration, we follow the work ofWeiß and Pollett [26]
who considered as an appropriate model for this dataset a first-order autoregressivemodel.
However, it should be mentioned that Ristić et al. [16] found that a model of order 3 (i.e.
a BAR(3)) has a better fit on these data, than the BAR(1). Also, Ristić et al. [16] did not
consider a higher order BBAR model. It goes without saying that it is of interest to analyse
further this dataset by fitting also a higher-order Binomial or Beta-binomial models and
then propose suitable methods for process monitoring. However, since the intention is to
show how the proposed control charts can be applied in practice, wewill not considermore
complex models and they are left for future research.

Next, we fit both the BAR(1) and BBAR(1) models to the data and we estimate (via the
maximum likelihoodmethod) the unknown parameters for both models. Also, in order to
choose between the two models the one that fits better to the data, the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) are used, which are given
by

AIC = −2lmax + κ · 2, BIC = −2lmax + κ · log(T).

The lmax is the maximum value for the log-likelihood function, κ is the number of model
parameters (κ = 2 for the BAR(1) model and κ = 3 for the BBAR(1) model) and T = 52.
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Figure 1. Weekly number of districts with new cases of Hantavirus.

Table 5. Fitting the BAR(1) and BBAR(1) models in the Hantavirus data.

Model π̂ ρ̂ φ̂ AIC BIC

BAR(1) 0.111 (0.013) 0.529 (0.070) 227.029 230.931
BBAR(1) 0.112 (0.179) 0.564 (0.074) 0.029 (0.016) 217.929 223.782

The standard errors of the estimates are given in the parentheses. The results are given in
Table 5. The estimates for the parameters of the BAR(1)model coincide with the ones listed
in the first row of Table 3 in Ristić et al. [16]; the differences are due to rounding.

Clearly, the BBAR(1) model has a better fit than the BAR(1) model since it attains the
minimum value for both AIC and BIC. Therefore, we assume that the process {Xt}t∈N is
a BBAR(1) process where its true parameter values are equal to the respective estimates
in Table 5. By following the steps that are described in Section 3, we develop upper and
lower one-sided Shewhart, CUSUM and s-EWMA charts, s = 1, 2, 4, for the statistical
monitoring of the process. We choose, for illustrative purposes, ARL0 = 370.4 and the
values of the design parameters for each chart are such that they have their IC zsARL
value as close as possible to the desired ARL0 value. Next, we present our findings, by
starting from the upper-sided case. We consider the upper one-sided BBAR(1) Shewhart
chart with UCL = 13 and zsARL = 324.52, the upper-sided CUSUM chart with k+ =
5, h+ = 35 and zsARL = 378.75, the 1-EWMA chart with (λ1,UCL1) = (0.43, 10) and
zsARL = 352.85, the 2-EWMAchart with (λ2,UCL2) = (0.38, 19/2) and zsARL = 354.62
and the 4-EWMA chart with (λ4,UCL4) = (0.36, 37/4) and zsARL = 370.60. The upper
one-sided charts for the Hantavirus data are given in Figures 2 and 3.
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Figure 2. Upper one-sided Shewhart and s-EWMA charts, s = 1, 2, 4 for the Hantavirus data.

Figure 3. Upper one-sided CUSUM chart for the Hantavirus data.
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Figure 4. Lower one-sided Shewhart and s-EWMA charts, s = 1, 2, 4 for the Hantavirus data.

Figure 5. Lower one-sided CUSUM chart for the Hantavirus data.
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We observe that in the last weeks of the year, there is a strong upward movement which
begins shortly after the 30th week, which is followed by a clear indication of an upward
shift from the 41st week onwards. This shift is perceived by all schemes; the CUSUM gives
an OoC signal at the 52nd week.

We continue now with the lower one-sided case, where we consider the lower
one-sided BBAR(1) Shewhart chart with LCL = 0 and zsARL = 44.28, the lower one-
sided CUSUM chart with k− = 4, h− = 59 and zsARL = 366.34, the 1-EWMA chart
with (λ1, LCL1) = (0.5, 0) and zsARL = 173.58, the 2-EWMA chart with (λ2, LCL2) =
(0.35, 1) and zsARL = 375.62, and the 4-EWMA chart with (λ4, LCL4) = (0.36, 2) and
zsARL = 366.28. It should be mentioned that both the lower one-sided Shewhart and 1-
EWMA charts have IC performance that it is not very close to the desired one. The lower
one-sided charts for the Hantavirus data are given in Figures 4 and 5.

We notice that the lower one-sided Shewhart chart gives an OoC signal (X15 = 0), but
it should be interpreted with caution because of its low IC zsARL value. In cases like this,
i.e. when a chart has a low IC zsARL value, we suggest to use a more efficient scheme in
order to detect decreases in the mean level of the process. On the contrary the lower one-
sided CUSUM, 2-EWMA and 4-EWMA control charts give IC ARL0 close to the desired
value. Also we observe that in the first 29 weeks of the year there is not a clear indication
of regional spread of hantavirus infection; the range of values is between 0 and 5 during
this period. The low counts during this period cause a disorder that it is captured by all
schemes.

6. Conclusion and discussion

In this work, we developed and studied one-sided s-EWMA control charts that are suitable
for the detection of upward and downward shifts in the mean level of Binomial AR(1) and
Beta-Binomial AR(1) processes. Both models are used frequently in practice in order to
describe correlated data with a finite range. The BAR(1) model is a good choice to model
count data processes with a first-order AR dependence structure and a binomial marginal
distribution. However, when there are indications of extra-binomial variation and/or inho-
mogeneity among the n items of the sample, the BBAR(1) is a more appropriate choice.
The results of an extensive numerical study regarding the statistical design and the per-
formance of the proposed s-EWMA charts revealed that between the Shewhart and the
s-EWMA charts, the latter perform better than the former; under certain circumstances,
their performance can be comparable to the performance of CUSUM-type charts.

Moreover, the numerical study revealed that the extra-binomial variation affects the
detection ability of the s-EWMA chart, as well as its IC performance. For φ0 > 0, the
control limit obtained under the BAR(1) model needs a proper adjustment, in order to
keep the FAR at the desired level. Also, at a given shift δ, the ssARL is larger under the
BBAR(1) model than the corresponding value under the BAR(1) model, for control charts
with comparable IC performance.

Finally, the practical application of the proposed schemes was illustrated via a real-data
example. For all calculations, the R statistical software R Core Team [14] was used and the
programs are available from the authors upon request.

Topics for future research consist of the development and study of other types of con-
trol charts, such as the mixture cumulative count [9], in order to compare them with
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the existing ones. Also, an extension to this study is the development of simultaneous
control charting procedures that can provide, except for a quick and accurate detection
ability, additional information about which of the process parameters has changed; one
of the main assumptions is that the presence of assignable causes affects only the mean
level of the process. Finally, as already said, the discrete nature of the considered processes
does not allow to develop an s-EWMA chart with the desired IC performance. In order to
overcome this limitation, the methodology developed by Paulino et al. [12], based on the
theory of uniformly most powerful unbiased tests (UMPU) and the use of randomization
probabilities, is expected to provide designs for all the charts under comparison, with an
in-control ARL value equal to a pre-specified one. However, even though the case of one-
sided Shewhart chart is feasible, some technical difficulties need to be tackled properly
for the one-sided CUSUM and EWMA charts. Certainly, this is a topic worthy of future
research.
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