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ABSTRACT
In the present study, we provide a motivating example with a finan-
cial application under COVID-19 pandemic to investigate autore-
gressive (AR) modeling and its diagnostics based on asymmetric
distributions. The objectives of this work are: (i) to formulate asym-
metric AR models and their estimation and diagnostics; (ii) to assess
the performance of the parameters estimators and of the local influ-
ence technique for these models; and (iii) to provide a tool to show
how data following an asymmetric distribution under an AR struc-
ture should be analyzed. We take the advantages of the stochas-
tic representation of the skew-normal distribution to estimate the
parameters of the corresponding AR model efficiently with the
expectation-maximization algorithm. Diagnostic analytics are con-
ducted by using the local influence techniquewith four perturbation
schemes. By employing Monte Carlo simulations, we evaluate the
statistical behavior of the corresponding estimators and of the local
influence technique. An illustration with financial data updated until
2020, analyzed using the methodology introduced in the present
work, is presented as an example of effective applications, from
where it is possible to explain atypical cases from the COVID-19
pandemic.
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1. Amotivating example from financial return data

The COVID-19 virus pandemic has affected people beyond the propagation of the disease
itself. The virus has spread throughout theworld and has caused problems of various kinds.
For example, this pandemic has produced the largest global recession in history, withmore
than a third of the world’s population blocked in their personal, social and work activities.
In particular, global stock markets fell on 24 February 2020 due to a significant increase
in the number of COVID-19 cases outside of China. On 28 February 2020, stock markets
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around the world posted their biggest declines in a single week since the 2008 financial
crisis. Global stock markets crashed in March 2020, with several percent declines in the
major world indexes.

As the pandemic spreads, various world events have been postponed or canceled.While
the monetary impact on the travel and commerce industry has yet to be estimated, it is
likely to be in the billions and growing. The motivation for our investigation comes from
a study of Chevron shares (hereinafter referred to as CVX weekly financial return data),
which were collected from 2 January 2009 to 31 December 2020, obtained from Yahoo
Finance. A statistical summary of theweekly financial returns is presented inTable 1, which
includes quantiles, median, mean, standard deviation (SD), coefficients of skewness and
kurtosis, standard error (SE) and lower/upper confidence limits (LCL/UCL). From this
summary, we identify an asymmetrical behavior for the distribution of the data, a high
level of kurtosis, and the need to count with a distribution with support on all the real
line of numbers. The t-test for the skewness used in [47] is conducted. The t-statistic is
valued at −14.8493 with an associated p-value less than 0.0001 so that we reject at 1% of
significance the null of symmetry to confirm that the weekly returns are skew distributed.
Figures 1 and 2 display the histogram and a plot of density estimation with the normal
distribution of the CVX weekly returns. Note that the fit with the normal distribution is
clearly inadequate. For example, the skewed generalized t distribution derived in [46] may
be suitable for these data. The special and limiting cases of this distribution include twelve
alternative distributions [15].

Figure 3 shows the CVXweekly return data (a total of 627 observations).We perform an
augmented Dickey-Fuller (ADF) unit root test, with lags = 12, to detect a possible nonsta-
tionarity in these data. The value of the ADF statistic is −8.3518 and its associated p-value
is less than 0.01. Therefore, we reject the null hypothesis at 1% of significance and then
the data are identified to be stationary. Furthermore, we perform a Box-Ljung test on the

Table 1. Basic statistics of CVX weekly return data.

Sample size Minimum Maximum 1st quartile 3rd quartile Mean Median

627 −0.3398 0.1544 −0.0155 0.0214 0.0010 0.0021

SE (Mean) LCL (Mean) UCL (Mean) Variance SD Skewness Kurtosis

0.0014 −0.0018 0.0038 0.0012 0.0358 −1.4526 14.2925

Figure 1. Histogram of CVX weekly return data.
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Figure 2. Density of CVX weekly return data.

Figure 3. CVX weekly financial return data.

CVXweekly return data, with lags = 12, to detect whether the data are a white noise series
or not. The value of the chi-square statistic is 27.891 and its associated p-value is 0.0057.
Therefore, we reject the null hypothesis at 1% and the data are not a white noise series. In
addition, note that the autocorrelation function (ACF) and partial autocorrelation func-
tion (PACF) in Figure 4 on the CVX weekly returns indicate that an AR(4) model may be
suitable to describe these data, which is verified formally below.

First, the order of the AR model is established by assuming the data are generated from
an AR(p) model stated by

Yt = β1yt−1 + β2yt−2 + · · · + βjyt−j + · · · + βpyt−p + ut

=
p∑

j=1
βjyt−j,+ut , j = 1, . . . , p; t = p + 1, . . . ,T. (1)

For themodel defined in (1), let β̂j be the ordinary least squares (OLS) estimate of βj. Then,
the corresponding residual is defined as

ût = yt − β̂1yt−1 − β̂2yt−2 − · · · − β̂pyt−p,
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Figure 4. ACF and PACF of CVX weekly return data.

and the estimated variance for the AR(p) model is expressed as

σ̂ 2
p = 1

T − 2p − 1

T∑
t=p+1

û2t .

We obtain the jth and (j − 1)th equations from (1) to test

H0 : βj = 0 versus H1 : βj �= 0,

that is, we test the AR(j) model versus the AR(j−1) model, for j = 1, . . . , p. The associated
test statistic is defined as

M(j) = −(T − j − 2.5) log

(
σ̂ 2
j

σ̂ 2
j−1

)
. (2)

In our case, M(j) stated in (2) is asymptotically chi-square distributed with one degree of
freedom, that is,M(j) ∼ χ2(1). We calculateM(j) by (2), for j = 1, . . . , 8, and present the
results in Table 2. As the 95th percentile of the chi-square distribution with one degree
of freedom is 3.84, that is, χ2

0.95(1) = 3.84, from Table 2, we select the order p of the
autoregressive (AR) model to be p = 4.
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Table 2. Test statisticM(j), for j = 1, . . . , 8, of CVX weekly return data.

Order 1 2 3 4 5 6 7 8

M(j) 1.9580 1.5453 1.0800 3.8679 0.0246 1.3333 1.9480 3.2800

In summary, the CVX weekly financial return data are AR of order p, stationary, and
asymmetrically distributed. Thus, this example serves as motivation to formulate an AR(4)
model based on an asymmetrical distribution of the data with support on the real num-
bers (negative and positive) and a high level of kurtosis. Of course, diagnostic analytics
should be conducted after fitting the model to evaluate the effect of observations concen-
trated at the tails of the distribution. Therefore, an AR(4)model based on the skew-normal
distribution is a suitable structure to describe these time series data.

2. Introduction

AR models are an important tool when analyzing data with dependence over time.
These models have been applied to diverse areas and the reader interested is referred to
[4,27] for time series modeling and applications. Standard time series models, including
AR structures, assume that their errors are independently, identically and normally dis-
tributed [21,28,51]. This assumption is often problematic and questioned inmany practical
situations.

As an alternative to normality, skew distributionsmay bemore appropriate, for example,
as it occurs with economic and financial data; see Section 1. In order to deal with such data,
skew-normal distributions and their properties, modeling and features have been studied
by a number of authors [2,5,10,11,32,48,50]. Particularly, the skew-normal distributionwas
used in [6] for describing asset pricing issues with stock return data.

ARmodels with skew-normal errors have been considered in [41], but the expectation-
maximization algorithm was not utilized to do an efficient procedure for the parame-
ter estimation when the maximum likelihood method was employed. The expectation-
maximization algorithm is a powerful iterative technique for the maximum likelihood
estimation with incomplete data [35]. AR models based on finite scale-mixtures of skew-
normal distributions were derived in [32] using the expectation-maximization algorithm
to estimate the corresponding parameters. Recently, skew-normal and skew-Student-t dis-
tributionswere considered in [48] instead of symmetric distributions for regressionmodels
with AR errors. Note that the model proposed in [48] corresponds to skew-normal regres-
sion models with AR errors, which is different from a skew-normal AR (SNAR) regression
model.

Diagnostic analytics should be conducted after fitting a model [22,26,45]. A diag-
nostic method, mainly due to the less intensive computational work, is the local influ-
ence technique, which has been widely used [9,33]. This technique allows us to identify
observations that, under small perturbations in the model or in the data, may cause
disproportionate changes in the maximum likelihood estimates of the model parame-
ters, affecting the quality and inference of its fitting [21,28]. Because the local influence
technique is based on the likelihood function of the observed data, when the expectation-
maximization algorithm is employed to estimate the model parameters, it is possible to
consider this algorithm using the Q-displacement function [52]. Diagnostic analytics has
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been employed in diverse regression and time series models. Among others, a number
of authors [5,18,24,25,30,42–44] investigated the local influence of linear or non-linear
regression models under non-normal distributional assumptions. In a framework of time
series data, diagnostics in conditionally heteroskedastic time series models under elliptical
distributions were studied in [21]; influence diagnostics in AR models under normality
were derived in [51]; and influence diagnostics in a vector ARmodel also under normality
was conducted in [28]. Diagnostics in the non-linear model with scale mixtures of skew-
normal distributions and AR errors was analyzed in [5]. Diagnostic analytics for the SNAR
model was developed in [29].

The objectives of this work are: (i) to formulate asymmetric AR models and their esti-
mation and diagnostics; (ii) to assess the performance of the parameters estimators and
of the local influence technique for these models; and (iii) to provide a tool to show
how data following an asymmetric distribution under an AR structure must be ana-
lyzed. By using Monte Carlo simulations, we evaluate the behavior of the corresponding
estimators, and of the local influence technique. An illustration with weekly financial
return data are analyzed using the methodology presented in this work as an exam-
ple of effective applications. We use the matrix differential calculus [31] to establish the
results used in our data analysis. We implement the maximum likelihood method with
the expectation-maximization algorithm to estimate the SNARmodel parameters, whereas
the local influence technique with four perturbation schemes is utilized for the diagnostic
analytics.

After providing a motivating example from finance in times of COVID-19 pandemic
and the introduction with historical background, the reminder of this paper is organized
in the following manner. Section 3 introduces the SNAR model, including properties
of the skew-normal distribution, as well as the estimation method, and the associated
expectation-maximization algorithm. In Section 4, we derive local influence diagnostics
and obtain the normal curvatures under different perturbations, that is, the case-weight,
data, variance parameter and skewness parameter schemes. In Section 5, two simulation
studies related to performance of the maximum likelihood estimators and of the diagnos-
tic techniques are presented. In Section 6, we retake the motivating example presented
in Section 1 now involving the SNAR model and its diagnostics to show its potential
applications. Our concluding remarks and future research are addressed in Section 7. Sup-
plementary material with mathematical results is provided on the website of the journal
which can be accessed at https://doi.org/10.1080/02664763.2021.1913103.

3. A skew-normal autoregressive model

In this section, we provide details of the skew-normal distribution and of the SNARmodel.
Hence, the maximum likelihood estimation of model parameters is derived by means of
the expectation-maximization algorithm.

3.1. Model formulation

LetY follow a skew-normal distributionwith location (μ ∈ R), scale (σ > 0) and skewness
(λ ∈ R) parameters. In this case, the notation Y ∼ SN(μ, σ 2, λ) is used and its density

https://doi.org/10.1080/02664763.2021.1913103
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function is stated as

f (y) = 2
σ

φ

(
y − μ

σ

)
�

(
λ

(
y − μ

σ

))
, y ∈ R, (3)

with φ and� being the density and cumulative distribution function (from here on distri-
bution function) of the standard normal distribution, respectively. Note that if λ = 0, then
the density of Y defined in (3) reduces to the normal density.

The skew-normal distribution has interesting properties, some of which are employed
here and presented next. If Y ∼ SN(μ, σ 2, λ), then E(Y) = μ + σδ

√
2/π and Var(Y) =

σ 2 − (2/π)σ 2δ2, with δ = λ/
√
1 + λ2. Further, Y may be represented stochastically as

Y = μ + σδH + σ
√

(1 − δ2)H1, (4)

with H = |H0| and both H0,H1 being independent normal distributed. Note that

Y|H = h ∼ N
(

μ + λσ√
1 + λ2

h,
σ 2

1 + λ2

)
, (5)

where H ∼ HN(0, 1), that is, H follows the half normal distribution.
Let the random variable Yt be modeled by a stationary AR(p) process expressed as

Yt = β1yt−1 + · · · + βjyt−j + · · · + βpyt−p + ut , j = 1, . . . , p; t = p + 1, . . . ,T, (6)

with Yt being a time series, and y1, . . . , yp being the p initial values for Yt βj being a regres-
sion parameter, for j = 1, . . . , p; and ut being the model error which has a skew-normal
distribution, that is, ut ∼ SN(0, σ 2, λ), where σ 2 and λ are the scale and skewness param-
eters, respectively. For convenience purposes, the SNAR(p) model defined in (6) may be
represented as

Yt = x�
t β + ut , t = p + 1, . . . ,T, (7)

where xt = (yt−1, . . . , yt−p)
� is a p × 1 vector, β = (β1, . . . ,βp)

� is a p × 1 regression
coefficient vector, and θ = (β , σ 2, λ)� is the (p + 2) × 1 vector of SNAR(p) parameters.

3.2. Estimation and expectation-maximization algorithm

The maximum likelihood estimate of the parameter θ can be obtained by maximizing
the corresponding log-likelihood function. The maximum likelihood estimates of the
SNAR(p) model parameters may be obtained by differentiating the log-likelihood func-
tion with respect to thementioned parameters, generating the associated score vector. This
vectormust be equated to zero being the solution themaximum likelihood estimates. How-
ever, such equations do not have closed-form and then they need to be solved numerically
to maximize the associated log-likelihood function. Subsequently, a non-linear optimiza-
tion method is needed [17]. We use the expectation-maximization algorithm to facilitate
this estimation.

Next, we estimate the parameters of the SNAR model with the maximum likelihood
method. We detail below the steps to implement the expectation-maximization algorithm
and to efficiently obtain the corresponding estimates. We use the notation Yc,Yo,Ym for
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the random vectors associated with yc, yo, ym, respectively, where yc = (yo, ym)� is the
complete data set, yo is the observed data set and ym is the missing data set. Consider
θ (0) as an initial estimate and then θ (1), θ (2), . . . can be obtained iterating the two steps of
the expectation(E)-maximization(M) algorithm defined as follows.
E-step:Calculate the conditional expectation of the log-likelihood function 
c(θ ,Yc) given
Yo = yo, named as the Q function, and evaluate it at the previous value θ = θ (k), that is,
Q(θ)|

θ=θ (k) = E[
c(θ ,Yc)|Yo = yo]|θ=θ (k) , for k = 0, 1, . . .

M-step: Maximize Q(θ)|
θ=θ (k) at θ (k+1), that is, θ̂

(k+1) = argmaxθ Q(θ)|
θ=θ (k) , for k =

1, 2, . . .
Since the expectation-maximization algorithm is an iterative procedure, then the func-

tionQ(θ) to be maximized must be evaluated at a previous value to the (k + 1)th iteration
of θ , inducting the notation Q(θ)|

θ=θ (k) . The expectation-maximization algorithm must
be iterated until reaching convergence, for example, when

|θ̂ (k+1) − θ̂
(k)| < 10−5,

with θ̂
(k+1)

being the current maximum likelihood estimate of θ and θ̂
(k)

its previous
estimate; see details in [35, pp. 21–23].

Note that, in some cases, the expectation-maximization algorithm does not admit an
analytical solution in its E-step or M-step. Hence, it becomes necessary to use iterative
methods for the computation of the expectation or maximization. For variants of the
expectation-maximization algorithm based on approximations of its E-step or M-step,
which preserve its convergence properties, see [33]. Based on the model for Yt defined
in (7), the properties of the skew-normal distribution established in (4) and (5), that is,

Y|H = h ∼ N(μ + hλσ/
√
1 + λ2, σ 2/(1 + λ2)),

H ∼ HN(0, 1),

and considering yo = (yp+1, . . . yT)�, ym = (hp+1, . . . hT)�, yc = (yo, ym)� as the
observed, missing and complete data sets, respectively, we get the complete-data log-
likelihood function for θ = (β , σ 2, λ)� stated as


c(θ , yc)=
T∑

t=p+1

(
−1
2
log(σ 2)+ 1

2
log(1+ λ2) − 1 + λ2

2σ 2

(
yt − x�

t β − λσ√
1 + λ2

ht
)2
)
.

(8)
Therefore, for the E-step of the expectation-maximization algorithm, given the current
estimate θ̂

(k)
and based on (9), we can calculate the Q function as

Q(θ)|
θ=θ̂

(k) = E[
c(θ ,Yc)|Yo = yo]|θ=θ̂
(k)

= − (T − p)
2

log (σ 2) + T − p
2

log(1 + λ2)

− (1 + λ2)

2

�∑
t=p+1

(
yt − x�

t β

σ
− λ√

1 + λ2
ĉt
)2

− λ2

2

�∑
t=p+1

(ĉ2t − (ĉt)2),

(9)
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with

ĉt = E(Ht|Yo = yo)|θ=θ̂
(k) = τ1 + φ(τ1/τ2)

�(τ1/τ2)
τ2,

ĉ2t = E(H2
t |Yo = yo)|θ=θ̂

(k) = τ 21 + τ 22 + φ(τ1/τ2)

�(τ1/τ2)
τ1τ2,

τ1 = λ̂(k)

σ̂ (k)(1 + (λ̂(k))2))1/2
(yt − xtβ̂

(k)
),

τ2 = 1
(1 + (λ̂(k))2)1/2

.

Note that ĉ2t is different from (ĉt)2. For M-step, we update θ̂
(k)

by the Newton–Raphson
iteration as

Q̇(θ̂
(k+1)

) = Q̇(θ̂
(k)

) + Q̈(θ̂
(k)

)(θ̂
(k+1) − θ̂

(k)
) + o(|θ̂ (k+1) − θ̂

(k)|), (10)

with Q̇ denoting the gradient vector, Q̈ being the Hessian matrix, and o standing for the
higher order terms in the Taylor expansion. As (θ̂

(k+1) − θ̂
(k)

) → 0, the (k + 1)th estimate
of θ may be stated by

θ̂
(k+1) = θ̂

(k) − Q̈(θ̂
(k)

)
−1

Q̇(θ̂
(k)

),

with Q̇ and Q̈ being defined in (10). Under wild conditions and based on an initial
value θ̂

(0)
, the sequence θ̂

(k)
obtained from the expectation-maximization algorithm con-

verges to the maximum likelihood estimate θ̂ . Note that a suitable initial value θ̂
(0)

is
important and difficult to find in numerical computation. Thus, we can consider θ̂

(0) =
(β̂

(0)
, σ̂ 2(0)

, λ̂(0)) assuming β̂
(0)

as the OLS estimate and so σ̂ 2(0)
and λ̂(0) may be cal-

culated as θ̂ = (β̂ , σ̂ 2, λ̂) until |θ̂ (k+1) − θ̂
(k)| < 10−5. We employ the matrix differential

calculus [31] to establish algebraic results related to the Hessian matrix, which are pro-
vided as supplementary material onto the website of the journal which can be accessed at
https://doi.org/10.1080/02664763.2021.1913103.

4. Diagnostics in the skew-normal autoregressive model

In this section, we derive local influence diagnostics and obtain the normal curvatures
under four perturbations, that is, the case-weight, data, variance parameter and skewness
parameter schemes.

4.1. The local influence technique

Let 
(θ) be the log-likelihood function for the model defined in (6), with θ being a (p +
2) × 1 vector of unknown parameters and its maximum likelihood estimate being θ̂ . In
addition, let ω = (ω1, . . . ,ωq)

� be a q × 1 vector of perturbations of a some open subset
ofRq and letω0 be a q × 1 non-perturbation vector, with q being a suitable dimension and

https://doi.org/10.1080/02664763.2021.1913103
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ω0 = (0, . . . , 0) or ω0 = (1, . . . , 1). Hence, 
(θ) and 
(θ |ω) represent the log-likelihood
functions of the postulated and perturbed models, respectively. Note that 
(θ) = 
(θ |ω0).
We suppose that 
(θ |ω) is twice continuously differentiable in a vicinity of (θ̂ ,ω0). We are
interested in comparing θ̂ and θ̂ω using the local influence technique, which investigates
the degree of inference affected by those changes in the corresponding perturbations. The
likelihood displacement (LD) to assess the influence of the perturbation ω is defined as [9]

LD(ω) = 2(
(θ̂) − 
(θ̂ω)).

Note that large values of LD(ω) provide evidence that θ̂ and θ̂ω are considerably differ-
ent with respect to the contours of the non-perturbed log-likelihood function 
(θ). This
is based on analyzing the local behavior of LD(ω) and the normal curvature Cl(θ) in a
unit-length vector l, with ||l|| = 1. The normal curvature employed to evaluate the local
influence of the perturbation vector at ω = ω0 is stated by [9]

Cl(θ) = 2|l�F̈l| = 2|l�(���̈
−1

�)l|,
with F̈ = ∂2
(θ |ω)/∂ω∂ω�, � = ∂2
(θ |ω)/∂θ∂ω�, �̈ = ∂2
(θ)/∂θ∂θ�, l being a q × 1
vector of unit length, −�̈ being the (p + 2) × (p + 2) observed information matrix for the
underlying model, � being the (p + 2) × q perturbation matrix for the perturbed model,
and −�̈,� being evaluated at θ = θ̂ and ω = ω0. The suggestion is to make the local
influence diagnostic analytics by finding the maximum curvature Cmax = max||l||=1 Cl,
with Cmax corresponding to the largest absolute eigenvalue λmax and its associated eigen-
vector lmax of the matrix F̈ = ���̈

−1
�. If the absolute value of the ith element of lmax is

the largest, then the ith observation in the data may be the most influential potentially. To
examine the magnitude of influence, it is useful to have a benchmark value for Cmax and
for the elements of lmax [24,28,37].

4.2. Local influence assessment in the SNARmodel

Next, we conduct a local influence diagnostic analytics for the SNAR(p) model. Due to the
complexity of the skew-normal distribution, we obtain the maximum likelihood estimates
based on the expectation-maximization algorithm. As suggested in [11,37], theQ function
and Q displacement function may be used to replace the log-likelihood function and like-
lihood displacement, respectively, in the local influence method to assess the effect of the
perturbation. Thus, the normal curvature should be changed to be

Cl(θ) = 2|l�F̈l| = 2|l�(��Q̈−1�)l|,
with F̈ = ∂2Q(θ |ω)/∂ω∂ω�,� = ∂2Q(θ |ω)/∂θ∂ω�, and Q̈ = ∂2Q(θ)/∂θ∂θ�, with l
being a q × 1 vector of unit length, and F̈, Q̈ and � being q × q, (p + 2) × (p + 2) and
(p + 2) × qmatrices, respectively. In addition, Q̈ and� need to be evaluated at θ = θ̂ and
ω = ω0.

We use Ct = Clt (θ) to examine the total local influence, where lt is a q × 1 unit-length
vector with one at the tth position and zeros elsewhere. We denote S = −��Q̈−1�. Since
Cl(θ) is not invariant under a uniform change of scale, the conformal normal curvature
Bl(θ) = Cl(θ)/(2trace(S))was proposed in [37]. An interesting property of the conformal
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normal curvature is that for any unit-length direction l, 0 ≤ Bl(θ) ≤ 1 is obtained, which
allows comparison of curvatures among different models.

Note that the tth observation is potentially influential [37] if N(0)t = Blt is greater
than the benchmark 1/q + c∗S(N(0)), with S(N(0)) being the sample SE of N(0)k, for
k = 1, . . . , q, and c∗ is a constant value. Depending on the specific application, c∗ may be
taken to be a suitably selected positive value. The forms given in Subsection 4.2 are used to
obtain our normal curvature results under the four perturbations, namely the case-weight,
data, variance parameter and skewness parameter schemes. The matrices Q̈ and� need to
be established for each scheme.We employ thematrix differential calculus [31] to establish
these algebraic results, which are provided as supplementary material onto the website of
the journal which can be accessed at https://doi.org/10.1080/02664763.2021.1913103.

5. Monte Carlo simulations

In this section, two simulation studies related to performance of themaximum likelihood
estimators and of the diagnostic techniques are presented.

5.1. Study I

Next, we conduct a simulation study to illustrate the performance of our results given
in Section 4. We take p = 1, 2, 3, 4 in the SNAR(p) model. The sample sizes are taken
as n = 250, 500, 1000. The true values of the parameters are taken as σ 2 = 1 and λ =
−0.20,−0.15,−0.10,−0.05, 0.1. From Tables 3 and 4, we see that our proposal is proven
to be valid. The mean values of the parameter estimates are close to the true values, so
as the medians. Our estimated results of the error variance are satisfactory, and the mean
squared errors (MSEs) and SEs of the estimators are also very small. The skewness is not
reported here, as well as the other parameters, but their estimates are satisfactory.

5.2. Study II

By using Section 3, consider an SNAR(1) model stated as Yt = βyt−1 + ut , with ut ∼
SN(0, σ 2, λ) β = 0.12, σ 2 = 0.003, λ = 0.1, and T = 400 observations being generated.
The performance of the maximum likelihood estimators in presence of five perturbed
cases is evaluated with λ = 0.1, 0.2, 0.3. The value yt is perturbed by yt∗ = yt + βyt−1d,
with t = 200, 201, 202, 203, 204 and d = 5, 10, . . . , 50 to obtain atypical observations.
Then, the maximum likelihood estimate of β is obtained by fitting perturbed and non-
perturbed data sets with the SNAR(1) model and λ = 0.1, 0.2, 0.3. Hence, the relative
changes of the estimates are calculated as RC = |(β̂∗

(i) − β̂)/β̂|, with β̂∗
(i) being the esti-

mate of β under the perturbed data and β̂ is the estimate of β under the non-perturbed
data. The good performance of the influence diagnostic techniques is observed in
Figure 5.

Next, a numerical simulation is conducted to evaluate the performance of our method-
ology. Skew-normal and normal distributions are compared as follows: (i) simulated data
(λ = 0.1) with yt being perturbed by yt∗ = yt + βyt−1d are used, for d = 5 and t = 200,
201, 202, 203, 204, and then an AR(1) model is fitted under normality to the data by
Yt = 0.1549yt−1 + ut , with ut ∼ N(0, 0.0151); (ii) a local influence diagnostic analytics

https://doi.org/10.1080/02664763.2021.1913103
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Table 3. Empirical mean, median, SE, SD, LCL and UCL for the indicated values of n, λ (negative) and SNAR model parameters with simulated data.

n = 250 n = 500 n = 1000

SNAR(1) SNAR(2) SNAR(3) SNAR(4) SNAR(1) SNAR(2) SNAR(3) SNAR(4) SNAR(1) SNAR(2) SNAR(3) SNAR(4)

φ1 True value 0.7 1.2 1.2 1.2 0.7 1.2 1.2 1.2 0.7 1.2 1.2 1.2
Mean 0.699615 1.198326 1.213548 1.200235 0.698168 1.199453 1.213583 1.194775 0.69886 1.199512 1.213028 1.196481
Median 0.700765 1.1989 1.2127 1.2024 0.6988 1.19995 1.2155 1.19435 0.699925 1.20025 1.2146 1.1969
SE (mean) 0.002322 0.002083 0.002679 0.002843 0.001554 0.001488 0.001859 0.002051 0.001096 0.001054 0.001311 0.001428

SD 0.03671 0.032928 0.04236 0.04496 0.034755 0.033281 0.041571 0.045863 0.034671 0.033315 0.041462 0.045151
LCL (mean) 0.695042 1.194224 1.208271 1.194634 0.695114 1.196529 1.20993 1.190745 0.696709 1.197445 1.210455 1.19368
UCL (mean) 0.704188 1.202428 1.218824 1.205835 0.701222 1.202377 1.217235 1.198805 0.701012 1.201579 1.215601 1.199283

φ2 True value – −0.7 −0.7 −0.7 – −0.7 −0.7 −0.7 – −0.7 −0.7 −0.7
Mean – −0.69775 −0.70746 −0.7051 – −0.69979 −0.70653 −0.69861 – −0.69895 −0.7058 −0.69989
Median – −0.69962 −0.71058 −0.70333 – −0.70102 −0.70822 −0.69693 – −0.7009 −0.70752 −0.69955
SE (mean) – 0.002081 0.003723 0.004271 – 0.001492 0.002612 0.003114 – 0.001035 0.001872 0.00215

SD – 0.032898 0.058872 0.067529 – 0.033372 0.058415 0.069637 – 0.032721 0.059192 0.067987
LCL (mean) – −0.70184 −0.71479 −0.71351 – −0.70272 −0.71166 −0.70473 – −0.70098 −0.70948 −0.70411
UCL (mean) – −0.69365 −0.70013 −0.69668 – −0.69685 −0.7014 −0.69249 – −0.69692 −0.70213 −0.69568

φ3 True value – – 0.3 0.3 – – 0.3 0.3 – – 0.3 0.3
Mean – – 0.315807 0.303356 – – 0.314438 0.297795 – – 0.313783 0.299921
Median – – 0.314665 0.310225 – – 0.313535 0.298625 – – 0.313285 0.301375
SE (Mean) – – 0.002738 0.004257 – – 0.001815 0.00305 – – 0.001343 0.00212

SD – – 0.043287 0.067311 – – 0.04059 0.068199 – – 0.042484 0.067036
LCL (mean) – – 0.310415 0.294972 – – 0.310872 0.291802 – – 0.311147 0.295761
UCL (mean) – – 0.321199 0.311741 – – 0.318005 0.303787 – – 0.31642 0.30408

φ4 True value – – – 0.1 – – – 0.1 – – – 0.1
Mean – – – 0.092073 – – – 0.094778 – – – 0.092742
Median – – – 0.087778 – – – 0.09487 – – – 0.091923
SE (mean) – – – 0.00276 – – – 0.001907 – – – 0.001365

SD – – – 0.043637 – – – 0.042643 – – – 0.043178
LCL (mean) – – – 0.086638 – – – 0.091032 – – – 0.090063
UCL (mean) – – – 0.097509 – – – 0.098525 – – – 0.095422

(continued).
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Table 3. Continued.

n = 250 n = 500 n = 1000

SNAR(1) SNAR(2) SNAR(3) SNAR(4) SNAR(1) SNAR(2) SNAR(3) SNAR(4) SNAR(1) SNAR(2) SNAR(3) SNAR(4)

σ True value 1 1 1 1 1 1 1 1 1 1 1 1
Mean 0.996724 0.957133 0.995972 0.993711 0.998946 0.95831 0.993768 0.994974 0.997188 0.961357 0.99203 0.992205
Median 0.983695 0.957005 0.91776 0.99086 0.984435 0.95706 0.921825 0.98631 0.98663 0.962865 0.92203 0.986255
SE (mean) 0.00691 0.003752 0.003562 0.004166 0.005794 0.002725 0.002538 0.003573 0.003678 0.002016 0.001811 0.002348

SD 0.109252 0.059324 0.056327 0.065878 0.129558 0.060922 0.056746 0.0799 0.116302 0.063755 0.057266 0.074242
LCL (mean) 0.983115 0.949743 0.988955 0.985505 0.987562 0.952957 0.988692 0.987953 0.989971 0.957401 0.988476 0.987598
UCL (mean) 1.010333 0.964523 1.022988 1.001917 1.010329 0.963663 0.998844 1.001994 1.004405 0.965314 0.995584 0.996812

λ True value −0.1 −0.2 −0.15 −0.05 −0.1 −0.2 −0.15 −0.05 −0.1 −0.2 −0.15 −0.05
Mean −0.10255 −0.19768 −0.14649 −0.05109 −0.10439 −0.19926 −0.14716 −0.05493 −0.1004 −0.19903 −0.14841 −0.05039
Median −0.08814 −0.19579 −0.15483 −0.03529 −0.09185 −0.1993 −0.15698 −0.0336 −0.09214 −0.20017 −0.15622 −0.03282
SE (mean) 0.008548 0.006831 0.003232 0.005423 0.006292 0.004599 0.002337 0.00455 0.004016 0.003163 0.001678 0.002827

SD 0.135153 0.10801 0.051104 0.085748 0.1407 0.102829 0.052261 0.101746 0.126994 0.100037 0.053062 0.089388
LCL (mean) −0.11939 −0.21114 −0.15286 −0.06177 −0.11675 −0.20829 −0.15175 −0.06387 −0.10828 −0.20524 −0.1517 −0.05593
UCL (mean) −0.08572 −0.18423 −0.14013 −0.04041 −0.09202 −0.19022 −0.14256 −0.04599 −0.09252 −0.19282 −0.14512 −0.04484
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Table 4. Mean, median, SE, SD, LCL and UCL for the indicated values of of n, λ (positive) and SNAR model parameters with simulated data.

n = 250 n = 500 n = 1000

SNAR(1) SNAR(2) SNAR(3) SNAR(4) SNAR(1) SNAR(2) SNAR(3) SNAR(4) SNAR(1) SNAR(2) SNAR(3) SNAR(4)

φ1 True value 0.7 1.2 1.2 1.2 0.7 1.2 1.2 1.2 0.7 1.2 1.2 1.2
Mean 0.692618 1.198974 1.19857 1.208956 0.695559 1.196588 1.198086 1.207733 0.698298 1.1966 1.197522 1.207338
Median 0.692915 1.19735 1.19915 1.20535 0.696935 1.1972 1.1984 1.20565 0.698915 1.1982 1.1979 1.20765
SE (mean) 0.002225 0.002157 0.002397 0.002846 0.001588 0.001526 0.001829 0.002004 0.001011 0.001 0.001372 0.001296

SD 0.035182 0.034111 0.037893 0.045007 0.0355 0.034112 0.040895 0.044814 0.031964 0.03161 0.04339 0.028973
LCL (mean) 0.688235 1.194725 1.19385 1.203349 0.69244 1.193591 1.194493 1.203796 0.696315 1.194638 1.19483 1.204793
UCL (mean) 0.697 1.203223 1.20329 1.214562 0.698679 1.199586 1.20168 1.211671 0.700282 1.198561 1.200215 1.209884

φ2 True value – −0.7 −0.7 −0.7 – −0.7 −0.7 −0.7 – −0.7 −0.7 −0.7
Mean – −0.699214 −0.69611 −0.699159 – −0.69561 −0.69804 −0.6994 – −0.69445 −0.69781 −0.69967
Median – −0.702075 −0.69665 −0.69302 – −0.69799 −0.70007 −0.69311 – −0.69552 −0.69777 −0.69838
SE (mean) – 0.00215 0.003511 0.004262 – 0.001498 0.002562 0.003127 – 0.001074 0.001929 0.002087

SD – 0.033989 0.055512 0.067384 – 0.033501 0.057282 0.06992 – 0.033951 0.060986 0.046671
LCL (mean) – −0.703448 −0.70302 −0.707552 – −0.69855 −0.70307 −0.70554 – −0.69656 −0.70159 −0.70377
UCL (mean) – −0.694981 −0.6892 −0.690765 – −0.69266 −0.69301 −0.69325 – −0.69234 −0.69402 −0.69557

φ3 True value – – 0.3 0.3 – – 0.3 0.3 – – 0.3 0.3
Mean – – 0.297855 0.301047 – – 0.299663 0.30205 – – 0.297801 0.302723
Median – – 0.29946 0.30205 – – 0.30182 0.30178 – – 0.29839 0.299475
SE (mean) – – 0.002516 0.004073 – – 0.001862 0.003042 – – 0.001333 0.002182

SD – – 0.039786 0.064392 – – 0.041632 0.068029 – – 0.042166 0.048793
LCL (mean) – – 0.292899 0.293026 – – 0.296005 0.296073 – – 0.295184 0.298435
UCL (mean) – – 0.30281 0.309068 – – 0.303321 0.308027 – – 0.300418 0.30701

φ4 True value – – – 0.1 – – – 0.1 – – – 0.1
Mean – – – 0.106186 – – – 0.105439 – – – 0.106076
Median – – – 0.102115 – – – 0.103755 – – – 0.105655
SE (mean) – – – 0.002776 – – – 0.001939 – – – 0.001431

SD – – – 0.043889 – – – 0.043352 – – – 0.031992
LCL (mean) – – – 0.100719 – – – 0.10163 – – – 0.103265
UCL (mean) – – – 0.111653 – – – 0.109248 – – – 0.108887

(continued).
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Table 4. Continued.

n = 250 n = 500 n = 1000

SNAR(1) SNAR(2) SNAR(3) SNAR(4) SNAR(1) SNAR(2) SNAR(3) SNAR(4) SNAR(1) SNAR(2) SNAR(3) SNAR(4)

σ True value 1 1 1 1 1 1 1 1 1 1 1 1
Mean 0.985395 1.003628 0.985879 0.937454 0.990282 1.002746 0.993314 0.937351 0.989842 1.003633 0.987593 0.942468
Median 0.692915 0.99222 0.984615 0.93369 0.983755 0.989735 0.987605 0.9345 0.9839 0.99258 0.982775 0.94311
SE (mean) 0.004569 0.007706 0.005048 0.003976 0.003716 0.005158 0.005645 0.002701 0.002468 0.004019 0.003103 0.00186

SD 0.072247 0.12184 0.079815 0.06287 0.083096 0.115347 0.126235 0.060385 0.078034 0.127082 0.098112 0.041585
LCL (mean) 976396 0.988451 0.975937 0.929623 0.982981 0.992611 0.982222 0.932045 0.984999 0.995746 0.981505 0.938814
UCL (mean) 0.994395 1.018805 0.995821 0.945285 0.997583 1.012881 1.004406 0.942657 0.994684 1.011519 0.993682 0.946121

λ True value 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Mean 0.094806 0.080006 0.099247 0.108235 0.095823 0.088792 0.099446 0.108506 0.091764 0.073248 0.097862 0.105891
Median 0.093934 0.080007 0.098328 0.11324 0.094276 0.075158 0.095509 0.11184 0.094247 0.065461 0.099616 0.10657
SE (mean) 0.005012 0.011274 0.00646 0.002136 0.004316 0.008102 0.005555 0.001304 0.002372 0.00554 0.003101 0.000557

SD 0.07924 0.178255 0.102143 0.033776 0.0965 0.181157 0.124223 0.02916 0.075003 0.175177 0.098078 0.012449
LCL (mean) 0.084935 0.057802 0.086524 0.104028 0.087344 0.072875 0.088532 0.105944 0.08711 0.062378 0.091776 0.104797
UCL (mean) 0.104676 0.10221 0.111971 0.112442 0.104302 0.104709 0.110361 0.111068 0.096418 0.084119 0.103949 0.106985
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Figure 5. Relative change of estimated β against d with simulated data.

is conducted under the normal distribution using the diagnostic results stated in [28]; and
(iii) the local influence results for the normal distribution in (ii) are compared. In Figure 6,
24 influence observations are detected under the skew-normal distribution. These results
are summarized in Table 5.

Note that 24 potentially influential observations are identified by the local influence
technique using the skew-normal distribution, whereas twenty potentially influential val-
ues are identified under normality. The potentially influential cases #62, #153, #201 and
#301 for the skew-normal model have a value less than zero. Therefore, if λ of the skew-
normal distribution is greater than zero, it is easier to find potentially influential values
less than zero due to the difference in patterns between the skew-normal and normal dis-
tributions. This says us that the diagnostic results under the skew-normal distribution
established in Section 4 work well.

6. Amotivating example from finance (continued)

In this section, we retake the motivating example presented in Section 1 now involving
the SNAR model and its diagnostics to show its potential applications. We use the returns
from 2 January 2009 to 13 November 2020 to train our model. Then, the remaining data
are used to test the trained model with the predicted values.

6.1. Estimation under the SNARmodel

The estimate of the parameter θ̂ obtained with the expectation-maximization algorithm
detailed in Section 4 is

(β̂1, β̂2, β̂3, β̂4, σ̂ 2, λ̂) = (−0.0179,−0.0474,−0.0415,−0.0944, 0.0013,−0.0111).
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Figure 6. Diagnostics for perturbations of case-weight (a), data (b), variance (c) and skewness (d) with
λ = 0.1 and d = 5 using simulated data.

The values of the Akaike (AIC), Bayesian (BIC) and Hannan-Quinn (HQC) informa-
tion criteria for the SNAR model are −2.9306; 23.7151 and −3.7545, respectively. As the
estimated β1, β2, β3 and β4 in absolute value are all less than one, the CVX time series
is assumed to be stationary for the AR(4) model, which coincides with what was con-
cluded by the ADF test. The estimated λ is negative, as suggested by the empirical density
shown in Figure 2, and significantly different from zero, as confirmed by the Tsay test
(p−value < 0.0001). Therefore, we have more evidence that the returns are skew dis-
tributed and not symmetrically. The corresponding approximate estimated SEs for all the
estimators of model parameters are calculated in the usual manner and they allowed us
to detect reasonable significance levels in some cases. In addition, the SNAR(4) model is
better than the AR(4) model in terms of predictions. Then, we obtain as predictive model
the SNAR(4) structure trained as

ŷt = −0.0179yt−1 − 0.0474yt−2 − 0.0415yt−3 − 0.0944t−4,

with μ̂ = 0, σ̂ 2 = 0.0013, and λ̂ = −0.0111. A stationary financial series has economic
implications. Among them,we can assume that their returns are characteristic of a constant
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Table 5. Local influence results for normal and skew-normalmodels
with simulated data.

ID
Index under the
normal model

Index under the
skew-normal model Observed value

1 33 33 −0.334
2 34 34 0.030
3 – 62 −0.271
4 77 77 −0.260
5 111 111 −0.297
6 112 112 −0.225
7 140 140 0.319
8 141 141 0.089
9 – 153 −0.175
10 – 201 −0.269
11 202 202 −0.326
12 203 203 −0.090
13 205 205 0.328
14 206 206 −0.124
15 214 214 −0.406
16 215 215 −0.159
17 293 293 0.296
18 294 294 −0.012
19 – 301 −0.278
20 306 306 0.043
21 345 345 −0.293
22 346 346 −0.092
23 362 362 −0.307
24 363 363 −0.048

mean function over time and its covariance function depends only on the lag and not on
the moment time.

6.2. Diagnostics under the SNARmodel

Next, we conduct local influence diagnostic analytics for the SNAR(4) model. In this case,
the benchmark 1/616 + 3 S(N(i)) is considered, for i = 1, 2, 3, 4, with the values of 0.0855,
0.0171, 0.0327 and 0.0171 for the perturbation schemes of case-weight, data, variance
parameter and skewness parameter, respectively. In Figure 7, the straight line is the bench-
mark establishing whether a case is potentially influential or not. Firstly, we identify case
#586 to be potentially influential. The other potential influential cases can be masked by
case #586. Similar to a step-wise diagnostic technique [42], a second round of identification
of influential cases is carried out. Then, the value of case #586 is replaced by the average of
its two neighbors (cases #585 and #587) to obtain a new time series. Subsequently, an AR
model is refitted as in the first round. For the new time series, the SNAR(4) model param-
eters are once again estimated with the expectation-maximization-algorithm. Hence, the
new SNAR(4) model is given by

ŷt = −0.00130yt−1 + 0.0079yt−2 − 0.0679yt−3 − 0.0980yt−4,

with μ̂ = 0, σ̂ 2 = 0.0011, λ̂ = −0.0114. The AIC, BIC and HQC values are −2.9866,
23.6591 and −3.8106, respectively. Since the absolute values of β̂1, β̂2, β̂3, and β̂4 are all
less than one, the CVX time series is assumed to be stationary with the SNAR(4) model
and then we carry out a new influential analytics. Now, the benchmarks are 0.0274, 0.0093,
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0.0150 and 0.0122 for the perturbation schemes of case-weight, data, variance parame-
ter and skewness parameter, respectively. Now, 27 influence observations are identified in
Figure 8; see Table 6, where *denotes that the cases is detected via the assigned perturbation
scheme. Note that the points reported in Table 6 are a number of historical events. Many of
these points are related to events around the COVID-19 pandemic in 2020. For example,
on 9 March 2020 (Monday), international oil prices plummeted by 30%, which was the
biggest one-day drop since 1991. On the same day, US stock market opened four minutes,
and the S&P 500 index plummeted by 7%, triggering the first level circuit breaker mecha-
nism. On 12 March 2020, as the S&P 500 index fell by 7.02%, the market was triggered to
stop trading for 15 minutes. This was the second time that the circuit breaker mechanism
had been triggered since Monday in the week, and the third time in the US stock history.
On 17March 2020, steep falls as markets opened triggered another automatic halt to trad-
ing. Before 9March 2020, such halts, known as circuit breakers, had not been used inmore
than two decades. But the sell-off continued after the 15minute suspension, with the Dow
losing nearly 3000 points or 12.9%, its worst percentage drop since 1987. We see that such
findings showcase the effectiveness of our procedures in identifying potentially influential
observations to improve modeling outcomes.

Figure 7. Diagnostics for the perturbations of case-weight (a), data (b), variance (c) and skewness (d) in
the SNAR(4) model – first round – with CVX weekly return data.
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Figure 8. Diagnostics for the perturbations of case-weight (a), data (b), variance (c) and skewness (d) in
the SNAR(4) model – second round – with CVX weekly return data.

Wemake the predictions by the new SNAR(4) model and the traditional AR(4) model,
presenting their comparisons inTable 7. TheMSEof the predicted values by the twomodels
are 0.001730 and 0.000965, respectively. Note from the results that the predictions made
after removing the potentially influential cases are better than those made by using the
original data.

7. Concluding remarks and future research

In this study, we have used a motivating example with a financial application under
COVID-19 pandemic to investigate autoregressive modeling based on the skew-normal
distribution. We have taken advantage of the stochastic representation of the skew-normal
distribution to estimate the parameters of the corresponding autoregressive model effi-
ciently with the expectation-maximization algorithm. In addition, we have researched
the local (rather than global) influence diagnostics in the skew-normal autoregressive
model to detect potentially influential observations under four perturbations: case-
weight, data, variance parameter, and skewness parameter schemes. We have conducted
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Table 6. Summary of the curvature-based diagnostic analytics with CVX weekly return data based on
the SNAR(4) model.

Case Date CVX return Case-weight Data Variance Skewness

#143 23 November 2011 −10.15% *
#153 2 December 2011 9.70% *
#343 19 December 2014 9.80% * *
#347 21 August 2015 −11.41% * *
#354 9 October 2015 9.38% *
#583 28 February 2020 −15.52% * * *
#584 6 March 2020 2.10% *
#585 13 March 2020 −13.34% * * *
#586 20 March 2020 −33.98% * * * *
#587 27 March 2020 14.68% * * * *
#588 3 April 2020 8.80% * * *
#589 9 April 2020 11.55% * * * *
#590 17 April 2020 3.34% *
#597 5 May 2020 9.47% *
#620 13 November 2020 15.44% * * * *

Table 7. Predicted results by the AR(4) and SNAR(4)models
with CVX weekly return data.

Date CVX returns AR(4) SNAR(4)

20 November 2020 0.0473 0.0223 0.0105
27 November 2020 0.0623 0.0223 0.0311
4 December 2020 0.0213 0.0386 0.0167
11 December 2020 −0.0089 −0.0164 −0.0033
18 December 2020 −0.0586 0.0102 −0.0095
24 December 2020 −0.0216 −0.0645 −0.0466
31 December 2020 −0.0104 0.0440 0.0262

two Monte Carlo simulation studies to evaluate the statistical performance of the cor-
responding estimators, and to obtain approximate benchmark values for determining
potentially influential cases. We have applied this model to analyze weekly financial
return data of Chevron under COVID-19 pandemic. In general, the results have shown
that:

(i) The parameter estimators for the skew-normal autoregressive model have produced
suitable values of empirical bias andmean squared error with very close results to the
true values used in the Monte Carlo simulations.

(ii) Approximate benchmark measures for determining potentially influential cases for
diagnostics in the skew-normal autoregressive model have performed well.

(iii) Many of the potentially influential points are related to events around the COVID-
19 pandemic, which we have detected with the Chevron times series data using the
skew-normal autoregressive model.

Therefore, the findings outlined in this paper suggest that our formulation, estimation
and local influence approach in the skew-normal autoregressivemodel effectively identifies
potentially influential observations and improves the fit of themodel. The numerical results
have shown the good performance of the methodology presented in this paper. Thus, it
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may be a valuable addition to the tool-kit of econometrist, applied statisticians and data
scientists.

The following aspects are open problems for skew-normal autoregressive models and
they may be considered for future research:

(i) It is known that certain financial, environmental and other data follow heavy-tailed
distributions [23,36]. In the case that extremal observations are involved in the data,
where heavy-tailed as well as skewed characteristics are present, the use of heavy-
tailed distributions, for example, the Student-t distribution, may be considered to
replace the normality assumption in the skew-normal autoregressive model.

(ii) Locally influential cases could not be globally influential cases. Thus, relevant stud-
ies on techniques to detect global influential cases for the skew-normal and skew-t
autoregressive models need to be conducted [45].

(iii) A number of studies [3,8] have shown that understanding the behavior of volatility
in financial time series data has important economic implications. We suggest that
the volatility of Chevron returns and other data are analyzed by using models from
the autoregressive conditional heteroskedasticity families.

(iv) The procedure of data-influence analytics is very useful for identifying a set of the
particular observations termed influential potentially. However, this set may include
other type of particular observations that are those so-called outliers. These outliers
are those that are not well fitted by the model and their detection is based commonly
on the residual analysis. Therefore, developing a methodology that allows us to iden-
tify outliers detected in a data set using different types of residuals is of interest for
future study about quality of fit and predictive capability of the model [49].

(v) Multivariate extensions and to spatial dependence case are also of interest [1,39].
(vi) Incorporation of temporal, spatial, functional, and quantile regression structures

in the modeling, as well as errors-in-variables, and partial least squares regression,
should be studied [7,13,14,16,19,20,34,38,40].

The derivation of diagnostic techniques to detect potentially influential cases are needed
and constitute an important tool to be used in all statistical modeling [7,12,29]. Therefore,
the methodology used in this investigation promotes new challenges and offers an open
door to explore other theoretical and numerical issues. Research on these and other issues
are in progress and their findings will be reported in future articles.
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