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ABSTRACT
In order to reduce the effect of autocorrelation on the X̄ monitoring
scheme, a new sampling strategy is proposed to form rational sub-
group samples of size n. It requires sampling to be done such that:
(i) observations from two consecutive samples are merged, and (ii)
some consecutive observations are skipped before sampling. This
technique which is a generalized version of the mixed samples strat-
egy is shown to yield a better reduction of the negative effect of
autocorrelation when monitoring the mean of processes with and
withoutmeasurement errors. For processes subjected to a combined
effect of autocorrelation and measurement errors, the proposed
sampling technique, together with multiple measurement strategy,
yields an uniformly better zero-state run-length performance than
its twomain existing competitors for any autocorrelation level. How-
ever, in steady-state mode, it yields the best performance only when
the monitoring process is subject to a high level of autocorrelation,
for any given level of measurement errors. A real life example is used
to illustrate the implementation of the proposed sampling strategy.
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1. Introduction

The maximization of profit is the ultimate goal of any business-oriented organization. To
meet this goal, the organization must present to its customers a high quality service and
products, and avoid wasting time and products. This can only be possible if the produc-
tion or any other similar process is thoroughly monitored. Statistical monitoring schemes
are the most popular modern tools used to serve this broader purpose. The first modern
monitoring scheme was proposed by W. A. Shewhart in the 1930s, see [21]. The origi-
nal Shewhart monitoring scheme was designed under the assumptions of independent
and identically distributed (i.i.d.) observations and perfect measurements. However, in
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Figure 1. Different sampling strategies to reduce the negative effect of autocorrelation.

practice, these assumptions are usually violated. The presence of autocorrelation and/or
measurement errors is known to have a negative effect on the performance of monitoring
scheme. A number of researchers have developedmore interesting and advancedmonitor-
ing schemes under similar assumptions. There have been a great number of articles that
investigated either the effect of autocorrelation or measurement errors; see for example
[1,3,6,7,8,11,12,13,14,15,16,17,19,20,22,23,24,26,32,33,36]. For recent reviews onmonitor-
ing schemes under autocorrelation and measurements errors, readers are referred to [25]
and [18], respectively.

The combination of the effect of autocorrelation andmeasurement errors has a profound
negative effect on the efficiency of monitoring schemes. A combined effect of autocorrela-
tion and measurement errors has been also investigated in the literature; see for example
[5,27,28,34,35]. All the forgoing investigations have led to one conclusion, which is the
deterioration of the performance of the monitoring schemes due by the negative effect of
autocorrelation and measurement errors. Therefore, there is a growing need of reducing
or eliminating this negative effect of autocorrelation and measurement errors.

In order to reduce the effect of autocorrelation, a number of authors have suggested the
use of skipping andmixed samples strategies in order to construct rational subgroups. The
skipping strategy (denoted as s-skip) is the combination of non-neighbouring observations
by skipping s observations before sampling to form a rational subgroup of size n, where s is
a positive integer (see Figure 1 (a)) – this was first proposed in [5] for the X̄ scheme. More-
over, the s-skip strategy was used by the following: [13] for the basic Hotelling’s T2 chart,
[6] for the synthetic T2 chart, [10,29,30,31] for the synthetic and runs-rules X̄ schemes.
Next, the mixed sampling strategy is the mixture of the observations from two consecutive
samples by skipping one observation (i.e. s = 1) in each sample (see Figure 1(b)) – this was
first proposed in [7] for the X̄ scheme. Moreover, the mixed samples strategy was used by
the following: [14] for the basic Hotelling’s T2 chart and [6] for the synthetic T2 chart. In
general, from the abovementioned papers, it was observed that for small levels of autocor-
relation, the s-skip strategy is more efficient than the mixed samples strategy; however, the
converse is true for large levels of autocorrelation. Finally, the economic design of the X̄
scheme with the skipping and mixed samples strategies is studied in [8].



JOURNAL OF APPLIED STATISTICS 1245

Thus, in this paper, a new technique of reducing the effect of autocorrelation (with and
without measurement errors) on the performance of a monitoring scheme is introduced
and the Shewhart X̄ scheme is used to demonstrate the new technique. In essence, the
new sampling strategy is the combination of the s-skip and mixed samples strategies (see
Figure 1(c)) – it is explained in detail in Section 2.3. The purpose of this paper is to improve
on the research works by [5,7]; hence, the same models are used to account for autocor-
relation and measurement errors. That is, a first order autoregressive model (i.e. AR(1))
accounts for the (within-sample) autocorrelation and the additive model with a constant
standard deviation accounts for the measurement error.

The rest of the paper is organized as follows: In Section 2, the basic properties of auto-
correlation, as well as the existing sampling strategies used to reduce the negative effect
thereof are discussed along with the proposed technique. Moreover, their empirical run-
length performance using the Shewhart X̄ scheme is investigated. In Section 3, we present
the run-length performance of the proposed sampling strategy under the presence of both
autocorrelation andmeasurement errors, and compare its performancewith other compet-
ing strategies. A real life example is used to demonstrate the proposed sampling strategies
in Sections 2 and 3. Finally, the concluding remarks are given in Section 4.

2. Autocorrelated observations

Assume that, at time t ≥1, the quality characteristic {Yt,i : i = 1, 2, . . . , n} is a sequence of
samples from an autocorrelated N(μ0, σ0) distribution that fits a stationary AR(1) model,
given by

Yt,i − μ0 = φ(Yt,i−1 − μ0) + εi, t ≥ 1, i = 1, 2, . . . , n; (1)

where φ is the level of serial dependence (or autocorrelation) assumed to satisfy |φ| < 1
and εi are i.i.d. normal (0, σε) random variables. Moreover, the nominal IC mean and
standard deviation process parameters are denoted by μ0 and σ0, respectively, where
σ0 = σε√

1−φ2
and, without loss of generality, assume σε = 1; see [2]. Note that after the

occurrence of assignable causes, the process mean shifts from μ0 to μ1 = μ0 + δσ0, so
that δ = μ1−μ0

σ0
. A standard way to calculate the mean or the plotting statistic of the X̄

scheme is

Ȳt = 1
n

n∑
i=1

Yt,i (2)

While we assume dependence within the computation of Ȳt ; however, between any Ȳt and
Ȳr (t �= r) there is independence (i.e. no cross-correlation) – this is in line with the deriva-
tion in [2] for sub-grouped data. Hence, for the basic X̄ scheme, the charting limits (i.e. the
upper / lower control limit denoted by (UCL/LCL)) are given by:

UCL/LCL = μȲ ,0 ± kσȲ ,0 (3)

whereμȲ ,0 = μ0 and σȲ ,0 = σ0√
nρ are the mean and standard deviation of Ȳt , respectively;

k > 0 is the design parameter that is related to the distance from the center line to the
UCL/LCL in terms of the standard deviation and finally, ρ depends on which sampling
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Table 1. ρ terms for different sampling strategies when the process is i.i.d. and when it is under the
effect of autocorrelation.

Sampling strategy ρ

(i) i.i.d. 1

(ii) s-skip

√
n+2

(
φ(s+1)(n+1)−nφ2s+2+(n−1)φs+1

(φs+1−1)2

)
n

(iii) Mixed samples

√
nt+2

(
φ2nt+2−ntφ4+(nt−1)φ2

(φ2−1)2

)
n +

nt−1+2
(

φ
2nt−1+2−nt−1φ4+(nt−1−1)φ2

(φ2−1)2

)
n

(iv) Mixed-s-skip

√
nt+2

(
φ(s+1)(nt+1)−ntφ2s+2+(nt−1)φs+1

(φs+1−1)2

)
n +

nt−1+2
(

φ
(s+1)(nt−1+1)−nt−1φ2s+2+(nt−1−1)φs+1

(φs+1−1)2

)
n

strategy is implemented as shown in Table 1. Note that for the i.i.d. case, ρ is simply equal
to 1.

There are twomain sampling strategies that are used in the SPM literature to reduce the
effect of autocorrelation and these are discussed below in subsections 2.1 and 2.2. Then,
in Section 2.3, the combined mixed-s-skip strategy is introduced and the corresponding
empirical analysis is done in Section 2.4.

2.1. s-skip sampling strategy

In the presence of autocorrelation, the s-skip strategy involves sampling of non-
neighboring observations and is particularly used as a remedial approach to reduce
autocorrelation. Costa and Castagliola [5] showed that the process in Equation (1) that
incorporates the s-skip sampling strategy remains an AR(1) process; however, defined as
{Yt,(s+1)i−s : t ≥ 1; i = 1, 2, 3, . . . , n} with parameter φs+1 (instead of φ):

Yt,i − μ0 = φs+1(Yt,i−s−1 − μ0) + ε′
i (4)

with ε′
i = εi + φεi−1 + φ2εi−2 + . . . + φsεi−s. Let Ȳt denote the plotting statistic at sam-

pling point t, no longer calculated as in Equation (2), but using

Ȳt = 1
n

n∑
i=1

Yt,(s+1)i−s (5)

Hence, for the X̄ schemewith the s-skip strategy the charting limits are as given in Equation
(3); however, with ρ given in Table 1. Some other works in the literature that considered
the s-skip sampling strategy are [6,7,8,10,13,29,30,31].

2.2. Mixed samples strategy

The mixed sampling strategy proposed by Franco et al. [7] implements the ‘1-skip’ rule in
two consecutive samples to merge the observations within the two samples, at times t-1
and t, into a single sample having size n. That is, Ȳt is not calculated as in either Equation
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(2) or (5) but, instead, it is computed as

Ȳt = nt−1

n

(
1

nt−1

nt−1∑
i=1

Yt−1,2i

)
+ nt

n

(
1
nt

nt∑
i=1

Yt, 2i−1

)
(6)

where nt−1 and nt are sizes of the subsamples taken at times t − 1 and t, respectively, satis-
fying nt−1 + nt = n. In their paper, Franco et al. [7] suggested the following combinations
for nt−1 and nt : when n is odd then nt−1 = (n − 1)/2 and nt = (n + 1)/2; however, when
n is even then nt−1 = nt = n/2. Hence, for the X̄ scheme with mixed samples strategy, the
charting limits are as given in Equation (3); however, with ρ given in Table 1. Some other
works in the literature that used mixed samples are [6,8,14].

2.3. Mixed-s-skip samples strategy

The proposed combined mixed-s-skip strategy is a generalization of the mixed samples
one in the sense that it implements the ‘s-skip’ rule in two consecutive samples to merge
the observations within the two samples into one sample having size n. Hence, instead of
having Equations (2) or (5) or (6) as a plotting statistic, the combinedmixed-s-skip samples
strategy uses

Ȳt = nt−1

n

(
1

nt−1

nt−1∑
i=1

Yt−1,(s+1)i

)
+ nt

n

(
1
nt

nt∑
i=1

Yt, (s+1)i−s

)
. (7)

Hence, for the X̄ scheme with mixed-s-skip samples strategy, the charting limits are as
given in Equation (3); however, with ρ given in Table 1. Note that when s=1, the proposed
strategy is the same as the mixed samples strategy in [7].

Next, the run-length properties of the Shewhart X̄ scheme that incorporates the mixed-
s-skip samples strategy depends on whether the process shift occurred: (i) at the beginning
of the monitoring process; or (ii) it begins in IC and stays IC for a while and goes OOC just
before sampling point t. These two latter modes of analysis are known as the (i) zero-state
and, (ii) steady-statemodes, respectively. Since the Shewhart X̄ scheme is the simplestmon-
itoring scheme that makes use of the information in the most recently inspected sample
(and not in past samples), then its run-length distribution follows a geometric distribu-
tion with parameter (1 − β), where β represents the Type II error . Hence, the zero-state
average and standard deviation run-length (denoted by ZSARL and ZSSDRL) are given by

ZSARL = 1
1 − β

andZSSDRL =
√

β

1 − β
, (8)

respectively; where

β = �

(
k − δ

√
n × 1

ρ

)
− �

(
−k − δ

√
n × 1

ρ

)
. (9)

Following a similar procedure as in [7], it follows that the steady-state average and standard
deviation run-length (denoted by SSARL and SSSDRL) of the X̄ scheme usingmixed-s-skip
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samples strategy are given by

SSARL = β1

1 − β
+ 1 and SSSDRL =

√
β1(1 + β − β1)

1 − β
, (10)

respectively; where β is the same as in Equation (9) and

β1 = �

(
k − δ

√
n × nt

n
× 1

ρ

)
− �

(
−k − δ

√
n × nt

n
× 1

ρ

)
. (11)

To evaluate the performance of the proposed scheme from an overall performance per-
spective, the expectedARL (EARL) and the expected SDRL (ESDRL) are used because users
tend not to know beforehand what exact shift value(s) is(are) targeted, see for instance [4].
The EARL and ESDRL measure the performance of a monitoring scheme over a range of
shift values, i.e. δmin to δmax – which are the lower and the upper bound of δ, respectively.
The EARL and ESDRL are given by

EARL =
δmax∫
δmin

ARL(δ) × f (δ) dδ and ESDRL =
δmax∫
δmin

SDRL(δ) × f (δ) dδ, (12)

subject toARL(δ = 0) = ARL0, with δ ∈ [δmin, δmax]. Note that the shifts within the inter-
val [δmin, δmax] usually occur according to a probability distribution function (p.d.f.) equal
to f (δ) which is usually unknown, where ARL(δ) and SDRL(δ) are the ARL and SDRL as a
function of the shift δ in the parameter under surveillance. In the absence of any particular
information, it is usually assumed that the shifts in the process mean happen with an equal
probability, then f (δ) = 1/(δmax − δmin) i.e. a Uniform (δmin, δmax) distribution. The pro-
posed scheme is designed such that, we fix k at a specific value, so that the attained IC ARL
is equal to the target nominal ARL (denoted by ARL0). Thus, we choose the scheme that
yields the best overall performance for a range of specified shifts; i.e. the smallest EARL or
ESDRL. Equation (12) can equivalently be written as

EARL = 1
	

δmax∑
δ=δmin

ARL(δ) and ESDRL = 1
	

δmax∑
δ=δmin

SDRL(δ), (13)

where 	 is the number of increments from δmin to δmax of a Riemann sum. To preserve
writing space, we use increments of size 0.25 in the summations in Equation (13), with
δmin =0 and δmax =3. Based on the latter, it follows that 	=13.

2.4. Empirical analysis for autocorrelated data

Table 2 illustrates the well-known negative effect of autocorrelation, that is, as the level
of autocorrelation increases from 0 to some value between 0 and 1, the corresponding
performance deteriorates, especially when φ is very high. In each panel of Table 2, it is
observed that the EARL and ESDRL (computed using Equation (13)) deteriorate as φ

increases. To investigate to what extent increasing the value of φ has deteriorated the
scheme’s performance as compared to the i.i.d. case (i.e. φ =0), we define the percent-
age difference (%Diff). More specifically, %DiffA is defined as a percentage difference
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Table 2. The ARL, SDRL, EARL and ESDRL of the X̄ schemewhenφ ∈{0, 0.3, 0.9}when δmin = 0, δmax = 3
and n= 4 with no remedial approach.

ARL SDRL

Shift i.i.d. φ = 0.3 φ = 0.9 i.i.d. φ = 0.3 φ = 0.9

0 370.4 370.4 370.4 369.9 369.9 369.9
0.25 155.2 199.5 272.0 154.7 199.0 271.5
0.5 43.9 71.1 142.6 43.4 70.6 142.1
0.75 15.0 27.6 71.7 14.5 27.1 71.2
1 6.3 12.3 37.7 5.8 11.8 37.2
1.25 3.2 6.3 21.0 2.7 5.7 20.5
1.5 2.0 3.6 12.4 1.4 3.1 11.9
1.75 1.5 2.4 7.8 0.8 1.8 7.3
2 1.2 1.7 5.2 0.5 1.1 4.7
2.25 1.1 1.4 3.7 0.3 0.7 3.1
2.5 1.0 1.2 2.7 0.2 0.5 2.2
2.75 1.0 1.1 2.1 0.1 0.3 1.5
3 1.0 1.0 1.7 0.0 0.2 1.1

EARL 46.4 53.8 73.2 ESDRL 45.7 53.2 72.6
%DiffA 16.1% 57.8% %DiffSD 16.4% 58.9%

of EARL at some specified value of φ from the corresponding i.i.d. case, i.e. %DiffA =
EARLφ−EARLφ=0

EARLφ=0
× 100%; where EARLφ denote the EARL of the X̄ scheme for some speci-

fied φ >0, whereas EARLφ=0 denote the EARL of the X̄ scheme when φ =0. Similarly, let
%DiffSD denote the percentage difference of ESDRL at some specified value of φ from the
corresponding i.i.d. case; hence, %DiffSD = ESDRLφ−ESDRLφ=0

ESDRLφ=0
× 100%. Based on %DiffA

and %DiffSD, it is observed that the higher the value of φ, the worse the deterioration as
compared to the i.i.d. case. Finally, in Table 2, it is observed that at each δ value, the SDRL
is slightly lower than the ARL and consequently the same holds for the ESDRL and EARL
over the range of considered shift values.

Next, inTables 3 and 4, the effect of using themixed-s-skip samples strategy (in zero- and
steady-state modes) when s ∈{1, 2, . . . , 10} is investigated for the cases shown in Table 2.
‘No remedy’ denotes a scenario where there is no remedial approach used to offset the
negative effect of autocorrelation. Note that when s=1 for the mixed-s-skip strategy, the
resulting performance corresponds to the one in [7], that is, s=1 is a special case corre-
sponding to mixed samples strategy. In essence, Tables 3 and 4 compare the performances
of the X̄ schemes using the s-skip, mixed samples and mixed-s-skip strategies.

FromTable 3, it is observed that for relatively small values of φ, then at each correspond-
ing value of s, the mixed-s-skip strategy is either uniformly better or the same as the s-skip
strategy for all possible values of s, in the zero-state mode. Also, it is seen that for small φ,
the negative effect of autocorrelation can be theoretically eradicated by skipping at least 5
observations before sampling to form a subgroup of size 4 when φ =0.3. While the mixed-
s-skip strategy in zero-state does theoretically eradicate the effect of autocorrelation, this is
not the case when the process is in the steady-state mode. For instance, while the %DiffA
converges to 0% when φ =0.3 in zero-state; however, in steady-state mode, it converges to
1.5%. This is visually illustrated in Figure 2(a) where the ‘SS: Mixed-s-skip’ (which denotes
the mixed-s-skip in steady-state mode) line graph converges to a value of the EARL that is
slightly higher than the i.i.d. case value; however, the line graphs of the ‘ZS: Mixed-s-skip’
(which denotes the mixed-s-skip in zero-state mode) and the s-skip are equal to the i.i.d.
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Table 3. The ARL and EARL of the s-skip, mixed samples, mixed-s-skip (zero- and steady-state) X̄ scheme when φ = 0.3, s ∈{1, 2, . . . , 10}, δmin = 0, δmax = 3 and
n= 4 (with nt = nt−1 = 2).

Type Shift i.i.d. No remedy s= 1 s= 2 s= 3 s= 4 s= 5 s= 6 s= 7 s= 8 s= 9 s= 10

s-skip 0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0.25 155.2 199.5 168.7 159.3 156.4 155.6 155.3 155.3 155.2 155.2 155.2 155.2
0.5 43.9 71.1 51.3 46.0 44.5 44.1 44.0 43.9 43.9 43.9 43.9 43.9
0.75 15.0 27.6 18.2 15.9 15.2 15.1 15.0 15.0 15.0 15.0 15.0 15.0
1 6.3 12.3 7.7 6.7 6.4 6.3 6.3 6.3 6.3 6.3 6.3 6.3
1.25 3.2 6.3 3.9 3.4 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.2
1.5 2.0 3.6 2.4 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
1.75 1.5 2.4 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
2 1.2 1.7 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
2.25 1.1 1.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
2.5 1.0 1.2 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2.75 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

EARL 46.4 53.8 48.4 47.0 46.5 46.4 46.4 46.4 46.4 46.4 46.4 46.4
%DiffA 16.1% 4.5% 1.3% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Steady-state: Mixed-s-skip 0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0.25 155.2 199.5 164.3 158.3 156.5 155.9 155.8 155.7 155.7 155.7 155.7 155.7
0.5 43.9 71.1 49.2 46.0 45.0 44.7 44.7 44.6 44.6 44.6 44.6 44.6
0.75 15.0 27.6 17.8 16.4 16.0 15.8 15.8 15.8 15.8 15.8 15.8 15.8
1 6.3 12.3 8.0 7.4 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
1.25 3.2 6.3 4.5 4.2 4.2 4.1 4.1 4.1 4.1 4.1 4.1 4.1
1.5 2.0 3.6 3.1 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9
1.75 1.5 2.4 2.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3
2 1.2 1.7 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
2.25 1.1 1.4 1.9 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
2.5 1.0 1.2 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7
2.75 1.0 1.1 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
3 1.0 1.0 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

EARL 46.4 53.8 48.4 47.4 47.2 47.1 47.1 47.0 47.0 47.0 47.0 47.0
%DiffA 16.1% 4.3% 2.3% 1.7% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5%

(continued).
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Table 3. Continued.

Type Shift i.i.d. No remedy s= 1 s= 2 s= 3 s= 4 s= 5 s= 6 s= 7 s= 8 s= 9 s= 10

Zero-state: Mixed-s-skip 0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0.25 155.2 199.5 163.9 157.9 156.0 155.5 155.3 155.3 155.2 155.2 155.2 155.2
0.5 43.9 71.1 48.5 45.3 44.3 44.0 43.9 43.9 43.9 43.9 43.9 43.9
0.75 15.0 27.6 17.0 15.6 15.1 15.0 15.0 15.0 15.0 15.0 15.0 15.0
1 6.3 12.3 7.2 6.6 6.4 6.3 6.3 6.3 6.3 6.3 6.3 6.3
1.25 3.2 6.3 3.7 3.4 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2
1.5 2.0 3.6 2.2 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
1.75 1.5 2.4 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
2 1.2 1.7 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
2.25 1.1 1.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
2.5 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2.75 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

EARL 46.4 53.8 47.7 46.8 46.5 46.4 46.4 46.4 46.4 46.4 46.4 46.4
%DiffA 16.1% 2.8% 0.9% 0.3% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%



1252
S.C

.SH
O
N
G
W
E
ET

A
L.

Table 4. The ARL and EARL of the s-skip, mixed samples, mixed-s-skip (zero- and steady-state) X̄ scheme when φ = 0.9, s ∈{1, 2, . . . , 10}, δmin = 0, δmax = 3 and
n= 4 (with nt = nt−1 = 2).

Type Shift i.i.d. No remedy s= 1 s= 2 s= 3 s= 4 s= 5 s= 6 s= 7 s= 8 s= 9 s= 10

s-skip 0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0.25 155.2 272.0 263.0 254.4 246.1 238.2 230.8 224.0 217.6 211.7 206.4 201.5
0.5 43.9 142.6 131.2 121.0 112.0 104.0 96.9 90.7 85.2 80.5 76.3 72.6
0.75 15.0 71.7 63.6 56.7 50.9 45.9 41.7 38.1 35.1 32.5 30.3 28.3
1 6.3 37.7 32.6 28.4 24.9 22.1 19.7 17.7 16.1 14.8 13.6 12.6
1.25 3.2 21.0 17.8 15.3 13.3 11.6 10.3 9.2 8.3 7.6 7.0 6.4
1.5 2.0 12.4 10.4 8.9 7.7 6.7 5.9 5.3 4.8 4.4 4.0 3.7
1.75 1.5 7.8 6.5 5.6 4.8 4.2 3.7 3.3 3.0 2.8 2.6 2.4
2 1.2 5.2 4.4 3.7 3.2 2.9 2.6 2.3 2.1 2.0 1.9 1.8
2.25 1.1 3.7 3.1 2.7 2.3 2.1 1.9 1.8 1.6 1.5 1.5 1.4
2.5 1.0 2.7 2.3 2.0 1.8 1.7 1.5 1.4 1.3 1.3 1.2 1.2
2.75 1.0 2.1 1.9 1.6 1.5 1.4 1.3 1.2 1.2 1.1 1.1 1.1
3 1.0 1.7 1.5 1.4 1.3 1.2 1.2 1.1 1.1 1.1 1.1 1.0

EARL 46.4 73.2 69.9 67.1 64.6 62.5 60.6 59.0 57.5 56.3 55.2 54.2
%DiffA 57.8% 50.8% 44.7% 39.4% 34.7% 30.7% 27.2% 24.1% 21.4% 19.0% 16.9%

Steady-state: Mixed-s-skip 0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

0.25 155.2 272.0 214.8 210.3 206.1 202.2 198.4 194.9 191.7 188.6 185.8 183.1
0.5 43.9 142.6 83.2 79.7 76.5 73.5 70.8 68.3 66.0 64.0 62.1 60.4
0.75 15.0 71.7 34.4 32.5 30.8 29.2 27.9 26.6 25.5 24.5 23.6 22.8
1 6.3 37.7 16.2 15.2 14.3 13.5 12.9 12.2 11.7 11.2 10.8 10.4
1.25 3.2 21.0 8.7 8.2 7.7 7.3 7.0 6.7 6.4 6.1 5.9 5.7
1.5 2.0 12.4 5.4 5.1 4.8 4.6 4.4 4.2 4.1 4.0 3.8 3.7
1.75 1.5 7.8 3.8 3.6 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.8
2 1.2 5.2 2.9 2.8 2.7 2.6 2.6 2.5 2.4 2.4 2.3 2.3
2.25 1.1 3.7 2.4 2.4 2.3 2.2 2.2 2.2 2.1 2.1 2.1 2.0
2.5 1.0 2.7 2.1 2.1 2.1 2.0 2.0 2.0 1.9 1.9 1.9 1.9
2.75 1.0 2.1 2.0 1.9 1.9 1.9 1.8 1.8 1.8 1.8 1.8 1.8
3 1.0 1.7 1.8 1.8 1.8 1.8 1.7 1.7 1.7 1.7 1.7 1.7

EARL 46.4 73.2 57.5 56.6 55.8 55.0 54.2 53.6 53.0 52.4 51.9 51.5
%DiffA 57.8% 24.1% 22.1% 20.3% 18.6% 17.0% 15.6% 14.3% 13.1% 12.0% 11.0%

(continued).
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Table 4. Continued.

Type Shift i.i.d. No remedy s= 1 s= 2 s= 3 s= 4 s= 5 s= 6 s= 7 s= 8 s= 9 s= 10

Zero-state: Mixed-s-skip 0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0.25 155.2 272.0 214.4 210.0 205.8 201.8 198.1 194.6 191.3 188.2 185.4 182.8
0.5 43.9 142.6 82.6 79.1 75.8 72.8 70.1 67.6 65.4 63.3 61.4 59.7
0.75 15.0 71.7 33.6 31.7 30.0 28.5 27.1 25.9 24.7 23.7 22.8 22.0
1 6.3 37.7 15.4 14.4 13.5 12.7 12.0 11.4 10.9 10.4 9.9 9.6
1.25 3.2 21.0 7.9 7.4 6.9 6.5 6.1 5.8 5.5 5.3 5.0 4.8
1.5 2.0 12.4 4.5 4.2 4.0 3.7 3.5 3.4 3.2 3.1 3.0 2.9
1.75 1.5 7.8 2.9 2.7 2.6 2.4 2.3 2.2 2.1 2.1 2.0 1.9
2 1.2 5.2 2.0 1.9 1.8 1.8 1.7 1.6 1.6 1.5 1.5 1.5
2.25 1.1 3.7 1.6 1.5 1.5 1.4 1.4 1.3 1.3 1.3 1.2 1.2
2.5 1.0 2.7 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1
2.75 1.0 2.1 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0
3 1.0 1.7 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

EARL 46.4 73.2 56.8 55.9 55.0 54.3 53.5 52.9 52.3 51.7 51.2 50.8
%DiffA 57.8% 22.6% 20.6% 18.7% 17.0% 15.5% 14.0% 12.7% 11.6% 10.5% 9.5%
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Table 5. The ESDRL (and %DiffSD – in brackets) of the s-skip, mixed samples, mixed-s-skip (zero- and
steady-state) X̄ scheme when φ ∈{0, 0.3, 0.9}, s ∈{1, 2, . . . , 10}, δmin = 0, δmax = 3 and n= 4 (with
nt = nt−1 = 2).

φ = 0.3 φ = 0.9

i.i.d. 45.7 45.7 45.7 45.7 45.7 45.7
No remedy 53.2 (16.4%) 53.2 (16.4%) 53.2 (16.4%) 72.6 (58.9%) 72.6 (58.9%) 72.6 (58.9%)

s= 1 47.8 (4.6%) 47.2 (3.2%) 47.0 (2.9%) 69.4 (51.8%) 56.3 (23.2%) 56.3 (23.1%)
s= 2 46.3 (1.3%) 46.2 (1.2%) 46.1 (0.9%) 66.5 (45.6%) 55.4 (21.2%) 55.3 (21.0%)
s= 3 45.9 (0.4%) 46.0 (0.6%) 45.8 (0.3%) 64.1 (40.2%) 54.5 (19.3%) 54.5 (19.2%)
s= 4 45.8 (0.1%) 45.9 (0.4%) 45.7 (0.1%) 61.9 (35.5%) 53.7 (17.6%) 53.7 (17.4%)
s= 5 45.7 (0.0%) 45.9 (0.3%) 45.7 (0.0%) 60.0 (31.4%) 53.0 (16.0%) 52.9 (15.8%)
s= 6 45.7 (0.0%) 45.8 (0.3%) 45.7 (0.0%) 58.4 (27.8%) 52.4 (14.5%) 52.3 (14.4%)
s= 7 45.7 (0.0%) 45.8 (0.3%) 45.7 (0.0%) 57.0 (24.6%) 51.7 (13.2%) 51.7 (13.0%)
s= 8 45.7 (0.0%) 45.8 (0.3%) 45.7 (0.0%) 55.7 (21.8%) 51.2 (12.0%) 51.1 (11.8%)
s= 9 45.7 (0.0%) 45.8 (0.3%) 45.7 (0.0%) 54.6 (19.4%) 50.7 (10.9%) 50.6 (10.7%)
s= 10 45.7 (0.0%) 45.8 (0.3%) 45.7 (0.0%) 53.6 (17.3%) 50.2 (9.9%) 50.1 (9.7%)

s-skip
Steady-state:
Mixed-s-skip

Zero-state:
Mixed-s-skip s-skip

Steady-state:
Mixed-s-skip

Zero-state:
Mixed-s-skip

case when s≥ 5. Also, while the mixed-s-skip and s-skip strategies are flexible as s increase,
the mixed samples strategy is static. More importantly, Figure 2(a) illustrate that the no
remedial approach has the worst performance and adds the motivation for the use of any
remedial approach to counteract the negative effect of autocorrelation.

Next, in Table 4, it is observed that when φ is very large (i.e. close to 1), then at each cor-
responding value of s, the mixed-s-skip strategy is uniformly better than the s-skip strategy
for all possible values of s, in both the zero- and steady-state modes. While for small φ val-
ues, it is possible to skip few observations and consequently eradicate the negative effect of
autocorrelation, this is not the case with large φ values. Moreover, it is observed that the
mixed-s-skip strategy in zero-state has slightly smaller values of the EARL than those in
steady-statemode; hence, the%DiffA is slightly lower in zero-statemode. This is illustrated
in Figure 2(b), where it is observed that themixed samples strategy is not flexible, and thus,
even the s-skip strategy outperforms the mixed samples for large φ values as the value of s
increases. Thus, it is observed that the new mixed-s-skip strategy introduces the flexibility
such that even for high values of s, it maintains its competitiveness when compared to the
s-skip strategy. Note that [7] only used the steady-state mode to evaluate the performance
of the mixed samples X̄ scheme and concluded that it has a better performance than the
s-skip strategy for large φ values; however, Figure 2 shows that this is not the case for large
s values. Note though, the new generalized version of mixed samples rather yields a bet-
ter performance than the s-skip for all possible values of s. Even as s → ∞, the EARL or
ESDRL of the mixed-s-skip and s-skip strategies converge to an approximately equal val-
ues with those of the mixed-s-skip strategy slightly smaller, e.g. for s=30 with φ =0.95
and n=10, the resulting EARLs, with δmin =0 and δmax =3, are equal to 39.51 and 39.05
for the s-skip and (steady-state) mixed-s-skip strategies, respectively.

A similar pattern as that of the ARLs (i.e. Tables 3 and 4) is observed for the SDRLs
for each of the considered strategies at different values of δ and s; hence, in Table 5 we only
show theESDRL and%DiffSD, which have a similar pattern as theEARL and%DiffA shown
in Tables 3 and 4, as the value of s increases.
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Figure 2. The EARL of the s-skip, mixed samples and mixed-s-skip X̄ scheme in zero-state (ZS) and
steady-state (SS) when φ ∈{0, 0.3, 0.9} and n= 4.
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The effect of the sample size on the performance of the mixed-s-skip X̄ scheme in zero-
state mode is illustrated in Figure 3 when n ∈ {3, 4, 7, 10} which implies that (nt−1, nt) ∈
{(1,2), (2,2), (3,4), (5,5)}, respectively. It is evident from Figure 3 that increasing the sample
size leads to an improved performance of the mixed-s-skip X̄ scheme. While Figure 3 is
specifically done for zero-state and s=3, a similar pattern is observed in steady-state as
well as for other values of s.

2.5. Implementation example formonitoring autocorrelated data

The yogurt cup filling process dataset taken from page 1418 of Franco et al. [7] is displayed
on Table 6, which shows the weights of different yogurt cups taken at different sampling
points. The dataset has 24 samples (each of size 5 yogurt cups taken every hour). The Phase
I analysis of this process indicated that the weight of a yogurt cup, Yt,i, fits an AR(1) model
with parameter φ = 0.7, an IC mean estimate, μ0 = 125g and an IC standard deviation,
σ0 = 1g. For illustration purpose, assume that the data in Table 6 is a full dataset and here
we show how to implement the mixed-s-skip sampling strategy to form rational subgroups
of size n=3 (i.e. with nt−1 =1 and nt =2). In the last two columns, the corresponding
plotting statistics at each sampling point are shown when s ∈{1,2}. For instance, for s=2
and t ∈{2,3}, then using Equation (7), these are calculated as follows:

Ȳ2 = 1
3

(
1
1
Y1,3

)
+ 2

3

(
1
2
(Y2,1 + Y2,4)

)
= 1

3
(126.45 + 125.56 + 123.77) = 125.26,

Ȳ3 = 1
3

(
1
1
Y2,3

)
+ 2

3

(
1
2
(Y3,1 + Y3,4)

)
= 1

3
(123.60 + 127.18 + 126.32) = 125.70.

For n=3, φ = 0.7 and assuming that the process is in a steady-state mode, we obtain ρ

(see Equation (3) andTable 1) equal to 1.1518 and 1.1085 for s equal to 1 and 2, respectively.
That is, as s increases, the value of ρ converges towards the value of 1. Hence, the UCL /
LCL for the X̄ scheme are given by 126.99 / 123.01 and 126.92 / 123.08 for s equal to 1
and 2, respectively. That is, as s increases, the control limits become narrow. As it can be
seen in Figure 4(a) and (b), for each mixed-s-skip sampling strategy with s ∈{1,2}, the X̄
scheme does not yield an OOC signal when s=1; however, it issues the first OOC signal
at sampling point t = 16 when s=2. In summary, this example shows that the X̄ scheme’s
control limits become narrow as s increases (i.e. ρ decreases towards 1 as s increase); hence,
there is an improvement in the OOC detection rate especially as φ is relatively large in the
steady-state mode.

3. Autocorrelated observations withmeasurement errors

3.1. The proposed strategy

Assume that the {Yt,(s+1)i−s} observations from Equation (1) are not directly observ-
able, but can only be assessed from the results {Xt,(s+1)i−s,j : t ≥ 1; i = 1,2, . . . ,n;
j = 1,2, . . . ,m}, where each element of the sequence can be expressed in terms of the
additive model with a constant standard deviation, see [16], i.e.

Xt,(s+1)i−s,j = A + BYt,(s+1)i−s + et,(s+1)i−s,j; (14)
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Figure 3. The EARL and ESDRL of the mixed-s-skip X̄ scheme (with s= 3) in zero-state when
φ ∈{0,0.1,0.2, . . . ,0.9}, n ∈{3,4,7,10} and δmax = 3.

where et,(s+1)i−s,j ∼ N(0, σM) is a random error term due to measurement inaccuracy and
σM is the standard deviation of the measurement system, where A and B are two con-
stants depending on the measurement system location error (for a sake of simplicity, in
this paper, we assume that A=0 and B=1). Since we assume that {Xt,(s+1)i−s,j} are from
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Table 6. The yogurt filling cup process dataset from Franco et al. [7].

t Yt,1 Yt,2 Yt,3 Yt,4 Yt,5 Mixed-1-skip Mixed-2-skip

1 124.74 126.12 126.45 124.66 125.11
2 125.56 123.24 123.60 123.77 123.54 125.09 125.26
3 127.18 127.38 127.18 126.32 126.55 125.87 125.70
4 124.41 124.22 124.29 126.10 124.60 125.36 125.90
5 125.37 124.87 123.65 123.16 122.29 124.41 124.27
6 124.83 126.62 126.24 125.86 127.53 125.31 124.78
7 124.22 124.15 124.14 123.82 124.18 124.99 124.76
8 123.91 124.28 126.31 126.06 127.08 124.79 124.70
9 125.40 125.14 125.60 123.90 124.92 125.09 125.20
10 125.53 125.36 124.24 123.71 123.64 124.97 124.95
11 125.79 123.91 124.28 125.19 125.98 125.14 125.07
12 124.55 126.61 126.98 126.84 127.60 125.15 125.22
13 126.15 125.60 124.26 126.17 126.65 125.67 126.43
14 123.54 124.42 123.52 123.53 122.95 124.22 123.78
15 124.02 123.78 122.60 122.42 123.26 123.68 123.32
16 124.02 123.78 122.60 122.42 123.26 123.47 123.01
17 125.03 124.72 123.62 124.99 124.37 124.14 124.21
18 125.17 125.10 124.45 124.03 125.11 124.78 124.27
19 124.22 125.64 125.19 124.39 125.40 124.84 124.35
20 123.35 122.90 122.31 122.42 120.09 123.77 123.65
21 124.65 125.45 124.43 124.83 124.34 123.99 123.93
22 124.88 125.27 124.73 123.09 123.14 125.02 124.13
23 123.59 124.27 123.70 124.62 123.41 124.19 124.31
24 124.24 125.87 124.62 125.99 124.19 124.38 124.64

an imperfect measurement system (i.e. γ = σM
σ0

> 0, which denotes the ratio of the mea-
surement system variability to the process variability) then it is standard practice to take
multiple measurements (of size m, with m > 1) as a remedial approach in reducing the
effect of measurement errors, see [16]. Hence, instead of Equations (9) as a plotting statis-
tic, the combined mixed-s-skip samples strategy and m-multiple measurements strategy
(denoted as mix-s&m) uses m separate measurements, each of size n (i.e. a total of m × n
observations), so that the plotting statistic is given by

X̄t = 1
mn

n∑
i=1

m∑
j=1

Xt,(s+1)i−s,j

= 1
n

⎛
⎝nt−1∑

i=1
Yt−1,(s+1)i +

nt∑
i=1

Yt, (s+1)i−s + 1
m

n∑
i=1

m∑
j=1

et,(s+1)i−s,j

⎞
⎠ . (15)

The X̄ scheme’s UCL/LCL are given by:

UCL/LCL = μX̄,0 ± kσX̄,0 (16)

withμX̄,0 = μ0 and σX̄,0 = σ0√
nϕ are themean and standard deviation of X̄t , respectively; k

is as defined in Equation (3) and ϕ depends on which sampling strategy is implemented to
account for both autocorrelation andmeasurement errors. Note that for the i.i.d. case, with
perfect measurement, ϕ is equal to 1. The expressions for ϕ when the sampling strategy
implemented is the mix-s&m strategy, the s-skip strategy with m-multiple measurements
strategy (denoted by s&m) proposed in [5] and themixed samples strategywithm-multiple
measurements strategy (denoted by mix&m) are each shown in Table 7.
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Figure 4. The weight of yogurt cups example for the X̄ scheme with the mixed-s-skip strategy.
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Table 7. ϕ terms for different sampling strategies when the process is i.i.d. and when it is under the
effect of autocorrelation and measurement errors.

Sampling strategy ϕ

(i) i.i.d. 1

(ii) s&m

√√√√√(m+γ 2

m

)
+
⎛
⎝ n+2

(
φ(s+1)(n+1)−nφ2s+2+(n−1)φs+1

(φs+1−1)2

)
n

⎞
⎠− 1

(iii) Mix&m

√√√√√(m+γ 2

m

)
+
⎛
⎝ nt+2

(
φ2nt+2−ntφ4+(nt−1)φ2

(φ2−1)2

)
n +

nt−1+2
(

φ
2nt−1+2−nt−1φ4+(nt−1−1)φ2

(φ2−1)2

)
n

⎞
⎠− 1

(iv) Mix-s&m

√√√√√(m+γ 2

m

)
+
⎛
⎝ nt+2

(
φ(s+1)(nt+1)−ntφ2s+2+(nt−1)φs+1

(φs+1−1)2

)
n +

nt−1+2
(

φ
(s+1)(nt−1+1)−nt−1φ2s+2+(nt−1−1)φs+1

(φs+1−1)2

)
n

⎞
⎠− 1

Note that the ZSARL, ZSSDRL, SSARL and SSSDRL of the X̄ scheme with mix-s&m
strategy are also given by Equations (8) and (10); however, with

β = �

(
k − δ

√
n × 1

ϕ

)
− �

(
−k − δ

√
n × 1

ϕ

)
(17)

and

β1 = �

(
k − δ

√
n × nt

n
× 1

ϕ

)
− �

(
−k − δ

√
n × nt

n
× 1

ϕ

)
. (18)

Note that [7] proposed the mixed samples strategy for autocorrelated data but without
taking measurement errors into account. Thus, in an effort to extend on their work so
that it accounts for measurement errors, the mix&m is introduced here by taking s=1 in
Equations (15), (17) and (18). In the next subsection, the run-length performance of the
s&m strategy is compared with the two new strategies (i.e. mix&m and mix-s&m) in both
zero- and steady-state mode of analysis.

3.2. Empirical analysis of autocorrelated data withmeasurement errors

In Tables 8 and 9, the negative effect of autocorrelation and measurement errors is illus-
trated for both φ and γ equal to {0.3, 0.9}, the i.i.d. case (i.e. both φ and γ equal to 0) and
the no remedial approach case to offset the combined negative effect of autocorrelation and
measurement error which is denoted as ‘No remedy’. Note that in Tables 8 and 9, the aim
is to illustrate the degree of the negative effect of a small / large level of autocorrelation and
measurement errors in the short- and long-run scenarios; and more importantly, to illus-
trate how themagnitude of the zero- and steady-stateARLs are affected as s andm increase
for different values of γ andφ. Firstly, in both tables, it is observed that when s=1, themix-
s&m andmix&m have exactly the sameOOC performance; however, when s > 1, then the
mix-s&m strategy uniformly outperforms the mix&m strategy. Secondly, in Table 8, with
φ =0.3, as s increases (for any value of m) the s&m strategy becomes more competitive
than the mix&m strategy – this is because the mix&m strategy is not flexible with respect
to the s variable. That is, for small φ values, the s&m strategy tends to outperform the mix-
s&m strategy in steady-state; however, in zero-state, the mix-s&m strategy is uniformly
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Table 8. The ARL and SDRL of the s-skip, mixed samples, mixed-s-skip (zero- and steady-state) X̄ scheme when φ = 0.3, γ = 0.3, s ∈{1, 3, 5},m ∈{2, 4, 6}, δmin = 0,
δmax = 3 and n= 5 (with nt = 3 and nt−1 = 2).

s= 1,m= 2 s= 3,m= 4 s= 5,m= 6

Shift i.i.d.
No

remedy s&m
SS:

Mix&m
ZS:

Mix&m

SS:
Mix-
s&m

ZS:
Mix-
s&m s&m

SS:
Mix&m

ZS:
Mix&m

SS:
Mix-
s&m

ZS:
Mix-
s&m s&m

SS:
Mix&m

ZS:
Mix&m

SS:
Mix-
s&m

ZS:
Mix-
s&m

ARL 0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0.25 133.2 186.4 151.1 147.8 147.4 147.8 147.4 136.6 145.9 145.5 136.7 136.3 134.7 145.2 144.8 135.1 134.7
0.5 33.4 62.1 41.8 40.6 40.0 40.6 40.0 34.9 39.7 39.0 35.4 34.8 34.1 39.4 38.7 34.7 34.1
0.75 10.8 23.2 14.1 14.1 13.4 14.1 13.4 11.3 13.7 13.0 12.0 11.3 11.0 13.6 12.9 11.8 11.0
1 4.5 10.1 5.9 6.4 5.6 6.4 5.6 4.7 6.2 5.4 5.5 4.7 4.6 6.2 5.4 5.4 4.6
1.25 2.4 5.1 3.1 3.7 2.9 3.7 2.9 2.5 3.6 2.8 3.3 2.5 2.4 3.6 2.8 3.2 2.4
1.5 1.6 3.0 1.9 2.6 1.8 2.6 1.8 1.6 2.6 1.8 2.4 1.6 1.6 2.5 1.8 2.3 1.6
1.75 1.2 2.0 1.4 2.1 1.4 2.1 1.4 1.3 2.1 1.3 1.9 1.3 1.2 2.0 1.3 1.9 1.2
2 1.1 1.5 1.2 1.8 1.1 1.8 1.1 1.1 1.8 1.1 1.7 1.1 1.1 1.8 1.1 1.7 1.1
2.25 1.0 1.2 1.1 1.6 1.1 1.6 1.1 1.0 1.6 1.0 1.5 1.0 1.0 1.6 1.0 1.5 1.0
2.5 1.0 1.1 1.0 1.5 1.0 1.5 1.0 1.0 1.5 1.0 1.4 1.0 1.0 1.4 1.0 1.4 1.0
2.75 1.0 1.1 1.0 1.3 1.0 1.3 1.0 1.0 1.3 1.0 1.3 1.0 1.0 1.3 1.0 1.3 1.0
3 1.0 1.0 1.0 1.2 1.0 1.2 1.0 1.0 1.2 1.0 1.2 1.0 1.0 1.2 1.0 1.2 1.0

EARL 43.3 51.4 45.8 45.8 45.2 45.8 45.2 43.7 45.5 44.9 44.2 43.7 43.5 45.4 44.9 44.0 43.5
%DiffA 18.8% 5.8% 5.8% 4.5% 5.8% 4.5% 1.1% 5.2% 3.9% 2.1% 1.0% 0.5% 4.9% 3.7% 1.7% 0.5%

SDRL 0 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9
0.25 132.7 185.9 150.6 146.9 146.9 146.9 146.9 136.1 145.0 145.0 135.8 135.8 134.2 144.3 144.3 134.2 134.2
0.5 32.9 61.6 41.3 39.5 39.5 39.5 39.5 34.4 38.5 38.5 34.3 34.3 33.6 38.2 38.2 33.6 33.6
0.75 10.3 22.6 13.6 12.9 12.8 12.9 12.8 10.8 12.5 12.5 10.8 10.8 10.5 12.3 12.3 10.5 10.5
1 4.0 9.6 5.4 5.1 5.1 5.1 5.1 4.2 4.9 4.9 4.2 4.2 4.1 4.9 4.9 4.1 4.1
1.25 1.8 4.6 2.5 2.4 2.4 2.4 2.4 1.9 2.3 2.3 2.0 1.9 1.9 2.3 2.3 1.9 1.9
1.5 0.9 2.5 1.3 1.3 1.2 1.3 1.2 1.0 1.3 1.2 1.1 1.0 1.0 1.3 1.2 1.1 1.0
1.75 0.5 1.4 0.7 0.8 0.7 0.8 0.7 0.6 0.8 0.7 0.7 0.6 0.5 0.8 0.7 0.7 0.5
2 0.3 0.9 0.4 0.6 0.4 0.6 0.4 0.3 0.6 0.4 0.6 0.3 0.3 0.6 0.4 0.6 0.3
2.25 0.2 0.6 0.3 0.6 0.2 0.6 0.2 0.2 0.5 0.2 0.5 0.2 0.2 0.5 0.2 0.5 0.2
2.5 0.1 0.4 0.1 0.5 0.1 0.5 0.1 0.1 0.5 0.1 0.5 0.1 0.1 0.5 0.1 0.5 0.1
2.75 0.0 0.2 0.1 0.5 0.1 0.5 0.1 0.0 0.5 0.1 0.4 0.0 0.0 0.5 0.1 0.4 0.0
3 0.0 0.1 0.0 0.4 0.0 0.4 0.0 0.0 0.4 0.0 0.4 0.0 0.0 0.4 0.0 0.4 0.0

ESDRL 42.6 50.8 45.1 44.7 44.6 44.7 44.6 43.0 44.4 44.3 43.2 43.0 42.8 44.3 44.2 43.0 42.8
%DiffSD 19.3% 5.9% 5.0% 4.7% 5.0% 4.7% 1.1% 4.4% 4.0% 1.4% 1.0% 0.5% 4.2% 3.8% 0.9% 0.5%
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Table 9. The ARL and SDRL of the s-skip, mixed samples, mixed-s-skip (zero- and steady-state) X̄ scheme when φ = 0.9, γ = 0.9, s ∈{1, 3, 5},m ∈{2, 4, 6}, δmin = 0,
δmax = 3 and n= 5 (with nt = 3 and nt−1 = 2).

s= 1,m= 2 s= 3,m= 4 s= 5,m= 6

Shift i.i.d.
No

remedy s&m
SS:

Mix&m
ZS:

Mix&m

SS:
Mix-
s&m

ZS:
Mix-
s&m s&m

SS:
Mix&m

ZS:
Mix&m

SS:
Mix-
s&m

ZS:
Mix-
s&m s&m

SS:
Mix&m

ZS:
Mix&m

SS:
Mix-
s&m

ZS:
Mix-
s&m

ARL 0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0.25 133.2 282.1 266.3 229.2 229.0 229.2 229.0 242.6 221.8 221.5 210.3 210.0 223.0 219.1 218.9 196.9 196.6
0.5 33.4 156.6 135.2 95.7 95.2 95.7 95.2 108.3 89.1 88.6 79.6 79.1 89.9 86.8 86.3 69.6 69.1
0.75 10.8 82.3 66.4 41.3 40.7 41.3 40.7 48.6 37.6 36.9 32.4 31.8 37.6 36.3 35.6 27.2 26.6
1 4.5 44.6 34.3 19.9 19.2 19.9 19.2 23.6 17.8 17.1 15.1 14.4 17.5 17.2 16.4 12.5 11.8
1.25 2.4 25.4 18.9 10.7 10.0 10.7 10.0 12.5 9.6 8.8 8.1 7.4 9.1 9.2 8.5 6.8 6.0
1.5 1.6 15.3 11.1 6.5 5.7 6.5 5.7 7.2 5.9 5.1 5.0 4.2 5.2 5.6 4.9 4.3 3.5
1.75 1.2 9.7 7.0 4.4 3.6 4.4 3.6 4.5 4.0 3.2 3.5 2.7 3.3 3.9 3.1 3.1 2.3
2 1.1 6.4 4.6 3.3 2.5 3.3 2.5 3.1 3.0 2.2 2.7 1.9 2.3 2.9 2.2 2.4 1.7
2.25 1.0 4.5 3.3 2.6 1.9 2.6 1.9 2.2 2.5 1.7 2.3 1.5 1.7 2.4 1.7 2.1 1.3
2.5 1.0 3.3 2.5 2.2 1.5 2.2 1.5 1.7 2.1 1.4 2.0 1.3 1.4 2.1 1.4 1.8 1.2
2.75 1.0 2.5 1.9 2.0 1.3 2.0 1.3 1.4 1.9 1.2 1.8 1.1 1.2 1.9 1.2 1.7 1.1
3 1.0 2.0 1.6 1.8 1.2 1.8 1.2 1.3 1.7 1.1 1.6 1.1 1.1 1.7 1.1 1.5 1.0

EARL 43.3 77.3 71.0 60.8 60.2 60.8 60.2 63.6 59.0 58.4 56.5 55.9 58.7 58.4 57.8 53.9 53.3
%DiffA 78.7% 64.2% 40.4% 39.0% 40.4% 39.0% 47.1% 36.4% 35.0% 30.7% 29.2% 35.8% 35.0% 33.6% 24.5% 23.1%

SDRL 0 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9
0.25 132.7 281.6 265.8 228.5 228.5 228.5 228.5 242.1 221.0 221.0 209.5 209.5 222.5 218.4 218.4 196.1 196.1
0.5 32.9 156.1 134.7 94.7 94.7 94.7 94.7 107.8 88.1 88.1 78.6 78.6 89.4 85.8 85.8 68.6 68.6
0.75 10.3 81.8 65.9 40.2 40.2 40.2 40.2 48.1 36.4 36.4 31.3 31.2 37.1 35.1 35.1 26.1 26.1
1 4.0 44.1 33.8 18.6 18.6 18.6 18.6 23.1 16.6 16.6 13.9 13.9 17.0 15.9 15.9 11.3 11.2
1.25 1.8 24.9 18.4 9.5 9.5 9.5 9.5 12.0 8.3 8.3 6.9 6.8 8.5 8.0 8.0 5.5 5.5
1.5 0.9 14.8 10.6 5.2 5.2 5.2 5.2 6.7 4.6 4.5 3.7 3.7 4.7 4.4 4.3 3.0 2.9
1.75 0.5 9.2 6.4 3.1 3.1 3.1 3.1 4.0 2.7 2.7 2.2 2.2 2.8 2.6 2.5 1.8 1.7
2 0.3 5.9 4.1 2.0 1.9 2.0 1.9 2.5 1.7 1.7 1.4 1.4 1.7 1.6 1.6 1.1 1.1
2.25 0.2 4.0 2.7 1.3 1.3 1.3 1.3 1.7 1.2 1.1 1.0 0.9 1.1 1.1 1.0 0.8 0.7
2.5 0.1 2.8 1.9 1.0 0.9 1.0 0.9 1.1 0.9 0.7 0.7 0.6 0.8 0.8 0.7 0.7 0.4
2.75 0.0 2.0 1.3 0.8 0.6 0.8 0.6 0.8 0.7 0.5 0.6 0.4 0.5 0.7 0.5 0.6 0.3
3 0.0 1.5 1.0 0.6 0.4 0.6 0.4 0.6 0.6 0.4 0.6 0.3 0.4 0.6 0.3 0.5 0.2

ESDRL 42.6 76.8 70.5 59.6 59.6 59.6 59.6 63.1 57.9 57.8 55.4 55.3 58.2 57.3 57.2 52.8 52.7
%DiffSD 80.4% 65.6% 40.1% 39.9% 40.1% 39.9% 48.2% 36.0% 35.8% 30.1% 30.0% 36.6% 34.6% 34.4% 23.9% 23.7%
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better than all the competing strategies. Note though, for large φ values (see Table 9 with
φ =0.9), the s&m strategy is outperformed by the mix-s&m strategy in both the zero- and
steady-state modes. Thirdly, increasing s and m improves the performance of each of the
monitoring schemes. Fourthly, while for the process under the effect of low level autocor-
relation only (say,φ =0.3 in Table 3 or Figure 2(a)), skipping at least 5 observations ensures
that we can theoretically get rid of all autocorrelation and the scheme yields the sameOOC
performance as the i.i.d. version, but for the combined negative effect of autocorrelation
and measurement errors (e.g. φ =0.3 and γ =0.3), it is not possible to theoretically get rid
of all the negative effect of autocorrelation and measurement errors for moderate values of
s andm so that %DiffA or %DiffSD converges to 0.0% - this only happens for unreasonably
large values of s andm. That is, a combined effect of both autocorrelation andmeasurement
errors introduces more variability in the process than autocorrelation only. Lastly, similar
to Figure 3, increasing the sample size yields an improved performance for the mix-s&m
strategy as well as the other strategies.

In essence, we observed that at any possible corresponding values of s andm:

• In zero-state mode, the mix-s&m strategy has a better OOC performance than the
mix&m and s&m strategies.

• In steady-state mode, the s&m strategy tends to outperform the mix&m and mix-s&m
strategies for large values of s when φ is small (for any value of γ ). However, when φ is
large (for any value of γ ), the mix-s&m strategies uniformly outperform the s&m and
mix&m strategies, whereas the mix&m strategy only outperforms the s&m strategy for
relatively small to moderate values of s.

3.3. Implementation example formonitoring autocorrelated datawith
measurement errors

The yogurt cup filling process dataset taken from page 670 of Costa and Castagliola [5] is
displayed on Table 10, which shows the weights of different yogurt cups taken at different
sampling points. The dataset has 20 samples (each of size 5 yogurt cups taken every hour
and each of them weightedm=2 times) corresponding to a 20-hours sequence of produc-
tion and for the sake of illustration, assume this is a full dataset. The Phase I analysis of this
process indicated that the weight of a yogurt cup,Xt,i,j, fits an AR(1) model with parameter
φ = 0.38, an IC mean estimate, μ0 = 124.9g and an IC standard deviation, σ0 = 0.76g.
An R&R study indicates that the measurement system standard deviation, σM = 0.24g, so
that γ =0.316. The aim of this example is to show how to implement the mix-s&m sam-
pling strategy to form rational subgroups of size n=3 (i.e. with nt−1 =1 and nt =2) when
s ∈{1,2},m=2 when the process is in a steady-statemode. In the last two columns, the cor-
responding plotting statistics at each sampling point are shown. For instance, for s=m=2
and t ∈{2,3}, these are calculated as follows:

X̄2 = 1
2 × 3

((X1,3,1 + X1,3,2) + (X2,1,1 + X2,1,2) + (X2,4,1 + X2,4,2)) = 125.08,

X̄3 = 1
2 × 3

((X2,3,1 + X2,3,2) + (X3,1,1 + X3,1,2) + (X3,4,1 + X3,4,2)) = 123.92.
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Figure 5. The weight of yogurt cups example for the X̄ scheme with the mix-s&m strategy.
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Table 10. The yogurt filling cup process dataset from Costa and Castagliola [5].

t Xt11 Xt12 Xt21 Xt22 Xt31 Xt32 Xt41 Xt42 Xt51 Xt52 Mix-1&2 Mix-2&2

1 124.9 124.8 125.9 125.9 125.2 124.8 124.6 124.1 124.8 124.4
2 124.9 125.2 125.5 125.0 124.1 123.9 125.2 125.2 125.0 125.6 124.98 125.08
3 125.1 125.1 125.2 124.8 125.4 125.3 122.9 122.4 125.4 125.4 125.23 123.92
4 126.1 125.9 124.6 124.8 125.7 125.5 126.4 126.5 124.9 125.7 125.53 125.93
5 125.8 125.7 122.6 122.6 124.1 123.5 126.1 126.3 124.9 125.0 124.75 125.85
6 125.0 125.2 125.5 124.8 124.8 125.0 124.9 124.8 124.8 124.2 124.20 124.58
7 124.2 124.6 125.8 125.3 125.4 125.5 126.4 126.2 125.1 125.2 125.00 125.20
8 124.9 124.9 123.8 123.2 125.1 125.3 124.0 124.5 124.4 124.2 125.22 124.87
9 125.9 125.8 124.4 124.8 126.3 125.7 124.9 125.2 125.2 125.1 125.12 125.37
10 124.2 124.3 126.2 125.5 125.6 125.0 124.4 124.4 124.1 124.3 124.72 124.88
11 123.7 123.6 123.4 123.3 124.7 124.8 123.1 123.1 123.1 122.8 124.75 124.02
12 124.0 124.1 122.6 122.4 123.6 123.6 124.4 124.5 123.6 123.1 123.67 124.42
13 122.0 122.5 123.9 124.0 123.7 124.1 124.3 124.4 121.9 122.9 122.88 123.40
14 122.4 123.0 122.8 123.1 123.7 124.2 123.7 124.1 122.8 123.1 123.53 123.50
15 123.9 123.6 124.1 124.5 123.4 122.9 123.1 123.1 124.5 125.1 123.28 123.60
16 121.9 122.3 123.4 123.3 123.5 123.3 125.3 125.5 123.3 123.6 123.27 123.55
17 123.3 122.9 123.6 123.5 124.2 123.8 123.4 123.6 123.5 123.4 123.48 123.33
18 122.0 122.2 123.6 123.4 124.7 125.0 122.6 122.5 124.5 123.9 123.50 122.88
19 124.0 123.9 123.1 123.4 123.9 124.5 122.6 122.8 124.2 123.5 123.88 123.83
20 125.5 124.9 122.2 122.3 123.2 123.2 123.2 123.3 123.2 123.2 123.88 124.22

When n=3, φ = 0.380 and γ =0.316, then using Equation (16) and Table 7, the result-
ing ϕ are equal to 1.0706 and 1.0423 for the mix-1&2 and mix-2&2 strategies, respectively.
That is, as s increases, the value of ϕ converges towards the value of 1 (given thatm is con-
stant) and thus the control limits become narrow. That is, theUCL / LCL for the X̄ scheme
are given by 127.34 / 122.46 and 127.28 / 122.52 for the mix-1&2 and mix-2&2 strategies,
respectively. Note though, as can be seen from Figure 5, themix-s&m strategy do not signal
any assignable causes in the process being monitored. In essence, this example illustrates
the weakness of the mix-s&m strategy when the level of autocorrelation is small and the
process is in a steady-state mode, see the last paragraph of Section 3.2.

4. Conclusion

In an effort to reduce the negative effect of autocorrelation, the mixed-s-skip sam-
pling strategy which combines the s-skip and mixed samples methodology is pro-
posed. Using the average and standard deviation of the run-length distribution, it is
shown that, in the zero-state mode, the mixed-s-skip strategy yields the best OOC
performance than the s-skip and mixed samples strategies for any level of autocorrela-
tion when evaluating the run-length processes with and without measurement errors.
However, in steady-state mode, it only yields the best OOC performance when the
level of autocorrelation is very high for processes with and without measurement
errors.

This new remedial approach sampling strategy is recommended instead of the mixed
samples strategy (for any autocorrelation level value in both zero- and steady-state modes)
and s-skip strategy (for any autocorrelation level value in zero-state; however, only for
large autocorrelation values in steady-state) when the process is under the negative effect
of autocorrelation with and without measurement errors. Finally, although it yields bet-
ter performance, the drawback of the proposed strategy is that it requires way more
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observations, time and effort to implement as compared to the standard no remedy
approach.

For future research purpose, we intend to investigate the performance of this sampling
strategy when the autocorrelation parameter, φ, as well as the distributional parameters,
are estimated from some historical Phase I data; that is, in part, in a similar manner as
done in Garza-Venegas et al. [9]. Moreover, the new mixed-s-skip strategy can easily be
applied for a variety of other monitoring schemes (i.e. the basic T2 scheme, synthetic X̄
or T2 schemes, exponentially weighted moving average or Cumulative Sum, etc., with key
basic concepts discussed in [5,6,13,14,24]) and different quality characteristics (i.e.median,
standard deviation, etc.).

Data availability statement

The data used in the application example is available from the papers by Costa and
Castagliola [5] and Franco et al. [7].
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