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ABSTRACT
We construct two U-empirical tests for the logistic location family
which are based on appropriate characterization of this family using
independent exponential shifts. We study the limiting distributions
and local Bahadur efficiency of corresponding test statistics under
close alternatives. It turns out that the present tests are consider-
ably more efficient than the recently proposed similar tests based
on another characterization. The efficiency calculations are accom-
panied by the simulation of power for new tests together with the
previous ones.Both efficiency and power turn out to be very high.
Finally we consider the application of our tests to real data example.
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1. Introduction

The logistic distribution family was apparently introduced by Verhulst in the mid nine-
teenth century. It has been used in many different areas such as logistic regression,
reliability theory, physical models, neural networks, hydrology, public health, and, more
recently, in finance. Typically, it appears as a substitute for the normal law because it is
also symmetric and bell-shaped but has heavier tails. The importance and significance of
logistic distribution is described in detail in the handbook [8].

However there are few goodness-of-fit tests which were designed just for this fam-
ily. Among the rare tests of this type we can mention the tests developed in [1,4,17,26].
Recently there appeared a number of statistical tests based on characterizations. Such
tests often are parameter-free and efficient, they have appealing properties based on some
hidden features of characterizations.

The survey of such tests can be found in [21] but there is not a single reference to tests
for the logistic family. The point is that the number of known characterizations of the
logistic family is surprisingly small in comparison with those for the exponential and nor-
mal families. This remark was already done by Kotz in [14]. Nevertheless, even now this
state of affairs continues to persist. The only research [18] proposing new tests based on a
characterization for the logistic distribution appeared when the paper [21] was completed.
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It seems that one of the first characterizations of logistic distribution by the property of
the sample median with random Laplace shift appeared in [9]. After a long pause the inter-
esting paper of Lin and Hu [16] emerged, containing a number of new characterizations of
the standard logistic distribution. They introduced the idea of characterization by the ran-
dom shift of order statistics. Later some papers expanding and developing this direction of
research were published, see, e.g.[2,3,12,27].

Also, it appears that the first tests based on the characterization of the logistic loca-
tion family has been build in [24]. In particular, the underlying characterization uses the
equidistribution of two order statistics with the one-sided random exponential shift. The
resulting statistics turn out to have reasonably high local Bahadur efficiency against natural
alternatives.

In the present paper we use a similar but different characterization which appeared in
[2] and [3]. This characterization also includes the equidistribution of smallest order statis-
tics but with independent two-sided exponential shifts. We build and study two statistics
based on this characterization: one is of the integral type while another is the Kolmogorov-
type statistic. Noteworthy is the fact that the new statistics are location-free under the null
hypothesis. Evaluating their local Bahadur efficiency we observe that this efficiency is sig-
nificantly higher than in case of previous tests from [24]. The explanation for this may be
the greater symmetry of the two-sided shift model.

The computation of efficiency is associated with the simulation of power for new tests
introduced in the present paper and previous ones. We calculate the power for sample size
20 and 50, standard significance levels and for two natural alternatives. One is the standard
normal distribution, the second is the logistic distribution with larger scale parameter.

We finish by considering the real data example concerning the annual rainfall in
Los Angeles from [5]. Our tests confidently accept the composite hypothesis that the
corresponding density is logistic with arbitrary location parameter. In the same time
we reject the null hypothesis when in reality the sample has the standard Cauchy
distribution.

The structure of the paper is as follows. We formulate the basic characterizations of
the logistic location family and construct the corresponding test statistics in Section 2.
They turn out to be U-statistics with complicated but bounded kernels. In Section 3, we
introduce some close alternatives to the logistic distribution, and calculate their Kull-
back–Leibler distance from the null hypothesis. In Section 4, we study the asymptotic
properties, and, in particular, the local Bahadur efficiency of the integral test. The same
analysis is being implemented in Section 5 for the Kolmogorov-type statistic. Section 6 is
devoted to the power study of our tests and to the analysis of an example of real data. We
collect and discuss the obtained results in Section 7.

2. The characterization and the construction of test statistics

The characterization used in [24] for the construction of the goodness-of-fit tests for the
logistic family was obtained in [12] and is formulated as follows.

Theorem 2.1: Let X and Y be independent identically distributed random variables with the
density f, and let Z be a random variable independent from X and Y and having the standard
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exponential distribution. Then the equality in distribution

X d= min(X,Y)+ Z (1)

holds if and only if f is the density of the logistic location family, namely f (x) = l(x − θ), θ ∈
R, where

l(x) = ex

(1 + ex)2
. (2)

The authors of [24] have built two tests using characterization (1) and studied their
local Bahadur efficiency. As one of the tests was based on the Kolmogorov-type statistic
which has a non-normal distribution, the use of this type of efficiency is quite justified.
The indicated efficiency turned out to be reasonably high for certain natural alternatives.

Below we use another characterization of the logistic family and construct similar but
different tests which give significantly higher efficiency values. This characterization can
be found in [2] and is formulated below. Similar butmore complicated results can be found
in [3].

Theorem 2.2: Let X and Y be as in the previous theorem, and let Z1,Z2 be independent
from X and Y random variables with standard exponential distribution. Then the equality in
distribution

min(X,Y)+ Z1
d= max(X,Y)− Z2 (3)

holds if and only if f is the density of the logistic location family.

Equality (3) is more complicated than a similar equation (1) but the tests built on the
basis of the equality (3) give a higher efficiency and power than in the case of (2). We will
see it later.

Let X1, . . . ,Xn be independent identically distributed observations with density f. We
are testing the null hypothesisH0 according to which f (x) = l(x − θ), θ ∈ R, where l is the
standard logistic density (2) against some close alternatives which will be described in the
next section.

Denote by Fn(t) the usual empirical df namely

Fn(t) = n−1
n∑

i=1
I{Xi < t}, t ∈ R.

Consider two U–empirical df ’s:

U1,n(t) =
(
n
2

)−1 ∑
1≤i<j≤n

I
{
max(Xi,Xj) < t

}
, t ∈ R,

and

U2,n(t) =
(
n
2

)−1 ∑
1≤i<j≤n

I
{
min(Xi,Xj) < t

}
, t ∈ R.

The next step is to consider two shifted U–empirical df ’s in accordance with both parts
of equality (3). TheU-empirical dfU+

n corresponds to the positive exponential shift while
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U−
n is in conformity with negative exponential shift. We have

U+
n (t) =

∫ ∞

0
U1,n(t + s)e−s ds =

(
n
2

)−1 ∑
1≤i<j≤n

∫ ∞

0
I
{
max(Xi,Xj) < t + s

}
e−s ds

=
(
n
2

)−1 ∑
1≤i<j≤n

(
e−max (0,max(Xi,Xj)−t)

)
,

and

U−
n (t) =

∫ ∞

0
U2,n(t − s)e−s ds =

(
n
2

)−1 ∑
1≤i<j≤n

∫ ∞

0
I
{
min(Xi,Xj) < t − s

}
e−s ds

=
(
n
2

)−1 ∑
1≤i<j≤n

(
1 − e(min(Xi,Xj)−t)

)
I
{
min(Xi,Xj) < t

}

=
(
n
2

)−1 ∑
1≤i<j≤n

(
1 − emin(0,min(Xi,Xj)−t)

)
.

To test the null hypothesisH0 we suggest two test statistics based on the characterization
from Theorem 2.2: the integral statistic

IUn =
∫ ∞

−∞

(
U+
n (t)− U−

n (t)
)
dFn(t) (4)

and the Kolmogorov-type statistic

QUn = sup
t

|U+
n (t)− U−

n (t)|. (5)

Our aim is to calculate their local Bahadur efficiencies against the alternatives described in
the next section. The outline of Bahadur efficiency can be found in the original papers [6,7],
in the monograph [19], and, e.g. in the survey [21, § 3]. The measure of Bahadur efficiency
for a sequence of test statistics {Tn} is its exact slope cT(θ), where θ is the alternative value
of parameter. The calculation of exact slope depends on the large deviation asymptotics
of {Tn} under the null hypothesis and on its limit almost surely under the alternative. The
value of Bahadur efficiency can be defined as

effT(θ) = cT(θ)/2K(θ), (6)

where K(θ) is the Kullback–Leibler ‘distance’ [7, § 4] between the alternative and the com-
posite null hypothesis. Very often, one takes the limit as θ → 0 in the right-hand side of (6)
obtaining, thereby, the local Bahadur efficiency.

3. Evaluation of Kullback–Leibler information

We begin with the description of densities fi(x, θ) and (when necessary) of their df ’s
Fi(x, θ), x ∈ R, i = 1, 2, 3, which will be considered in this paper as alternatives to the
logistic location family.
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(1) Scale alternative with the density

f1(x, θ) = eθ+xeθ

(1 + exeθ )2
.

(2) Generalized hyperbolic cosine alternative with the density

f2(x, θ) = �(θ + 2)
�2( θ2 + 1)

e(x+θx/2)

(1 + ex)θ+2 .

(An explanation of this formula is as follows. Instead of the traditional form of the
logistic density (4 cosh2(x/2))−1, x ∈ R, we consider (4 cosh2+θ (x/2))−1, x ∈ R, and
make the appropriate normalization.)

(3) Sine-alternative in the spirit of the paper [15] with the df for small θ F3(x, θ) = L(x)−
θ sin(2πL(x)), and the density

f3(x, θ) = l(x)− 2πθ cos(2πL(x))l(x).

Here L(x) = (1 + exp(−x))−1, x ∈ R is the df of the standard logistic distribution. All
these alternatives at θ = 0 go over to the logistic distribution.

Let K(θ) be the infimum of the Kullback–Leibler ‘distance’ between the alternative and
the family of logistic density with unknown location. The alternative densities fi, i = 1, 2, 3,
are regular enough to satisfy the assertion, see [7, Section 4]

2K(θ) ∼ If (0) · θ2, as θ → 0.

Here If (0) is the Fisher information at zero for the density f (x, θ) which is equal to

If (0) =
∫ ∞

−∞
|f ′θ (x, 0)|2
f (x, 0)

dx.

Then the formula (6) for the local Bahadur efficiency takes the form [6,19]:

effT = lim
θ→0

cT(θ)
If (0)θ2

. (7)

Now let us find the value of Ij(0), j = 1, 2, 3 for our three alternatives. Using the tables of
integrals [10], we obtain:

I1(0) =
∫ ∞

−∞
ex(ex + x + 1 − xex)2

(1 + ex)4
dx ≈ 1.430. (8)

In the same way we find the Fisher information I2(0) and I3(0) and put them all together
in the Table 1.
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Table 1. Fisher information for three alternatives.

Alternatives

Fisher information f1 f2 f3

If (0) 1.430 0.355 19.739

4. Integral type statistic

Consider the auxiliary function

g(x, y; z) = e−max (0,max(x,y)−z) − (1 − emin(0,min(x,y)−z)), x, y, z ∈ R.

Performing the integration in (4), we see that the integral statistic IUn is asymptotically
equivalent to the U-statistic of degree 3 with the centered kernel

�(x, y, z) = 1
3
(
g(x, y; z)+ g(y, z; x)+ g(x, z; y)

)
.

Let us calculate the projection of this kernel:

�(t) = E (�(X,Y ,Z)|Z = t) = E

(
1
3
g(X,Y ; t)+ 2

3
g(X, t;Y)

)
.

It is easy to show that the characterization we use implies E(g(X,Y ; t)) = 0 for any t, and
it remains to calculate the second summand. We have

E(g(X, t;Y)) = E

(
e−max (0,max(X,Y)−t)

)
− E

(
(1 − emin(0,min(X,Y)−t))

)
:= I1(t)− I2(t).

The integrals I1(t), I2(t) have been calculated already in [24], hence we have:

I1(t) = Li2(−et)+ 1
2
ln2(1 + et)− 1

1 + et
+ π2

6
, t ∈ R,

and

I2(t) = Li2(−et)+ t ln(et + 1)− 1
2
ln2(1 + et)+ 2et + 1

1 + et
, t ∈ R.

Here the Euler’s dilogarithm Li2 is given by the formula

Li2(z) = −
∫ z

0

ln(1 − t)
t

dt, z ∈ C.

Collecting the calculations together, we see that the dilogarithm disappears, and the
projection is an even function

�(t) = 2
3

(
ln2(et + 1)− t ln(et + 1)+ π2

6
− 2

)
, t ∈ R.

Let us calculate the variance of this projection. Using numerical integration, we obtain

�2 = E�2(X) ≈ 0.00697.
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Hence the kernel� is non-degenerate, and by Hoeffding’s theorem [13] one has:

√
nIUn

d−→ N (
0, 9�2) ,

as n → ∞. Using this limit, we can easily calculate the asymptotic critical values of any
prescribed level for the test based on IUn.

The kernel � is non-degenerate, centered and bounded, therefore we can describe the
logarithmic large deviations ofU-statistics with such kernels using [23, Theor.2.1]. For the
reader’s convenience, we state the corresponding theorem.

Theorem 4.1: Let the sequence of U-statistics Vn with centered kernel� of degree m ≥ 1 be
bounded. We suppose that it is non-degenerate with the positive variance σ 2 of its projection
ψ(s) = E(�(X1, . . . ,Xm)|X1 = s). Then for any real sequence {γn} such that γn → 0 one
has

lim
n→∞ n−1 ln Pr{Vn � a + γn} =

∞∑
j=2

bjaj,

where the series on the right-hand side converges for sufficiently small a > 0, moreover,
b2 = −1/(2m2σ 2).

Applying this result to our sequence of test statistics IUn, we get the following statement.

Theorem 4.2: For any t > 0 limn→∞ n−1 lnP(IUn > t) = h(t),where h is some contin-
uous function such that h(t) ∼ −t2/18�2 as t → 0.

Now we are able to calculate the local Bahadur exact slope cIU(θ) of the sequence of
statistics IUn from (7). According to Theorems 1 and 2 from [22], and using Theorem 4.2
we get:

cIU(θ , f ) ∼ �−2
(∫ ∞

−∞
�(x)f ′θ (x, 0) dx

)2
θ2, as θ → 0. (9)

Next, we proceed to the calculation of local efficiencies for all three alternatives listed above.
In case of scale alternative with the density f1, we get by formula (9) the following relation
for the local Bahadur slope:

cIU(θ , f1) ∼ 1.339 · · · · θ2, as θ → 0.

Hence, by formulae (7) and (8), the local Bahadur efficiency in this case is equal to

effIU(f1) = lim
θ→0

cIU(θ , f1)
2K1(θ)

= 1.339 · · ·
1.430 · · · ≈ 0.937.

The calculations for the alternatives with the densities f2 and f3 are quite analogous, and
we get

effIU(f2) = lim
θ→0

cIU(θ , f2)
2K2(θ)

≈ 0.864; effIU(f3) = lim
θ→0

cIU(θ , f3)
2K3(θ)

≈ 0.849.

Note that all local efficiencies are collected below in the Table 2.
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Table 2. Comparative local Bahadur efficiencies for test statistics.

Test statistic

Alternative LUn IUn KUn QUn

f1 0.837 0.937 0.353 0.667
f2 0.770 0.864 0.288 0.566
f3 0.759 0.849 0.800 0.975

5. Kolmogorov-type statistic and the table of efficiencies

We return to the statistic QUn introduced in (5). Its limiting behavior is unknown but it is
possible to calculate the approximate critical values by simulation.

This statistic can be considered as the supremum by t of the family of absolute values
for U – statistics with the kernels

�1(X,Y ; t) = e−max (0,max(X,Y)−t) − (1 − emin(0,min(X,Y)−t)).

These kernels are centered, non-degenerate and bounded. To apply the theorem on large
deviations for such statistics from [20], let us calculate the family of projections of these
kernels. After extensive computations, we have:

�1(s, t) = E (�1(X,Y ; t)|Y = s) = E

{
e−max (0,max(X,s)−t) − (1 − emin(0,min(X,s)−t))

}

= et
(
ln(1 + emax(s,t))− 1

1 + emax(s,t) − max(s, t)
)

− e−t

(
(1 + et)emin(s,t)

1 + emin(s,t) − ln(1 + emin(s,t))

)

+ e3t + e2t + I{s < t}(e2t + et + 1)(es − et)
et(1 + et)(1 + es)

.

Now, we should calculate the family of variance functions �2
1(t) := EX�

2
1 (X, t) as

functions of t. After some calculations, we obtain

�2
1(t) := EX�

2
1 (X, t) = e−t (2te3t − 2(t − 1)e2t − 3et + 2

)
− 2e−2t (e4t − e3t − te2t − et + 1

)
ln(1 + et)− 2 ln2(1 + et).

The supremum of this function is attained for t = 0 and equals 1 − 2 ln2(2). Conse-
quently, the key parameter for large deviations is equal to

�2
1 = sup

t∈R

�2
1(t) = 1 − 2 ln2(2) ≈ 0.00393.

From [20] we get the following logarithmic large deviation asymptotics under H0:

Theorem 5.1: For any z > 0 limn→∞ n−1 lnP{QUn > z} = h(z), where h is some contin-
uous function, such that h(z) ∼ −z2/8�2

1 as z → 0.
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To this end, we need the following function, see [7, § 7]:

bQU(θ ; t) = Eθ�1(X,Y ; t) = Eθ

{
e−max (0,max(X,Y)−t) − (1 − emin(0,min(X,Y)−t))

}
,

where we used the Glivenko–Cantelli theorem for U-empirical df ’s [11] while the
index θ signifies that the sample has the alternative distribution. Then, the local
Bahadur exact slope assumes the representation cQU(θ) = 2h(bQU(θ)), where bQU(θ) =
supt∈R

|bQU(θ ; t)|.
Similarly to the expression for the local exact Bahadur slope of the integral statistic, we

get the following formula for theKolmogorov-type statistic, see similar calculations in [25]:

cQU(θ , f ) ∼ �−2
1 sup

t∈R

(∫ ∞

−∞
�1(x; t)f ′θ (x, 0)dx

)2
· θ2, θ → 0.

Nowwe will calculate in details the local Bahadur slope and local Bahadur efficiency of the
sequence of statistics QUn. The derivative of the density f1(x, θ) with respect to θ in the
point θ = 0 is equal to f ′1,θ (x, 0) = ex(ex+x+1−xex)

(ex+1)3 . First, we calculate the integral:

∫ ∞

−∞
�1(x, t)f ′1,θ (x, 0)dx = (e2t + 1) ln(1 + et)

2et
− tet + 1

2
.

Using Wolfram Mathematica package, we found that the supremum of the square of this
function is attained for t = 0 and equals (ln(2)− 1

2 )
2. Hence the local exact Bahadur slope

has the following representation:

cQU(θ , f1) ∼ �−2
1 sup

t∈R

(
(e2t + 1) ln(1 + et)

2et
− tet + 1

2

)2

· θ2

= (ln(2)− 1
2 )

2

1 − 2 ln2(2)
· θ2 ≈ 0.954 · θ2,

so that the local Bahadur efficiency is equal to

effQU(f1) = lim
θ→0

cQU(θ , f1)
2K1(θ)

= 0.954 · · ·
1.430 · · · ≈ 0.667.

The calculations for two other alternatives are quite similar, so we get after some lengthy
computations

effQU(f2) ≈ 0.566; effQU(f3) ≈ 0.975.

Let us collect all efficiencies we found as well as the corresponding efficiencies for the
tests from [24] in the separate table. ThereLUn andKUn are, respectively, the integral statis-
tic and the Kolmogorov-type statistic from the paper [24] while IUn and QUn are new
statistics from the present paper.

We see that in all cases the new test statistics are noticeably more efficient than the
previous ones from [24]. We believe that it happens due to greater symmetry of the char-
acterization based on (3) with respect to (1). At the same time, the integral statistic is more
efficient than the Kolmogorov one. It is a common situation which takes place for most
Bahadur efficiency comparisons, see [19].
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Table 3. Critical values for the statistic
√
nIUn and

√
nQUn.

√
nIUn

√
nQUn

5% 1% 5% 1%

n Lower Upper Lower Upper Upper Upper

20 −0.106 0.234 −0.142 0.312 0.935 1.158
50 −0.125 0.206 −0.170 0.276 0.940 1.160

Table 4. Power for the statistics IUn,LUn,QUn and KUn.

IUn LUn QUn KUn

n 5% 1% 5% 1% 5% 1% 5% 1%

20 0.758 0.415 0.602 0.319 0.749 0.461 0.589 0.294
50 0.997 0.974 0.995 0.935 0.992 0.949 0.960 0.813

Very high efficiencies of new statistics should be highlighted. This motivates us to
undertake the further study, namely the simulation of their power against common
alternatives.

6. Power study of new statistics

It is interesting to simulate the powers of new statistics for small sample sizes (as usu-
ally, we take n = 20 and n = 50) and to compare them with the integral statistic LUn and
Kolmogorov statistic KUn from [24].

We begin by simulating critical values of new statistics for two customary significance
level α = 0.05 and α = 0.01. In the case of integral statistics we provide two tails, the upper
and lower. We have simulated 10,000 values of considered statistics and got the following
critical values (Table 3).

Next step is to obtain via simulation the powers of all four statistics for a couple of stan-
dard alternatives. In this capacity, we take the standard normal distribution and the logistic
distribution with nonunit scale parameter θ = 0.75, 0.5 and 0.25, see the alternative f1 in
previous sections.

6.1. Norm(0,1)

Below we consider the power of our statistics IUn,QUn against standard normal distribu-
tion for n = 20 and n = 50, comparing them with the previous statistics LUn, KUn from
[24] (Table 4).

6.2. Logistic scale alternative

Now calculate power of our statistics IUn,QUn against scale alternative with θ =
0.75; 0.5; 0.25 for n=20;50 and compare it again with the statistics LUn, KUn from [24]
(Table 5).
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Table 5. Power for the statistics IUn, QUn, LUn, KUn.

IUn QUn LUn KUn

θ n 5% 1% 5% 1% 5% 1% 5% 1%

θ = 0.75 20 0.963 0.839 0.953 0.806 0.911 0.696 0.883 0.668
50 1 1 1 0.999 1 0.999 1 0.993

θ = 0.5 20 0.621 0.286 0.673 0.400 0.506 0.264 0.542 0.277
50 0.980 0.917 0.966 0.892 0.962 0.84 0.911 0.706

θ = 0.25 20 0.203 0.09 0.24 0.089 0.156 0.055 0.202 0.067
50 0.484 0.252 0.463 0.244 0.423 0.188 0.372 0.149

6.3. Testing real data sets

Finally, we consider a sample of real data which is the annual rainfall (in inches) during
March recorded at Los Angeles Civic Center from 1973 to 2006:

2.70 3.78 4.83 1.81 1.89 8.02 5.85 4.79 4.10 3.54 8.37 0.28 1.29 5.27 0.95 0.26 0.81 0.17
5.92 7.12 2.74 1.86 6.98 2.16 0.00 4.06 1.24 2.82 1.17 0.32 4.31 1.17 2.14 2.87

The Los Angeles rainfall data have been used earlier by some authors, see [5] where we
found this example. The authors of [5] analyzed the above rainfall data assuming it has the
logistic distribution with known location μ = 2.905 and scale σ = 1.367. It was observed
that the Kolmogorov-Smirnov test and the corresponding p-value showed quite well fit to
the above data.

We want to apply our tests IUn and QUn to this data. Before that, we need to divide
the data by 1.367 to obtain a unit scale. The location is not important here as our tests
are location-free. We calculated the values of our statistics and their p-values (Table 6). It
is seen that the above data confidently support the hypothesis H0, and this corresponds
to the conclusion of [5]. The result is somewhat unexpected as the annual rainfall could
rather be assumed normal or truncated normal, and not logistic.

Next, for contrast, we examined the second data set consisting of 50 values generated
from standard Cauchy distribution which resembles much the logistic distribution. Two
densities are similar at-a-glance and not so easy distinguished.

−0.189 −17.680 0.015 −3.059 −1.543 1.877 3.624 0.653 −0.845 0.747 −0.151 −0.061
−1.373 0.130 −14.752 0.595 3.670 0.434 −64.448 −3.843 −14.150 2.179 −2.730 0.266
0.543 −0.773 1.202 0.585 −0.349 −2.405 −0.683 0.277 −18.711 −0.171 1.682 −0.987
0.131 −0.380 3.662 0.937 −1.767 0.141 −0.544 4.343 10.563 −1.040 −0.413 −0.285
−0.837 0.318

We calculated the same test statistics and their p-values which are put also into Table 6.
Our tests surely reject the null hypothesis for the second data set, and the p-values are
convincing enough. This result was certainly expected.

Table 6. Values of statistics IUn, QUn for the data sets.

The first data set The second data set

Test Test statistic value p-Value Test statistic value p-Value

IU 0.002 p = 0.864 −0.028 p = 0.002
QU 0.119 p = 0.209 0.146 < 0.002



JOURNAL OF APPLIED STATISTICS 2621

7. Conclusion and discussion

We have built two new location-free tests for the logistic distribution based on a recent
characterization. They have the U-empirical structure, and we undertook their asymp-
totic analysis, especially the study of their Bahadur efficiency. The tests are not difficult
for implementation and have remarkably high local Bahadur efficiencies at least against
common alternatives to logistic family. These efficiencies are appreciably higher than the
efficiencies of previous tests recently proposed by the authors.

The empirical power of new tests which was simulated for natural alternatives and small
samples with sizes n = 20 and n = 50 confirmed the ordering of tests by their Bahadur
efficiency and turned out to be rather high too.We also examined a set of real data related to
annual rainfall in Los Angeles during 34 years and confirmed the (unexpected) conclusion
of other researchers that it obeys the logistic distribution.

The simplicity, high efficiency and power of the new tests make them attractive. These
tests significantly replenish the meager set of goodness-of-fit tests for the logistic family
available to statisticians, and this put on the agenda their subsequent realization in the R
language.
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