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ABSTRACT
We investigate, in this paper, the effect of the measurement error
(ME) on the performance of Run Rules control charts monitoring the
coefficient of variation (CV) squared. The previous Run Rules CV chart
in the literature is improved slightly by monitoring the CV squared
using two one-sided Run Rules charts instead of monitoring the CV
itself using a two-sided chart. The numerical results show that this
improvement gives better performance in detecting process shifts.
Moreover, we will show through simulation that the precision and
accuracy errors do have a negative effect on the performance of the
proposedRunRules charts.Wealso findout that takingmultiplemea-
surements per item is not an effective way to reduce these negative
effects. The proposed Run Rules control charts can be applied in the
anomaly detection area.

ARTICLE HISTORY
Received 8 December 2019
Accepted 21 June 2020

KEYWORDS
Run rules chart; Markov
chain; coefficient of variation;
measurement errors;
anomaly detection

1. Introduction

Among important statistical characteristics of a variable, the coefficient of variation (CV)
is widely used to evaluate the stability or concentration of the random variable around
the mean. It is defined as the ratio between the standard deviation to the mean, γ = σ/μ.
In many industrial processes, keeping the value of this coefficient of a characteristic of
interest within the permissible range means assuring the quality of products. A number of
examples have been illustrated in the literature for the applications of the CV in industry.
Castagliola et al. [5] presented an example where the quality of interest is the pressure test
drop time from a sintering process manufacturing mechanical parts. In this example, the
presence of a constant proportionality between the standard deviation of the pressure drop
time and its mean was confirmed. The CV was then monitored to detect changes in the
process variability. Ye et al. [22] showed that it is useful to monitor the CV in detecting the
presence of chatter, a severe form of self-excited vibration in the machining process which
leads to many machining problems. More examples about the need of using the CV as a
measure of interest has been discussed in [10]. Because of its wide range of applications,
monitoring the CVhas been amajor objective inmany studies in statistical process control,
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see, for example, Castagliola et al. [3], Zhang et al. [26], Castagliola et al. [4], Yeong et al.
[23], Tran and Tran [20], Khaw et al. [8], Noor-ul Amin et al. [13] and Noor-ul Amin and
Riaz [12].

Along with the development of the advanced control charts monitoring the CV with
improved performance, recent researches are paying attention to the effect of the mea-
surement error on the CV control chart. This makes these researches become more in
touch reality since the measurement error is often present in practice. A Shewhart control
chart monitoring the CV under the presence of measurement error (ME) was suggested
by Yeong et al. [24]. Tran et al. [19] improved the linear covariate error model for the
CV in [24] and then proposed the EWMA CV control chart with ME. Also, researchers
studied the effect of ME on the variable sampling interval control chart [11], the cumula-
tive sum control chart monitoring the CV [18], and the hotelling T2 control chart [25].
Very recently, Shongwe et al. [14] proposed a combined mixed-s-skip sampling strat-
egy to reduce the effect of autocorrelation on the X-bar in the presence of measurement
errors.

One of the reasons leads to the introduction of many advanced control charts monitor-
ing the CV is to overcome a drawback of the Shewhart CV chart which is only sensitive
to the large shifts. However, the Shewhart chart is still popularly used thanks to its sim-
plicity in implementation. From this point of view, the Run Rules charts are advantageous:
they are easy to implement (compared to, for example, the EWMA control chart or the
CUSUM control chart, even these charts may bring better performance) and they can
improve remarkably the performance of the Shewhart chart in detecting small or mod-
erate process shifts. The aim of this paper is to investigate the performance of Run Rules
CV control chart under the presence ofME. In fact, the RunRules chartmonitoring the CV
has been studied in [2]. However, theME has not been considered. Moreover, in this study,
the authors only focused on the two-sided charts (the one-sided chart has beenmentioned,
but quite sketchily without explanation for the design) with the CVmonitored directly.We
improve this design by monitoring the CV squared and presenting the design of the two
one-sided Run Rules charts in detail.

The paper proposes new advanced control charts that can be applied for anomaly detec-
tion. This issue has scored a blooming in science community recently. It has been seen a
connection between control chart and anomaly detection to improve the quality of credit
cardmanagement [21] or process in various areas [27], and to track the behaviour of emer-
gency department [7]. Anomaly detection is defined as a notion of finding instances in
data that are difference in compare with expected behavior. Approaches based on anomaly
detection perspective have contributed to increased efficiency in the decision making
process.

This paper consists of eight sections and is organized as follows. Followed by the intro-
duction in Section 1, Section 2 presents a brief review of the distribution of the sample
coefficient of variation. The design and the implementation of two one-sided Run Rules
control charts monitoring the CV squared (denoted as RRr,s − γ 2 charts) are presented in
Section 3. Section 4 is for the performance of these charts. A linear covariate error model
for the CV is reintroduced in Section 5. The design of control charts in the presence of
measurement errors and the effect of the measurement error on the RRr,s − γ 2 charts are
displayed in Section 6. Section 7 is devoted to an illustrative example. Some concluding
remarks are given in Section 8 to conclude.
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2. A brief review of distribution of the sample coefficient of variation

In this section, the distribution of the CV is briefly presented. The CV of a random vari-
able X, say γ , is defined as the ratio of the standard deviation σ = σ(X) to the mean
μ = E(X); i.e.

γ = σ

μ
.

Suppose that a sample of size n of normal i.i.d. random variables {X1, . . . ,Xn} is collected.
Let X̄ and S be the sample mean and the sample standard deviation of these variables, i.e.

X̄ = 1
n

n∑
i=1

Xi

and

S =
√√√√ 1

n − 1

n∑
i=1

(Xi − X̄)2.

Then, the sample coefficient of variation γ̂ of these variables is defined as

γ̂ = S
X̄
.

The probability distribution of the sample CV γ̂ has been studied in the literature by many
authors. However, the exact distribution of γ̂ has a complicated form. The approximate
distribution is then widely used as an alternative. The approximation of Fγ̂ (x|n, γ ), the
c.d.f (cumulative distribution function) of γ̂ , which is suggested by Castagliola et al. [5]:

Fγ̂ (x | n, γ ) � 1 − Ft
( √

n
x

∣∣∣∣ n − 1,
√
n

γ

)
, (1)

where Ft(.|n − 1,
√
n/γ ) is the c.d.f. of the noncentral t distribution with n−1 degrees of

freedom and noncentrality parameter. This approximation is only sufficiently precise when
γ < 0.5. This condition is in general satisfied in our case as it is very frequent that the CV
takes small values to ensure the stability of a process. More details on this problem have
been discussed in [19].

For the case of the sample CV squared (γ̂ 2), Castagliola et al. [5] showed that n/γ̂ 2

follows a noncentral F distribution with (1, n − 1) degrees of freedom and noncentrality
parameter n/γ 2. Then, they deduced the c.d.f Fγ̂ 2(x | n, γ ) of γ̂ 2 as

Fγ̂ 2(x|n, γ ) = 1 − FF
(
n
x

∣∣∣ 1, n − 1,
n
γ 2

)
, (2)

where FF
(
.|1, n − 1, n/γ 2) is the c.d.f of the noncentral F distribution. The corresponding

density function of γ̂ 2 is then

fγ̂ 2(x | n, γ ) = n
x2

fF
(
n
x

∣∣∣ 1, n − 1,
n
γ 2

)
, (3)

where fF
(
.|1, n − 1, n/γ 2) is the density function of the noncentral F distribution.
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Figure 1. The approximate density function of the γ̂ 2 for n = 5.

Figure 1 presents the density distribution of γ 2 for n = 5 and some different values
of γ .

3. Design and implementation of the RRr,s − γ 2 control chart

In the literature, the Run Rules control charts monitoring the CV have been investigated
in [2] with two-sided charts. However, since the distribution of γ 2 is asymmetric (as can
be seen from Equation (2) and also from Figure 1), these two-sided charts lead to the
problem of ARL-biased (Average Run Length) performance, i.e. the out-of-control ARL1
values are larger than the in-control values ARL0. This problem was also pointed out in
[2]. It is important to note thatARL is defined as the average number of samples before the
first out-of-control point is plotted in the control chart with a given specific shift τ [17].
ARL is concerned at the zero-state of the investigated statistical measure of performance.
ARL0 and ARL1 are denoted for the value of ARL when a process is in-control and out-of-
control, respectively. It is expected that the control chart has the smallest ARL1 value at a
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specific shift τ and when ARL0 is the same for all the charts. Therefore, we overcome the
ARL-biased property by designing simultaneously two one-sided charts to detect both the
increase and decrease of the CV squared. In particular, we suggest defining two one-sided
Run Rules control charts monitoring the CV squared, involving:

• a lower-sided r-out-of-s Run Rules control chart (denoted as RR−
r,s − γ 2) to detect a

decrease in γ with a lower control limit LCL− = μ0(γ̂
2) − kd.σ0(γ̂ 2) and an upper

control limit UCL− = +∞,
• an upper-sided r-out-of-s Run Rules control chart (denoted as RR+

r,s − γ 2) to detect
an increase in γ with a lower control limit UCL+ = μ0(γ̂

2) + ku.σ0(γ̂ 2) and a lower
control limit LCL+ = 0,

where kd > 0 and ku > 0 are the chart parameters of the RR−
r,s − γ 2 and RR+

r,s − γ 2 charts,
respectively.

The closed forms of μ0(γ̂
2) and σ0(γ̂

2) have not been presented in the literature. We
apply in this study the accurate approximations provided by Breunig [1] for both μ0(γ̂

2)

and σ0(γ̂
2) as follows:

μ0(γ̂
2) = γ 2

0

(
1 − 3γ 2

0
n

)
, (4)

σ0(γ̂
2) =

√
γ 4
0

(
2

n − 1
+ γ 2

0

(
4
n

+ 20
n(n − 1)

+ 75γ 2
0

n2

))
− (μ0(γ̂ 2) − γ 2

0 )2. (5)

Given the value of the control limit for each chart, an out-of-control signal is given
at time i if r-out-of-s consecutive γ̂i values are plotted outside the control interval, i.e.
γ̂ 2
i < LCL− in the lower-sided chart and γ̂ 2

i > UCL+ in the upper-sided chart. The control
charts designed above are called pure Run Rules type chart. In this study, we only con-
sider the 2-out-of-3, 3-out-of-4 and 4-out-of-5 Run Rules charts. The performance of the
proposed charts is measured by the ARL which is calculated by using Markov chain as
follows.

Firstly, we define the matrix P of the embedded Markov chain. For the two one-sided
RR2,3 − γ 2 control charts, P is defined by

P =
(
Q r
0T 1

)
=

⎛
⎜⎜⎝

0 0 p 1 − p
p 0 0 1 − p
0 1 − p p 0
0 0 0 1

⎞
⎟⎟⎠ , (6)

where Q is a (3, 3) matrix of transient probabilities, r is a (3, 1) vector satisfied r = 1 −
Q1 with 1 = (1, 1, 1)T and 0 = (0, 0, 0)T, p is the probability that a sample drops into the
control interval. The corresponding (3, 1) vector q of initial probabilities associated with
the transient states is q = (0, 0, 1)T, i.e. the third state is the initial state.
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For the case of RR3,4 − γ 2 control charts, the transient probability matrix Q(7×7) is
given by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 p 0 0 0 0
0 0 0 0 p 0 0
0 0 0 0 0 1 − p p
p 0 0 0 0 0 0
0 1 − p p 0 0 0 0
0 0 0 1 − p p 0 0
0 0 0 0 0 1 − p p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

In this case, the seventh state in the vector q = (0, 0, 0, 0, 0, 0, 1)T is the initial state.
Extended to ‘longer’ (4, 5) Run Rules, the (15, 15)matrixQ of transient probabilities for

the two one-sided RR4,5 − γ 2 control charts is

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − p p 0 0 0 0 0 p
0 0 p 1 − p 0 0 0 0
0 0 0 0 p 1 − p 0 0
0 0 0 0 0 0 1 − p p
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 − p
0 0 0 0 0 0 1 − p p
0 0 0 0 p 1 − p 0 0
0 0 p 1 − p 0 0 0 0

1 − p p 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1 − p
0 0 0 0 p 1 − p 0
0 0 0 p 1 − p 0 0
p 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 − p p 0 0 0 0
0 0 0 p 1 − p 0 0
0 0 0 0 0 p 1 − p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)
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that corresponds to the (15, 1) initial probabilites vector q = (0, . . . , 0, 1)T (i.e. the ini-
tial state is the 15th one). These transient probability matrices has been presented in, for
example, [15–17].

Let us now suppose that the occurrence of an unexpected condition shifts the in-control
CV value γ0 to the out-of-control value γ1 = τ × γ0, where τ > 0 is the shift size. Values
of τ ∈ (0, 1) correspond to a decrease of the γ0, while values of τ > 1 correspond to an
increase of γ0. Then, the probability p is defined by

• for the RR−
r,s − γ 2 chart:

p = P(γ̂ 2
i ≥ LCL−) = 1 − Fγ̂ 2(LCL−|n, γ1), (9)

• for the RR+
r,s − γ 2 chart:

p = P(γ̂ 2
i ≤ UCL+) = Fγ̂ 2(UCL+|n, γ1), (10)

where Fγ̂ 2 is defined in (2).
Once the matrix Q and the vector q have been determined, the ARL and the SDRL

(standard deviation of run length) are calculated by

ARL = qT(I − Q)−11, (11)

SDRL =
√
2qT(I − Q)−2Q1 − ARL2 + ARL. (12)

It is customary that a control chart is considered to be better than its competitors if it gives
a smaller value of the ARL1 while the ARL0 is the same. Therefore, the parameters of the
RRr,s − γ 2 control charts should be the solution of the following equations:

• for the RR−
r,s − γ 2 chart:

ARL(kd, n, p, γ0, τ = 1) = ARL0, (13)

• for the RR+
r,s − γ 2 chart:

ARL(ku, n, p, γ0, τ = 1) = ARL0, (14)

where ARL0 is predefined.

4. Performance of RRr,s − γ 2 control charts

Assigning the in-control value ARL0 at ARL0 = 370.4, the parameters kd and ku of the
lower-sided and upper-sided RRr,s − γ 2 charts for some combinations of n ∈ {5, 15}, γ0 ∈
{0.05, 0.1, 0.2} are presented in Table 1. Table 2 shows the correspondingARL1 values of the
proposed charts for various situations of the shift size τ . The obtained results show that the
two one-sided RRr,s − γ 2 charts not only overcome the ARL-biased problem (as the ARL1
values are always smaller than the ARL0) but also outperform the two-sided RR-γ charts
investigated in [2]. For example, with γ0 = 0.05, τ = 1.10 and n = 5 in the RR2,3 − γ 2

chart, we have ARL1 = 95.9 (Table 2 in this study), which is smaller than ARL1 = 101.6
(Table 2 in [2]).
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Table 1. Values of theparameters kd (left side) and ku (right side) of thedownward chart and theupward
RRr,s − γ 2 charts for γ0 = {0.05, 0.1, 0.2} and n = {5, 15}when ARL0 = 370.4.

γ0 = 0.05 γ0 = 0.1 γ0 = 0.2

Charts n = 5 n = 15 n = 5 n = 15 n = 5 n = 15

RR2,3 − γ 2 (1.194, 2.167) (1.487, 2.010) (1.170, 2.183) (1.464, 2.023) (1.088, 2.245) (1.407, 2.069)
RR3,4 − γ 2 (1.023, 1.293) (1.159, 1.298) (1.003, 1.301) (1.143, 1.306) (0.930, 1.331) (1.098, 1.333)
RR4,5 − γ 2 (0.866, 0.801) (0.915, 0.872) (0.849, 0.808) (0.902, 0.878) (0.785, 0.832) (0.865, 0.899)

Table 2. Values of (ARL1, SDRL1) of RRr,s − γ 2 charts corresponding to the chart parameters in Table 1
for various situations of τ .

γ0 = 0.05 γ0 = 0.1 γ0 = 0.2

Charts τ n = 5 n = 15 n = 5 n = 15 n = 5 n = 15

RR−
2,3 − γ 2 0.5 (8.1, 6.6) (2.1, 0.3) (8.1, 6.5) (2.1, 0.3) (8.2, 6.7) (2.1, 0.3)

RR−
3,4 − γ 2 (5.6, 3.3) (3.0, 0.1) (5.6, 3.3) (3.0, 0.1) (5.7, 3.4) (3.0, 0.1)

RR−
4,5 − γ 2 (5.4, 2.1) (4.0, 0.1) (5.4, 2.1) (4.0, 0.1) (5.4, 2.2) (4.0, 0.1)

RR−
2,3 − γ 2 0.65 (26.9, 25.2) (3.8, 2.3) (26.6, 25.0) (3.8, 2.2) (27.1, 25.5) (3.9, 2.4)

RR−
3,4 − γ 2 ((16.2, 13.7) (3.8, 1.4) (16.2, 13.8) (3.8, 1.4) (16.6, 14.1) (3.9, 1.5)

RR−
4,5 − γ 2 (12.6, 9.5) (4.5, 1.0) (12.7, 9.6) (4.5, 1.0) (13.0, 9.9) (4.5, 1.0)

RR−
2,3 − γ 2 0.8 (87.9, 86.1) (17.9, 16.2) (87.2, 85.4) (17.5, 15.9) (88.4, 86.6) (18.2, 16.5)

RR−
3,4 − γ 2 (59.8, 57.1) (12.6, 10.2) (59.9, 57.2) (12.7, 10.3) (61.1, 58.4) (13.2, 10.8)

RR−
4,5 − γ 2 (46.8, 43.4) (11.1, 8.0) (47.0, 43.6) (11.2, 8.0) (48.1, 44.7) (11.6, 8.4)

RR−
2,3 − γ 2 0.9 (184.4, 182.5) (75.4, 73.7) (183.7, 181.9) (73.9, 72.2) (185.2, 183.4) (75.7, 73.9)

RR−
3,4 − γ 2 (149.3, 146.5) (55.4, 52.7) (149.5, 146.7) (55.3, 52.6) (151.3, 148.5) (57.1, 54.5)

RR−
4,5 − γ 2 (128.7, 125.1) (46.5, 43.1) (129.1, 125.4) (46.7, 43.3) (130.9, 127.3) (48.3, 44.9)

RR+
2,3 − γ 2 1.10 (95.9, 94.1) (45.8, 44.1) (96.5, 94.7) (46.4, 44.6) (98.7, 96.9) (48.5, 46.8)

RR+
3,4 − γ 2 (94.2, 91.5) (42.3, 39.7) (94.8, 92.0) (42.8, 40.1) (97.0, 94.2) (44.7, 42.1)

RR+
4,5 − γ 2 (94.9, 91.4) (41.3, 37.9) (95.4, 91.9) (41.7, 38.3) (97.6, 94.0) (43.6, 40.2)

RR+
2,3 − γ 2 1.25 (25.8, 24.2) (8.7, 7.1) (26.1, 24.4) (8.8, 7.2) (27.2, 25.6) (9.4, 7.8)

RR+
3,4 − γ 2 (26.3, 23.8) (8.9, 6.5) (26.5, 24.0) (9.0, 6.6) (27.6, 25.1) (9.5, 7.1)

RR+
4,5 − γ 2 (27.5, 24.2) (9.5, 6.4) (27.8, 24.5) (9.6, 6.5) (28.9, 25.5) (10.1, 7.0)

RR+
2,3 − γ 2 1.5 (8.1, 6.6) (3.1, 1.5) (8.2, 6.7) (3.1, 1.6) (8.6, 7.1) (3.3, 1.7)

RR+
3,4 − γ 2 (9.1, 6.7) (3.9, 1.4) (9.2, 6.8) (3.9, 1.5) (9.6, 7.2) (4.0, 1.6)

RR+
4,5 − γ 2 (10.2, 7.1) (4.8, 1.4) (10.3, 7.2) (4.8, 1.4) (10.7, 7.6) (4.9, 1.6)

RR+
2,3 − γ 2 2.0 (3.4, 1.9) (2.1, 0.3) (3.4, 1.9) (2.1, 0.3) (3.6, 2.1) (2.1, 0.4)

RR+
3,4 − γ 2 (4.3, 2.0) (3.1, 0.3) (4.4, 2.0) (3.1, 0.3) (4.6, 2.2) (3.1, 0.3)

RR+
4,5 − γ 2 (5.3, 2.1) (4.0, 0.2) (5.4, 2.1) (4.0, 0.2) (5.6, 2.3) (4.1, 0.3)

5. Linear covariate error model for the coefficient of variation

The previous design for the RRr,s − γ 2 control charts is based on a latent assumption that
the values in the collected sample are measured exactly without the measurement error.
This assumption, however, is usually not reached in practice and it is difficult to avoid
the measurement error. In this section, we suppose a linear covariate error model to the
measurement error, which is suggested by Linna and Woodall [9].

Suppose that the quality characteristic X of n consecutive items at step ith is
(Xi,1,Xi,2, . . . ,Xi,n), where Xi,j ∼ N(μ0 + aσ0, b2σ 2

0 ), where μ0 and σ0 are the in-control
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mean and standard deviation of X, a and b represent the standardized mean and the stan-
dardized deviation shifts, respectively. The process has shifted if the process mean μ0
and/or the process standard deviation σ0 have changed (a 	= 0 and/or b 	= 1). Due to the
measurement error, we only observe the values (X∗

i,j,1, . . . ,X
∗
i,j,m) of a set of m measure-

ment operations instead the true values Xi,j. According to the linear covariate error model,
we assume X∗

i,j,k = A + BXi,j + εi,j,k, where A and B are two known constants and εi,j,k is
a normal random error term with parameters (0,�M) and independent of Xi,j. Note that
A is the constant bias component and B represents the parameter modeling the linearity
error. The bias and linearity errors are monitored and possibly eliminated by means of a
gauge calibration, see the AIAG manual [6] for further details.

Let X̄∗
i,j denote the mean ofm observed quantities of the same item j at the ith sampling.

It is straightforward to show that

X̄∗
i,j ∼ N(μ∗, σ ∗2) = N

(
A + B(μ0 + aσ0),B2b2σ 2

0 + σ 2
M
m

)
.

Tran et al. [19] showed that the CV of the quantity X̄∗
i,j is

γ ∗ = σ ∗

μ∗ =
√
B2b2 + η2

m

θ + B(1 + aγ0)
× γ0, (15)

where γ0 = σ0/μ0, η = σM/σ0 and θ = A/μ0 are the in-control value of CV, the preci-
sion and the accuracy error ratios, respectively. The sample coefficient of variation γ̂ ∗

i is
defined by γ̂ ∗

i = S∗
i /

¯̄X∗
i where ¯̄X∗

i and S∗
i are the sample mean and standard deviation of

X̄∗
1,j, . . . , X̄

∗
n,j X̄

∗
1,j, . . . , X̄

∗
n,j, i.e.

¯̄X∗
i = 1

n

n∑
j=1

X̄∗
i,j and S∗

i =
√√√√ 1

n − 1

n∑
j=1

(X̄∗
i,j − ¯̄X∗

i )
2.

The c.d.f of γ̂ ∗2 can be obtained from (2) by simply replacing γ by γ ∗, i.e. the c.d.f
Fγ̂ ∗2(x | n, γ ∗) of γ̂ ∗2 is given by

Fγ̂ ∗2(x|n, γ ∗) = 1 − FF
(
n
x

∣∣∣∣1, n − 1,
n

γ ∗2

)
. (16)

6. Implementation and the performance of the RRr,s − γ 2 charts with
measurement errors

Under the presence of measurement errors, the valuesμ0(γ̂
∗2) and σ0(γ̂

∗2) are calculated
as in (4) and (5), where γ0 is replaced by γ ∗

0 , which is defined from (15) with a = 0 and
b = 1:

γ ∗
0 =

√
B2 + η2

m

θ + B
× γ0. (17)

Suppose that the in-control value γ0 is shifted to the out-of-control value γ1 with the size τ ,
we can represent τ according to a and b as τ = b/(1 + aγ0). Therefore, the out-of-control



JOURNAL OF APPLIED STATISTICS 2187

CV of the observed quantity X̄∗
i,j can be expressed by

γ ∗
1 =

√
B2b2 + η2

m

θ + Bb
τ

× γ0. (18)

In the implementation of RRr,s − γ 2 control charts, the control limits, UCL∗+ =
μ0(γ̂

∗2) + k∗
u.σ0(γ̂ ∗2) and LCL∗− = μ0(γ̂

∗2) − k∗
d.σ0(γ̂

∗2), are also found by solving the
chart parameters kd and ku as the solution of the following equations:

• for the RR−
r,s − γ 2 chart:

ARL(kd, n, p, γ0, θ , η,m,B, b) = ARL0, (19)

• for the RR+
r,s − γ 2 chart:

ARL(ku, n, p, γ0, θ , η,m,B, b) = ARL0. (20)

The ARL in (19) and (20) should be calculated with the transition probability matrix
Q where the transition probability p is defined from (9) and (10) but with the c.d.f
Fγ̂ ∗2(x | n, γ ∗) of γ̂ ∗2 in (16) instead of c.d.f Fγ̂ 2 in (2).

To investigate the performance of the RRr,s − γ 2 charts under the appearance of
the measurement error, we consider several possible values of the parameters: n ∈
{5, 15}, γ0 ∈ {0.05, 0.1, 0.2}, η ∈ {0, 0.1, 0.2, 0.3, 0.5, 1}, θ ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05},
m ∈ {1, 3, 5, 7, 10} and B ∈ {0.8, 0.9, 1, 1.1, 1.2}. The value of B is considered within the
range [0.8, 1.2] according to the guidelines for measurement system acceptability pre-
sented in manual of AIA Group [6] for measurement system analysis. Without loss of
generality, we assume in the remaining that b = 1. The in-control value CV is also set
at ARL0 = 370.4.

The control limits of the proposed charts for some specific values of these parameters
have been presented in Table 3. The other values of the control limits for other situations
of these parameters are not presented here but are available upon request from authors.

Table 3. Values of LCL (first row) and UCL (second row) for the RRr,s − γ 2 control charts in the presence
of measurement errors, for different values of η, θ , n, γ0, B = 1 andm = 1.

RR2,3 − γ 2 RR3,4 − γ 2 RR3,4 − γ 2

η θ γ0 n = 10 n = 15 n = 10 n = 15 n = 10 n = 15

0.1 0.01 0.05 0.0004 0.0011 0.0007 0.0014 0.0009 0.0016
0.0063 0.0044 0.0047 0.0037 0.0039 0.0033

0.10 0.0015 0.0043 0.0027 0.0055 0.0038 0.0065
0.0254 0.0175 0.0191 0.0148 0.0156 0.0132
0.0582 0.0399 0.0435 0.0336 0.0354 0.0299

0.20 0.0059 0.0172 0.0107 0.0220 0.0151 0.0257
0.1061 0.0718 0.0786 0.0602 0.0636 0.0534

0.28 0.05 0.05 0.0004 0.0011 0.0007 0.0014 0.0009 0.0016
0.0062 0.0043 0.0047 0.0036 0.0038 0.0033

0.10 0.0015 0.0043 0.0027 0.0055 0.0037 0.0064
0.0251 0.0173 0.0189 0.0146 0.0154 0.0130
0.0575 0.0394 0.0430 0.0332 0.0350 0.0295

0.20 0.0059 0.0170 0.0106 0.0218 0.0149 0.0254
0.1047 0.0709 0.0776 0.0595 0.0629 0.0528
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Tables 4–7 show the corresponding values of the ARL1 under different effects of the
parameters η, θ ,m and B of the linear covariate model. Some simple conclusions can be
drawn from these tables as follows:

• The increase of the precision error ratio η leads to an increase of the ARL1. How-
ever, this increase in the ARL1 following the change of η is not significant, especially
when η � 0.3. For example, for the RR2,3 − γ 2 chart with n = 5, γ0 = 0.05,B = 1,m =
1, θ = 0.05 and τ = 0.8, we haveARL1 = 93.12 when η = 0.0 andARL1 = 93.20 when
η = 0.3 (Table 4). That means the precision error ratio does not affect much the
performance of the proposed charts.

• The accuracy error θ has a negative impact on the RRr,s − γ 2 charts’ performance: the
larger the accuracy error θ is, the larger the value ARL1 is, i.e. the lower of the control
chart is in detecting the out-of-control condition. For example, in the RR3,4 − γ 2 chart
withn = 5, γ0 = 0.1,B = 1,m = 1, η = 0.28 and τ = 1.3, we haveARL1 = 26.56when
θ = 0.0 and ARL1 = 29.19 when θ = 0.5 (Table 5).

• Given the value of other parameters, the variation of B significantly affects the perfor-
mance of the RRr,s − γ 2 charts. For instance, in Table 6 with the RR−

4,5 − γ 2 control
chart and n = 5,m = 1, γ0 = 0.2, η = 0.28, θ = 0.05, τ = 0.7 we have ARL1 = 14.43
when B = 0.8 and ARL1 = 13.93 when B = 1.2.

• In many situations, taking multiple measurements per item in each sample is an alter-
native to compensate for the effect of the measurement error. However, the obtained
results in this study show that this is not an effective way to reduce the impact of mea-
surement errors on the proposed control charts performance. This is because, according
to the results of the numerical analysis, the ARL1 decreases trivially or is almost
unchanged when m increases from m = 1 to m = 10. For example, with n = 5,B =
1, γ0 = 0.05, η = 0.28, θ = 0.05, τ = 0.8 in the RR+

2,3 − γ 2, we have ARL1 = 9.07 for
both m = 1 and m = 10 (Table 7). Hence, in order to reduce the impact of ME on
the proposed control charts performance, we can improve the measurement system to
reduce the values of θ and η.

• In general, the RRr,s − γ 2 control charts give better performance in detecting the small
process shifts compared to the VSI-γ 2 control chart investigated in [11], under the same
condition of measurement errors. For example, with the same values of n = 5, γ0 =
0.05, η = 0.28, θ = 0.05, τ = 0.8, we have ARL1 = 46.80 for the RR4,5 − γ 2 (Table 5
in this study), which is smaller than ARL1 = 61.99 for the VSI γ 2 control chart with
(hS, hL) = 0.1, 4.0 (Table 10 in [11]).

In practice, quality practitioners often prefer detecting a range of shifts	 = [a; b] since
it is difficult to guess an exact value for the process shift. In such situations, the statistical
performance of the control chart can be evaluated through the EARL (expected average
run length) defined as

EARL =
∫

	

ARL × fτ (τ ) dτ , (21)

where fτ (τ ) is the distribution of process shift τ and ARL is defined in (11). Without
any information about τ , one can choose the uniform distribution in 	, i.e fτ (τ ) = 1/
(b − a).



JO
U
RN

A
L
O
F
A
PPLIED

STA
TISTIC

S
2189

Table 4. The ARL values of the RRr,s − γ 2 control charts in the presence of measurement errors for γ0 = 0.05 (left side), γ0 = 0.1 (middle) and γ0 = 0.2 (right side),
and for different values of η, θ = 0.05, τ , n, B = 1,m = 1.

Charts τ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

n = 5
RR2,3 − γ 2 0.5 (8.92, 8.85, 8.98) (8.94, 8.85, 8.99) (8.92, 8.84, 8.99) (8.92, 8.86, 9.01) (8.90, 8.84, 9.06) (8.87, 8.87, 9.24)

0.7 (29.38, 29.11, 29.54) (29.45, 29.14, 29.58) (29.35, 29.06, 29.57) (29.40, 29.13, 29.65) (29.29, 29.09, 29.80) (29.19, 29.18, 30.42)
0.8 (93.12, 92.52, 93.41) (93.28, 92.44, 93.58) (93.15, 92.24, 93.38) (93.20, 92.54, 93.68) (92.90, 92.39, 93.98) (92.74, 92.60, 95.22)
1.3 (28.57, 28.83, 29.93) (28.57, 28.84, 29.94) (28.57, 28.85, 29.99) (28.58, 28.87, 30.06) (28.59, 28.92, 30.30) (28.66, 29.19, 31.45)
1.5 (9.07, 9.17, 9.62) (9.07, 9.17, 9.62) (9.07, 9.18, 9.64) (9.07, 9.19, 9.67) (9.07, 9.21, 9.77) (9.10, 9.32, 10.24)
2.0 (3.70, 3.74, 3.92) (3.70, 3.74, 3.92) (3.70, 3.74, 3.92) (3.70, 3.75, 3.94) (3.70, 3.76, 3.98) (3.71, 3.80, 4.16)

RR3,4 − γ 2 0.5 (6.01, 6.02, 6.11) (6.02, 6.02, 6.12) (6.02, 6.02, 6.12) (6.01, 6.02, 6.13) (6.01, 6.02, 6.15) (6.01, 6.05, 6.26)
0.7 (17.69, 17.71, 18.09) (17.71, 17.71, 18.11) (17.71, 17.71, 18.11) (17.70, 17.73, 18.15) (17.71, 17.73, 18.25) (17.68, 17.82, 18.68)
0.8 (64.10, 64.21, 65.33) (64.20, 64.19, 65.35) (64.22, 64.17, 65.37) (64.13, 64.24, 65.47) (64.22, 64.25, 65.78) (64.07, 64.48, 67.06)
1.3 (28.92, 29.17, 30.21) (28.92, 29.17, 30.22) (28.92, 29.18, 30.26) (28.93, 29.20, 30.34) (28.93, 29.25, 30.56) (29.00, 29.51, 31.63)
1.5 (10.01, 10.12, 10.55) (10.01, 10.12, 10.55) (10.01, 10.12, 10.57) (10.02, 10.13, 10.60) (10.02, 10.15, 10.69) (10.05, 10.26, 11.14)
2.0 (4.67, 4.71, 4.89) (4.67, 4.71, 4.89) (4.67, 4.72, 4.90) (4.67, 4.72, 4.91) (4.68, 4.73, 4.95) (4.69, 4.77, 5.13)

RR4,5 − γ 2 0.5 (5.64, 5.65, 5.71) (5.64, 5.65, 5.71) (5.64, 5.65, 5.72) (5.64, 5.65, 5.72) (5.64, 5.65, 5.74) (5.64, 5.67, 5.81)
0.7 (13.75, 13.79, 14.09) (13.76, 13.80, 14.10) (13.76, 13.81, 14.12) (13.75, 13.81, 14.13) (13.76, 13.81, 14.20) (13.76, 13.89, 14.52)
0.8 (50.44, 50.60, 51.63) (50.49, 50.63, 51.67) (50.51, 50.66, 51.74) (50.45, 50.66, 51.78) (50.46, 50.67, 52.03) (50.48, 50.96, 53.14)
1.3 (30.17, 30.42, 31.45) (30.18, 30.43, 31.46) (30.19, 30.43, 31.51) (30.18, 30.45, 31.57) (30.20, 30.51, 31.80) (30.25, 30.76, 32.85)
1.5 (11.17, 11.27, 11.70) (11.17, 11.27, 11.71) (11.17, 11.27, 11.73) (11.17, 11.28, 11.76) (11.17, 11.30, 11.85) (11.20, 11.41, 12.30)
2.0 (5.68, 5.72, 5.90) (5.68, 5.72, 5.90) (5.68, 5.72, 5.91) (5.68, 5.72, 5.92) (5.68, 5.73, 5.96) (5.69, 5.78, 6.14)

n = 15
RR2,3 − γ 2 0.5 (2.12, 2.12, 2.13) (2.12, 2.12, 2.13) (2.12, 2.12, 2.13) (2.12, 2.12, 2.13) (2.12, 2.12, 2.14) (2.12, 2.12, 2.15)

0.7 (4.12, 4.08, 4.18) (4.12, 4.08, 4.18) (4.12, 4.08, 4.18) (4.11, 4.08, 4.19) (4.11, 4.08, 4.22) (4.09, 4.10, 4.35)
0.8 (19.86, 19.42, 19.97) (19.83, 19.43, 20.02) (19.83, 19.45, 20.02) (19.80, 19.45, 20.06) (19.73, 19.43, 20.20) (19.56, 19.55, 21.01)
1.3 (9.68, 9.81, 10.41) (9.68, 9.82, 10.41) (9.68, 9.82, 10.44) (9.68, 9.83, 10.48) (9.69, 9.86, 10.61) (9.72, 10.01, 11.22)
1.5 (3.32, 3.36, 3.52) (3.32, 3.36, 3.52) (3.32, 3.36, 3.53) (3.32, 3.36, 3.54) (3.32, 3.37, 3.58) (3.33, 3.41, 3.75)
2.0 (2.13, 2.14, 2.17) (2.13, 2.14, 2.17) (2.13, 2.14, 2.18) (2.13, 2.14, 2.18) (2.13, 2.14, 2.19) (2.13, 2.15, 2.23)
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RR3,4 − γ 2 0.5 (3.02, 3.02, 3.03) (3.02, 3.02, 3.03) (3.02, 3.02, 3.03) (3.02, 3.02, 3.03) (3.02, 3.02, 3.03) (3.02, 3.03, 3.03)
0.7 (4.02, 4.02, 4.09) (4.02, 4.02, 4.09) (4.01, 4.02, 4.10) (4.01, 4.02, 4.10) (4.01, 4.03, 4.12) (4.01, 4.04, 4.20)
0.8 (13.91, 13.92, 14.41) (13.92, 13.91, 14.42) (13.90, 13.91, 14.44) (13.90, 13.92, 14.48) (13.89, 13.95, 14.59) (13.87, 14.06, 15.13)
1.3 (9.77, 9.89, 10.42) (9.77, 9.90, 10.42) (9.78, 9.90, 10.44) (9.78, 9.91, 10.48) (9.78, 9.94, 10.59) (9.81, 10.07, 11.13)
1.5 (4.10, 4.13, 4.28) (4.10, 4.13, 4.28) (4.10, 4.14, 4.29) (4.10, 4.14, 4.30) (4.10, 4.14, 4.33) (4.11, 4.18, 4.48)
2.0 (3.09, 3.10, 3.12) (3.09, 3.10, 3.13) (3.09, 3.10, 3.13) (3.09, 3.10, 3.13) (3.09, 3.10, 3.14) (3.09, 3.11, 3.17)

RR4,5 − γ 2 0.5 (4.01, 4.01, 4.01) (4.01, 4.01, 4.01) (4.01, 4.01, 4.01) (4.01, 4.01, 4.01) (4.01, 4.01, 4.01) (4.01, 4.01, 4.01)
0.7 (4.58, 4.59, 4.64) (4.58, 4.59, 4.64) (4.58, 4.59, 4.64) (4.58, 4.59, 4.65) (4.58, 4.59, 4.66) (4.58, 4.60, 4.71)
0.8 (12.09, 12.14, 12.55) (12.09, 12.14, 12.56) (12.09, 12.14, 12.58) (12.09, 12.15, 12.61) (12.09, 12.17, 12.70) (12.09, 12.27, 13.15)
1.3 (10.37, 10.48, 10.97) (10.37, 10.48, 10.98) (10.37, 10.49, 11.00) (10.37, 10.49, 11.03) (10.38, 10.52, 11.14) (10.40, 10.64, 11.64)
1.5 (4.97, 5.00, 5.13) (4.97, 5.00, 5.13) (4.97, 5.00, 5.14) (4.97, 5.00, 5.15) (4.97, 5.01, 5.18) (4.98, 5.04, 5.32)
2.0 (4.07, 4.08, 4.10) (4.07, 4.08, 4.10) (4.07, 4.08, 4.10) (4.07, 4.08, 4.10) (4.07, 4.08, 4.11) (4.07, 4.08, 4.13)
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Table 5. The ARL values of the RRr,s − γ 2 control charts in the presence of measurement errors for γ0 = 0.05 (left side), γ0 = 0.1 (middle) and γ0 = 0.2 (right side),
and for different values of θ , η = 0.28, τ , n, B = 1,m = 1.

Charts τ θ = 0 θ = 0.01 θ = 0.02 θ = 0.03 θ = 0.04 θ = 0.05

n = 5
RR2,3 − γ 2 0.5 (8.11, 8.06, 8.22) (8.28, 8.21, 8.38) (8.43, 8.35, 8.53) (8.59, 8.52, 8.69) (8.75, 8.69, 8.84) (8.93, 8.85, 9.01)

0.7 (26.88, 26.65, 27.19) (27.38, 27.15, 27.71) (27.87, 27.55, 28.15) (28.36, 28.10, 28.66) (28.87, 28.62, 29.12) (29.42, 29.13, 29.64)
0.8 (87.72, 87.23, 88.36) (88.96, 88.30, 89.56) (89.94, 89.12, 90.51) (90.85, 90.33, 91.69) (91.95, 91.30, 92.44) (93.24, 92.53, 93.63)
1.3 (25.84, 26.13, 27.35) (26.38, 26.67, 27.88) (26.93, 27.21, 28.42) (27.47, 27.76, 28.96) (28.02, 28.31, 29.50) (28.58, 28.86, 30.04)
1.5 (8.09, 8.20, 8.68) (8.28, 8.39, 8.87) (8.47, 8.59, 9.07) (8.67, 8.78, 9.26) (8.87, 8.98, 9.46) (9.07, 9.18, 9.66)
2.0 (3.38, 3.42, 3.61) (3.44, 3.48, 3.67) (3.50, 3.55, 3.73) (3.57, 3.61, 3.80) (3.63, 3.68, 3.87) (3.70, 3.75, 3.93)

RR3,4 − γ 2 0.5 (5.60, 5.61, 5.71) (5.68, 5.69, 5.80) (5.76, 5.77, 5.88) (5.84, 5.85, 5.96) (5.93, 5.93, 6.04) (6.01, 6.02, 6.12)
0.7 (16.15, 16.20, 16.62) (16.47, 16.50, 16.93) (16.76, 16.78, 17.24) (17.07, 17.10, 17.53) (17.38, 17.40, 17.84) (17.70, 17.72, 18.14)
0.8 (59.75, 59.92, 61.22) (60.70, 60.79, 62.12) (61.56, 61.53, 63.02) (62.38, 62.49, 63.79) (63.26, 63.35, 64.67) (64.20, 64.24, 65.45)
1.3 (26.28, 26.56, 27.72) (26.80, 27.08, 28.23) (27.33, 27.60, 28.75) (27.86, 28.13, 29.27) (28.39, 28.66, 29.79) (28.92, 29.19, 30.31)
1.5 (9.05, 9.16, 9.63) (9.24, 9.35, 9.82) (9.43, 9.54, 10.01) (9.62, 9.73, 10.20) (9.82, 9.93, 10.39) (10.02, 10.13, 10.59)
2.0 (4.35, 4.39, 4.58) (4.41, 4.46, 4.64) (4.48, 4.52, 4.70) (4.54, 4.58, 4.77) (4.61, 4.65, 4.84) (4.67, 4.72, 4.91)

RR4,5 − γ 2 0.5 (5.37, 5.39, 5.46) (5.43, 5.44, 5.51) (5.48, 5.49, 5.56) (5.53, 5.54, 5.61) (5.58, 5.59, 5.67) (5.64, 5.65, 5.72)
0.7 (12.65, 12.70, 13.04) (12.87, 12.92, 13.25) (13.09, 13.14, 13.47) (13.31, 13.35, 13.68) (13.53, 13.58, 13.90) (13.76, 13.80, 14.13)
0.8 (46.80, 47.00, 48.23) (47.56, 47.75, 48.90) (48.26, 48.47, 49.65) (49.00, 49.14, 50.35) (49.70, 49.91, 51.07) (50.47, 50.63, 51.74)
1.3 (27.55, 27.82, 28.97) (28.07, 28.34, 29.48) (28.60, 28.86, 29.99) (29.13, 29.39, 30.51) (29.65, 29.92, 31.04) (30.19, 30.44, 31.56)
1.5 (10.18, 10.30, 10.77) (10.38, 10.49, 10.96) (10.57, 10.68, 11.15) (10.77, 10.88, 11.35) (10.97, 11.08, 11.55) (11.17, 11.28, 11.75)
2.0 (5.34, 5.39, 5.58) (5.41, 5.45, 5.64) (5.47, 5.52, 5.71) (5.54, 5.58, 5.77) (5.61, 5.65, 5.84) (5.68, 5.72, 5.91)

n = 15
RR2,3 − γ 2 0.5 (2.09, 2.09, 2.10) (2.09, 2.09, 2.10) (2.10, 2.10, 2.11) (2.11, 2.11, 2.12) (2.11, 2.11, 2.13) (2.12, 2.12, 2.13)

0.7 (3.79, 3.76, 3.87) (3.85, 3.82, 3.94) (3.92, 3.89, 4.00) (3.98, 3.95, 4.06) (4.04, 4.02, 4.12) (4.12, 4.08, 4.19)
0.8 (17.85, 17.59, 18.24) (18.22, 17.94, 18.60) (18.65, 18.32, 18.96) (19.00, 18.68, 19.31) (19.39, 19.08, 19.68) (19.82, 19.40, 20.05)
1.3 (8.66, 8.81, 9.44) (8.86, 9.01, 9.64) (9.06, 9.21, 9.84) (9.26, 9.41, 10.05) (9.47, 9.62, 10.26) (9.68, 9.83, 10.47)
1.5 (3.07, 3.11, 3.28) (3.12, 3.16, 3.33) (3.17, 3.21, 3.38) (3.22, 3.26, 3.43) (3.27, 3.31, 3.48) (3.32, 3.36, 3.54)
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2.0 (2.08, 2.09, 2.13) (2.09, 2.10, 2.14) (2.10, 2.11, 2.15) (2.11, 2.12, 2.16) (2.12, 2.13, 2.17) (2.13, 2.14, 2.18)

RR3,4 − γ 2 0.5 (3.01, 3.02, 3.02) (3.02, 3.02, 3.02) (3.02, 3.02, 3.02) (3.02, 3.02, 3.02) (3.02, 3.02, 3.03) (3.02, 3.02, 3.03)
0.7 (3.83, 3.84, 3.91) (3.87, 3.87, 3.95) (3.90, 3.91, 3.99) (3.94, 3.95, 4.02) (3.98, 3.98, 4.06) (4.02, 4.02, 4.10)
0.8 (12.64, 12.68, 13.22) (12.89, 12.92, 13.47) (13.14, 13.16, 13.71) (13.38, 13.41, 13.97) (13.64, 13.67, 14.22) (13.91, 13.92, 14.46)
1.3 (8.87, 9.00, 9.56) (9.04, 9.18, 9.74) (9.22, 9.36, 9.92) (9.41, 9.54, 10.10) (9.59, 9.72, 10.28) (9.78, 9.91, 10.47)
1.5 (3.88, 3.91, 4.06) (3.92, 3.96, 4.11) (3.97, 4.00, 4.15) (4.01, 4.04, 4.20) (4.06, 4.09, 4.25) (4.10, 4.14, 4.29)
2.0 (3.06, 3.06, 3.09) (3.07, 3.07, 3.10) (3.07, 3.08, 3.10) (3.08, 3.08, 3.11) (3.09, 3.09, 3.12) (3.09, 3.10, 3.13)

RR4,5 − γ 2 0.5 (4.00, 4.00, 4.00) (4.00, 4.00, 4.01) (4.00, 4.00, 4.01) (4.01, 4.01, 4.01) (4.01, 4.01, 4.01) (4.01, 4.01, 4.01)
0.7 (4.46, 4.47, 4.52) (4.48, 4.49, 4.54) (4.51, 4.51, 4.57) (4.53, 4.54, 4.59) (4.55, 4.56, 4.62) (4.58, 4.59, 4.64)
0.8 (11.10, 11.17, 11.62) (11.29, 11.36, 11.82) (11.48, 11.55, 12.01) (11.69, 11.75, 12.21) (11.89, 11.94, 12.40) (12.09, 12.14, 12.60)
1.3 (9.50, 9.63, 10.15) (9.67, 9.79, 10.32) (9.84, 9.97, 10.49) (10.02, 10.14, 10.67) (10.19, 10.31, 10.85) (10.37, 10.49, 11.02)
1.5 (4.77, 4.80, 4.93) (4.81, 4.84, 4.97) (4.85, 4.88, 5.02) (4.89, 4.92, 5.06) (4.93, 4.96, 5.10) (4.97, 5.00, 5.15)
2.0 (4.05, 4.05, 4.07) (4.05, 4.05, 4.07) (4.06, 4.06, 4.08) (4.06, 4.06, 4.09) (4.07, 4.07, 4.09) (4.07, 4.08, 4.10)
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Table 6. The ARL values of the RRr,s − γ 2 control charts in the presence of measurement errors for γ0 = 0.05 (left side), γ0 = 0.1 (middle) and γ0 = 0.2 (right side),
and for different values of B, τ , n, η = 0.28, θ = 0.05,m = 1.

Charts τ B = 0.8 B = 0.9 B = 1.0 B = 1.1 B = 1.2

n = 5
RR2,3 − γ 2 0.5 (9.13, 9.05, 9.22) (9.03, 8.93, 9.11) (8.93, 8.85, 9.01) (8.84, 8.76, 8.94) (8.79, 8.72, 8.87)

0.7 (30.00, 29.74, 30.26) (29.73, 29.33, 29.95) (29.42, 29.13, 29.64) (29.10, 28.82, 29.42) (28.99, 28.71, 29.24)
0.8 (94.27, 93.68, 94.95) (93.89, 92.84, 94.31) (93.24, 92.53, 93.63) (92.45, 91.72, 93.28) (92.23, 91.63, 92.81)
1.3 (29.28, 29.57, 30.79) (28.89, 29.17, 30.37) (28.58, 28.86, 30.04) (28.33, 28.60, 29.77) (28.11, 28.39, 29.55)
1.5 (9.33, 9.44, 9.95) (9.18, 9.30, 9.79) (9.07, 9.18, 9.66) (8.98, 9.09, 9.56) (8.90, 9.01, 9.48)
2.0 (3.79, 3.83, 4.03) (3.74, 3.78, 3.98) (3.70, 3.75, 3.93) (3.67, 3.71, 3.90) (3.64, 3.69, 3.87)

RR3,4 − γ 2 0.5 (6.12, 6.13, 6.24) (6.06, 6.06, 6.18) (6.01, 6.02, 6.12) (5.98, 5.98, 6.09) (5.94, 5.95, 6.05)
0.7 (18.08, 18.11, 18.55) (17.89, 17.88, 18.33) (17.70, 17.72, 18.14) (17.57, 17.58, 18.00) (17.44, 17.46, 17.88)
0.8 (65.22, 65.28, 66.56) (64.70, 64.64, 66.01) (64.20, 64.24, 65.45) (63.85, 63.84, 65.08) (63.43, 63.53, 64.76)
1.3 (29.60, 29.88, 31.04) (29.22, 29.50, 30.63) (28.92, 29.19, 30.31) (28.68, 28.94, 30.06) (28.48, 28.74, 29.84)
1.5 (10.27, 10.38, 10.87) (10.13, 10.24, 10.71) (10.02, 10.13, 10.59) (9.93, 10.03, 10.49) (9.85, 9.96, 10.41)
2.0 (4.76, 4.81, 5.00) (4.71, 4.76, 4.95) (4.67, 4.72, 4.91) (4.64, 4.69, 4.87) (4.62, 4.66, 4.84)

RR4,5 − γ 2 0.5 (5.71, 5.72, 5.79) (5.67, 5.68, 5.75) (5.64, 5.65, 5.72) (5.61, 5.62, 5.69) (5.59, 5.60, 5.67)
0.7 (14.04, 14.08, 14.43) (13.88, 13.93, 14.26) (13.76, 13.80, 14.13) (13.66, 13.70, 14.02) (13.57, 13.61, 13.93)
0.8 (51.38, 51.54, 52.76) (50.91, 51.07, 52.19) (50.47, 50.63, 51.74) (50.18, 50.32, 51.43) (49.86, 50.02, 51.15)
1.3 (30.85, 31.13, 32.28) (30.48, 30.75, 31.88) (30.19, 30.44, 31.56) (29.94, 30.20, 31.30) (29.74, 30.00, 31.09)
1.5 (11.42, 11.54, 12.03) (11.28, 11.40, 11.87) (11.17, 11.28, 11.75) (11.08, 11.19, 11.65) (11.00, 11.11, 11.57)
2.0 (5.77, 5.81, 6.01) (5.72, 5.76, 5.96) (5.68, 5.72, 5.91) (5.65, 5.69, 5.88) (5.62, 5.66, 5.85)

n = 15
RR2,3 − γ 2 0.5 (2.13, 2.13, 2.14) (2.13, 2.13, 2.14) (2.12, 2.12, 2.13) (2.12, 2.12, 2.13) (2.12, 2.11, 2.13)

0.7 (4.20, 4.17, 4.29) (4.15, 4.12, 4.23) (4.12, 4.08, 4.19) (4.08, 4.05, 4.16) (4.06, 4.02, 4.13)
0.8 (20.29, 19.95, 20.61) (20.05, 19.69, 20.26) (19.82, 19.40, 20.05) (19.64, 19.25, 19.86) (19.50, 19.11, 19.73)
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1.3 (9.95, 10.11, 10.77) (9.80, 9.95, 10.60) (9.68, 9.83, 10.47) (9.58, 9.73, 10.36) (9.50, 9.65, 10.28)
1.5 (3.39, 3.43, 3.62) (3.35, 3.39, 3.57) (3.32, 3.36, 3.54) (3.30, 3.34, 3.51) (3.28, 3.31, 3.49)
2.0 (2.14, 2.15, 2.19) (2.13, 2.14, 2.18) (2.13, 2.14, 2.18) (2.12, 2.13, 2.17) (2.12, 2.13, 2.17)

RR3,4 − γ 2 0.5 (3.03, 3.03, 3.03) (3.03, 3.03, 3.03) (3.02, 3.02, 3.03) (3.02, 3.02, 3.03) (3.02, 3.02, 3.03)
0.7 (4.06, 4.07, 4.15) (4.04, 4.04, 4.12) (4.02, 4.02, 4.10) (4.00, 4.00, 4.08) (3.98, 3.99, 4.06)
0.8 (14.22, 14.25, 14.82) (14.05, 14.07, 14.62) (13.91, 13.92, 14.46) (13.78, 13.81, 14.34) (13.68, 13.71, 14.23)
1.3 (10.02, 10.15, 10.74) (9.88, 10.02, 10.59) (9.78, 9.91, 10.47) (9.69, 9.82, 10.38) (9.62, 9.75, 10.30)
1.5 (4.16, 4.20, 4.36) (4.13, 4.16, 4.32) (4.10, 4.14, 4.29) (4.08, 4.12, 4.27) (4.06, 4.10, 4.25)
2.0 (3.10, 3.11, 3.14) (3.10, 3.10, 3.13) (3.09, 3.10, 3.13) (3.09, 3.09, 3.12) (3.09, 3.09, 3.12)

RR4,5 − γ 2 0.5 (4.01, 4.01, 4.01) (4.01, 4.01, 4.01) (4.01, 4.01, 4.01) (4.01, 4.01, 4.01) (4.01, 4.01, 4.01)
0.7 (4.61, 4.62, 4.68) (4.59, 4.60, 4.66) (4.58, 4.59, 4.64) (4.57, 4.58, 4.63) (4.56, 4.57, 4.62)
0.8 (12.34, 12.40, 12.88) (12.20, 12.26, 12.72) (12.09, 12.14, 12.60) (12.00, 12.05, 12.50) (11.92, 11.98, 12.42)
1.3 (10.60, 10.72, 11.28) (10.47, 10.60, 11.14) (10.37, 10.49, 11.02) (10.29, 10.41, 10.93) (10.22, 10.34, 10.86)
1.5 (5.03, 5.06, 5.21) (5.00, 5.03, 5.18) (4.97, 5.00, 5.15) (4.95, 4.98, 5.12) (4.94, 4.97, 5.11)
2.0 (4.08, 4.08, 4.11) (4.08, 4.08, 4.11) (4.07, 4.08, 4.10) (4.07, 4.07, 4.10) (4.07, 4.07, 4.09)
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Table 7. The ARL values of the RRr,s − γ 2 control charts in the presence of measurement errors for γ0 = 0.05 (left side), γ0 = 0.1 (middle) and γ0 = 0.2 (right side),
and for different values ofm, τ , n, η = 0.28, θ = 0.05, B = 1.

Charts τ m = 1 m = 3 m = 5 m = 7 m = 10

n = 5
RR2,3 − γ 2 0.5 (8.93, 8.85, 9.01) (8.92, 8.84, 8.99) (8.93, 8.84, 8.99) (8.94, 8.85, 8.99) (8.93, 8.84, 8.99)

0.7 (29.42, 29.13, 29.64) (29.39, 29.06, 29.56) (29.41, 29.09, 29.56) (29.42, 29.11, 29.58) (29.39, 29.07, 29.58)
0.8 (93.24, 92.53, 93.63) (93.00, 92.20, 93.47) (93.22, 92.44, 93.43) (93.20, 92.50, 93.57) (93.12, 92.23, 93.52)
1.3 (28.58, 28.86, 30.04) (28.57, 28.84, 29.96) (28.57, 28.84, 29.95) (28.57, 28.83, 29.95) (28.57, 28.83, 29.94)
1.5 (9.07, 9.18, 9.66) (9.07, 9.18, 9.63) (9.07, 9.17, 9.62) (9.07, 9.17, 9.62) (9.07, 9.17, 9.62)
2.0 (3.70, 3.75, 3.93) (3.70, 3.74, 3.92) (3.70, 3.74, 3.92) (3.70, 3.74, 3.92) (3.70, 3.74, 3.92)

RR3,4 − γ 2 0.5 (6.01, 6.02, 6.12) (6.02, 6.02, 6.12) (6.01, 6.01, 6.12) (6.02, 6.02, 6.12) (6.01, 6.02, 6.12)
0.7 (17.70, 17.72, 18.14) (17.72, 17.70, 18.11) (17.70, 17.69, 18.11) (17.71, 17.71, 18.10) (17.69, 17.71, 18.11)
0.8 (64.20, 64.24, 65.45) (64.26, 64.15, 65.33) (64.18, 64.15, 65.36) (64.18, 64.21, 65.35) (64.15, 64.15, 65.39)
1.3 (28.92, 29.19, 30.31) (28.92, 29.17, 30.25) (28.92, 29.17, 30.23) (28.92, 29.17, 30.22) (28.92, 29.17, 30.22)
1.5 (10.02, 10.13, 10.59) (10.01, 10.12, 10.56) (10.01, 10.12, 10.55) (10.01, 10.12, 10.55) (10.01, 10.12, 10.55)
2.0 (4.67, 4.72, 4.91) (4.67, 4.72, 4.89) (4.67, 4.71, 4.89) (4.67, 4.71, 4.89) (4.67, 4.71, 4.89)

RR4,5 − γ 2 0.5 (5.64, 5.65, 5.72) (5.64, 5.65, 5.71) (5.64, 5.65, 5.71) (5.64, 5.65, 5.71) (5.64, 5.65, 5.71)
0.7 (13.76, 13.80, 14.13) (13.76, 13.80, 14.10) (13.75, 13.80, 14.10) (13.76, 13.79, 14.10) (13.75, 13.79, 14.10)
0.8 (50.47, 50.63, 51.74) (50.50, 50.65, 51.67) (50.46, 50.62, 51.68) (50.48, 50.58, 51.67) (50.47, 50.60, 51.67)
1.3 (30.19, 30.44, 31.56) (30.18, 30.43, 31.49) (30.18, 30.43, 31.47) (30.18, 30.42, 31.46) (30.17, 30.42, 31.46)
1.5 (11.17, 11.28, 11.75) (11.17, 11.27, 11.72) (11.17, 11.27, 11.71) (11.17, 11.27, 11.71) (11.17, 11.27, 11.71)
2.0 (5.68, 5.72, 5.91) (5.68, 5.72, 5.90) (5.68, 5.72, 5.90) (5.68, 5.72, 5.90) (5.68, 5.72, 5.90)

n = 15
RR2,3 − γ 2 0.5 (2.12, 2.12, 2.13) (2.12, 2.12, 2.13) (2.12, 2.12, 2.13) (2.12, 2.12, 2.13) (2.12, 2.12, 2.13)

0.7 (4.12, 4.08, 4.19) (4.12, 4.08, 4.18) (4.12, 4.08, 4.18) (4.12, 4.08, 4.18) (4.12, 4.08, 4.18)
0.8 (19.82, 19.40, 20.05) (19.83, 19.41, 19.99) (19.86, 19.45, 20.00) (19.85, 19.45, 20.00) (19.84, 19.43, 19.98)
1.3 (9.68, 9.83, 10.47) (9.68, 9.82, 10.43) (9.68, 9.82, 10.42) (9.68, 9.82, 10.42) (9.68, 9.82, 10.41)
1.5 (3.32, 3.36, 3.54) (3.32, 3.36, 3.53) (3.32, 3.36, 3.52) (3.32, 3.36, 3.52) (3.32, 3.36, 3.52)
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2.0 (2.13, 2.14, 2.18) (2.13, 2.14, 2.17) (2.13, 2.14, 2.17) (2.13, 2.14, 2.17) (2.13, 2.14, 2.17)

RR3,4 − γ 2 0.5 (3.02, 3.02, 3.03) (3.02, 3.02, 3.03) (3.02, 3.02, 3.03) (3.02, 3.02, 3.03) (3.02, 3.02, 3.03)
0.7 (4.02, 4.02, 4.10) (4.02, 4.02, 4.10) (4.01, 4.02, 4.09) (4.02, 4.02, 4.09) (4.01, 4.02, 4.09)
0.8 (13.91, 13.92, 14.46) (13.90, 13.92, 14.44) (13.90, 13.91, 14.42) (13.92, 13.90, 14.42) (13.91, 13.90, 14.42)
1.3 (9.78, 9.91, 10.47) (9.78, 9.90, 10.44) (9.78, 9.90, 10.43) (9.78, 9.90, 10.42) (9.78, 9.90, 10.42)
1.5 (4.10, 4.14, 4.29) (4.10, 4.13, 4.28) (4.10, 4.13, 4.28) (4.10, 4.13, 4.28) (4.10, 4.13, 4.28)
2.0 (3.09, 3.10, 3.13) (3.09, 3.10, 3.13) (3.09, 3.10, 3.13) (3.09, 3.10, 3.13) (3.09, 3.10, 3.13)

RR4,5 − γ 2 0.5 (4.01, 4.01, 4.01) (4.01, 4.01, 4.01) (4.01, 4.01, 4.01) (4.01, 4.01, 4.01) (4.01, 4.01, 4.01)
0.7 (4.58, 4.59, 4.64) (4.58, 4.59, 4.64) (4.58, 4.59, 4.64) (4.58, 4.59, 4.64) (4.58, 4.59, 4.64)
0.8 (12.09, 12.14, 12.60) (12.09, 12.14, 12.57) (12.09, 12.14, 12.57) (12.09, 12.14, 12.56) (12.09, 12.14, 12.56)
1.3 (10.37, 10.49, 11.02) (10.37, 10.48, 10.99) (10.37, 10.48, 10.98) (10.37, 10.48, 10.98) (10.37, 10.48, 10.98)
1.5 (4.97, 5.00, 5.15) (4.97, 5.00, 5.14) (4.97, 5.00, 5.14) (4.97, 5.00, 5.13) (4.97, 5.00, 5.13)
2.0 (4.07, 4.08, 4.10) (4.07, 4.08, 4.10) (4.07, 4.08, 4.10) (4.07, 4.08, 4.10) (4.07, 4.08, 4.10)
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The chart parameters are now defined as

• for the RR−
r,s − γ 2 chart:

EARL(LCL∗−, n, p, γ0, θ , η,m,B) = ARL0, (22)

• for the RR+
r,s − γ 2 chart:

EARL(UCL∗+, n, p, γ0, θ , η,m,B) = ARL0. (23)

In the following simulation, we consider a specific range of decreasing shifts 	D =
[0.5, 1) and increasing shifts 	I = (1, 2]. Figures 2 and 3 show the change of EARL of the

Figure 2. The effect of θ and η on the performance of the RRr,s − γ 2 control charts in the presence of
measurement errors for γ0 = 0.05.

Figure 3. The effect of θ and η on the performance of the RRr,s − γ 2 control charts in the presence of
measurement error for γ0 = 0.2.
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RR-γ 2 control charts when η varies in [0, 1] and θ varies in [0, 0.05] for γ0 = 0.05 and
γ0 = 0.2, respectively. The slope of the plane which represents the EARL values from right
to left and from outside to inside shows that the larger the values of η and θ , the larger
the value of EARL. That is to say, these errors have negative effects on the performance

Figure 4. The effect of B on the performance of the RRr,s − γ 2 control charts in the presence of
measurement errors for γ0 = 0.05; n = 5 (-�-) and n = 15 (−�−).

Figure 5. The effect of B on the performance of the RRr,s − γ 2 control charts in the presence of
measurement error for γ0 = 0.2; n = 5 (-�-) and n = 15 (−�−).
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of the RR-γ 2 charts. For example, in Figure 2 when n = 5, B = m = 1, and γ = 0.05,
we have EARL = 82.27 for θ = η = 0 (corresponding to no measurement errors), but
EARL = 82.81 for η = 0, θ = 0.05 (corresponding to the negative effect of accuracy error),
EARL = 83.42 for θ = 0, η = 0.3 (corresponding to the negative effect of precision error),

Figure 6. The effect of m on the performance of the RRr,s − γ 2 control charts in the presence of
measurement errors for γ0 = 0.05; n = 5 (-�-) and n = 15 (−�−).

Figure 7. The effect of m on the performance of the RRr,s − γ 2 control charts in the presence of
measurement error for γ0 = 0.2; n = 5 (-�-) and n = 15 (−�−).
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and EARL = 84.49 for θ = 0.05, η = 0.5 (corresponding to the negative effect of both pre-
cision and accuracy error). The effect of B andm on the EARL is displayed in Figures 4–7
for both γ0 = 0.05 and γ0 = 0.2. We obtain a similar trend as the case of the specific shift
size: When B increases, the EARL decreases and the EARL does not change significantly
whenm increases. The almost constant EARL line shows that the effect ofm on these chart
performance is insignificant. That is to say, increasing the value of m does not reduce the
negative effect of measurement errors on the charts. In contrast, the plot of the EARL cor-
responding to n = 15 is always below the plot of the EARL corresponding to n = 5. That
means, the sample size has a great impact on the RRr,s − γ 2 charts’ performance regardless
of the measurement error.

7. Illustrative example

In this section, we present an illustrative example of the implementation of the RRr,s − γ 2

control charts in the presence of the measurement error. The real industrial data from
a sintering process in an Italian company that manufactures sintered mechanical parts,
which were introduced in [5], are considered.

The process manufactures parts guarantee a pressure test by dropping time Tpd from 2
bar to 1.5 bar larger than 30 s as a quality characteristic related to the pore shrinkage. Since
the presence of a constant proportionalityσpd = γpd × μpd between the standard deviation
of the pressure drop time and its mean had been demonstrated by the preliminary regres-
sion study relatingTpd to the quantityQC ofmolten copper, the quality practitioners decide
to monitor the CV γpd = σpd/μpd to detect changes in the process variability. According
to the description in [5], an estimate γ̂0 = 0.417 is calculated from a Phase I dataset based
on a root mean square computation. Phase II data are reproduced in Table 8.

Table 8. Illustrative example of Phase II
dataset.

i X
∗
i S∗i γ̂ γ̂ ∗2

1 906.4 476.0 0.525 0.27563
2 805.1 493.9 0.614 0.37700
3 1187.2 1105.9 0.932 0.86862
4 663.4 304.8 0.459 0.21068
5 1012.1 367.4 0.363 0.13177
6 863.2 350.4 0.406 0.16484
7 1561.0 1562.2 1.058 1.11936
8 697.1 253.2 0.363 0.13177
9 1024.6 120.9 0.118 0.01392
10 355.3 235.2 0.662 0.43824
11 485.6 106.5 0.219 0.04796
12 1224.3 915.4 0.748 0.55950
13 1365.0 1051.6 0.770 0.59290
14 704.0 449.7 0.639 0.40832
15 1584.7 1050.8 0.663 0.43957
16 1130.0 680.6 0.602 0.36240
17 824.7 393.5 0.477 0.22753
18 921.2 391.6 0.425 0.18062
19 870.3 730.0 0.839 0.70392
20 1068.3 150.8 0.141 0.01988
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Figure 8. TheupwardCUSUM-γ 2 control chart in thepresenceof themeasurement error corresponding
to the Phase II data in Table 8.
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According to [19] under the presence of the measurement error, we suppose that the
parameters of the linear covariate error model are η = 0.28, θ = 0.05, B = 1, andm = 1.
Based on the process engineer’s experience, a specific shift size τ = 1.25 was expected to
detect from the process. Therefore, we apply the upper-sided RRr,s−γ 2 control chart to
monitor the CV squared. The control limits of the RR+

2,3 − γ 2, RR+
3,4 − γ 2 and RR4,5 − γ 2

chart are found to be UCL+ = 0.5567, UCL+ = 0.3821 and UCL+ = 0.2972, respectively.
The values of γ ∗2

i are then plotted in these charts (Figure 8) long with the control limit
UCL+. For the purpose of comparison, we also draw the control limit (UCL+ = 1.1913)
of the original Shewhart control chart with the same parameters.

As can be seen from the Figure 8, the RR+
2,3 − γ 2, RR+

3,4 − γ 2 and RR4,5 − γ 2 chart
signal the occurrence of the out-of-control condition by two-out-of-three, three-out-of-
four, and four-out-of-five (respectively) successive plotting points above the corresponding
control limits from the sample #12. Meanwhile, the Shewhart chart fails to detect this out-
of-control condition.

8. Concluding remarks

In this paper, the performance of Run Rules control charts is improved slightly bymonitor-
ing the CV squared with the two one-sided charts rather than monitoring directly the CV
with a two-sided chart as in a previous study in the literature. The effect of measurement
errors on the performance of the RRr,s − γ 2 control charts using a linear covariate error
model is also investigated. We have pointed out the negative effect of measurement errors
on the proposed charts: the increase of η and θ leads to an increase of EARL. Moreover,
the obtained results show that measuring repeatedly is not an efficient method for limit-
ing these unexpected effects. Extension to Run Rules EWMA and Run Rules CUSUM γ 2

type charts and the effect of the parameters estimation on their statistical properties are
suggested as further important topics of research.
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