
JOURNAL OF APPLIED STATISTICS
2022, VOL. 49, NO. 1, 98–121
https://doi.org/10.1080/02664763.2020.1799958

MulticlusterKDE: a new algorithm for clustering based on
multivariate kernel density estimation

D. Scaldelai a, L. C. Matioli b, S. R. Santosa and M. Kleinac

aColegiado de Matemática, Universidade Estadual do Paraná – Unespar, Campo Mourão, Brazil;
bDepartamento de Matemática, Universidade Federal do Paraná – UFPR, Curitiba, Brazil; cDepartamento de
Engenharia de Produção, Universidade Federal do Paraná – UFPR, Curitiba, Brazil

ABSTRACT
In this paper, we propose the MulticlusterKDE algorithm applied to
classify elements of a database into categories based on their sim-
ilarity. MulticlusterKDE is centered on the multiple optimization of
the kernel density estimator function withmultivariate Gaussian ker-
nel. One of the main features of the proposed algorithm is that the
number of clusters is an optional input parameter. Furthermore, it
is very simple, easy to implement, well defined and stops at a finite
number of steps and it always converges regardless of the data set.
We illustrate our findings by implementing the algorithm in R soft-
ware. The results indicate that the MulticlusterKDE algorithm is com-
petitive when compared to K-means, K-medoids, CLARA, DBSCAN
and PdfCluster algorithms. Features such as simplicity and efficiency
make the proposed algorithm an attractive and promising research
field that can be used as basis for its improvement and also for the
development of new density-based clustering algorithms.

ARTICLE HISTORY
Received 10 June 2019
Accepted 19 July 2020

KEYWORDS
Kernel density estimation;
Gaussian kernel; clustering
data; optimization method;
multiclusterKDE

1. Introduction

The amount of data generated and also available to users has increased exponentially due to
the growth and massive use of technologies. The significant quantity is collected every day
from satellite images, biomedicine, security,marketing, searches on networks, among other
means [23]. However, ‘large databases’ and ‘knowledge about the phenomenon’ cannot be
thought of as synonymous. So, to understand the phenomenon, firstly the data set needs to
become a useful knowledge and only after will it be possible to generate applications and
simulations.

The process of exploiting large databases in search of patterns, rules or information
sequences, in order to detect correlations between variables, is known as data mining.
According to [1] and [21], data mining is a branch of computing that started to be
widely studied in the 1980s when companies and organizations began to worry about large
amounts of data being stored and unusable within companies.

CONTACT D. Scaldelai dirceuscaldelai@gmail.com

© 2020 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2020.1799958&domain=pdf&date_stamp=2021-12-20
http://orcid.org/0000-0003-2988-2716
http://orcid.org/0000-0002-6506-3550
mailto:dirceuscaldelai@gmail.com

JOURNAL OF APPLIED STATISTICS 99

Over the years, many works have been carried out in this area, leading datamining to be
subdivided into different research lines, the main ones are regression, sequential analysis,
classification, clustering and analysis of outliers.

In this paper, we are interested in clustering whose objective it is to identify patterns
or groups of similar objects in a data set. Clustering is a powerful set of exploratory tech-
niques that seek to perform data grouping, automatically, maximizing the homogeneity of
observations within each cluster [23].

Several different clustering strategies have been proposed in order to predict, ana-
lyze and replicate phenomena. By the way, no consensus has been reached even on
the definition of a cluster. According to [40], clustering can be classified into five main
classes which are partitioned, hierarchical, grid-based, model-based methods and density-
based. In this paper, we propose an alternative approach based on density distribution
function.

Partitioning methods are the simplest methods of clustering [1]. The basic idea of these
algorithms is to partition the data set into k clusters in such a way that each object is
assigned to the nearest cluster using a partitioning criterion as a function of distance-based
dissimilarity. Because of this, these approaches are not able to detect non-spherical clusters
[36]. Its major challenge is to know the number of cluster a priori, since this information
is the question to be answered in many of the problems studied.

Thewell-knownpartitioning algorithm is K-means proposed by [28]. It is widely known
in literature and its process consists of two stages, the first is to determine a set of k
centroids, and the second is the allocation of the observations of these centroids by the
criterion of minimum distance. Other partitioning algorithms are K-medoids and CLARA
– Clustering Large Applications [20,24]. These algorithms have interesting features, such
as less sensibility to noise and outliers, which make them an attractive alternative for clus-
tering. However, they can sometimes be computationally expensive mainly to large data
set.

Hierarchical clustering algorithms decompose the data set into several partitioning lev-
els, which are usually represented by a dendrogram,which is a tree that divides the database
recursively into subsets until a termination criteria to be satisfied. Each node in the tree
represents one cluster. The dendrogram can be created from leaves to root (agglomera-
tive approach) or from root to leaves (divisive approach) by merging or dividing groups at
each step [13]. Although hierarchical clustering algorithms can be very effective in pattern
discovery, it has a great challenge to determine the termination criteria of the merging or
splitting process.

An example of divisive algorithm is DIANA – Divisive Analysis Clustering [24], where
initially there is an only cluster consisting of all points of the data set, and at each subse-
quent step, the largest cluster is split into two new clusters until all clusters contain only
a single point. SLINK – Single-Linkage [41] and CLINK – Complete-Linkage [10] are
agglomerative methods that start each point in different clusters, and at each subsequent
step, two clusters are joined according to the minimum or maximum distance between
elements of each cluster.

Grid-based algorithms classify the space of object into a finite number of cells that forma
grid structure [21]. The main advantage of this approach is its fast-processing time, which
is independent of the number of objects and dependent on the number of cells in each

100 D. SCALDELAI ET AL.

dimension of the quantized space. In the algorithms based on models, a hypothesis is cre-
ated for the model on each of the clusters and then find the best fit of the data for a given
model [40].

Finally, we have the density-based algorithms which are based on the idea that cluster
centers are characterized by having a higher density than their neighbors and the elements
are incorporated into clusters as long as the density does not exceed a certain limit [40].
Many different density-based algorithms have been proposed in the last years, such as
[3,4,7,13,18,23,25,26,30,32,36,45].

In [32], it was proposed the PdfCluster multivariate algorithm as a natural extension
of the clustering procedure based on univariate density developed by [4]. It determines
clusters that are associated with connected components with an estimated density above
a threshold. The detection of connected regions is performed by procedures described in
[4], for problems with low dimension and in [32] for larger dimensions. In both cases, after
identifying multiple cluster cores with high density, the lowest density data are allocated
following an approach similar to the supervised classification. An interesting feature of Pdf-
Cluster is that it does not require the information of the number of clusters a priori, which
is determined by clustering process. The PdfCluster algorithm is available in R software
[3,7,13,23,25,30,36,45].

Another important algorithm based on density is the DBSCAN –Density-Based Spatial
Clustering of Applications with Noise proposed by [13]. The key idea of this algorithm is
that for each point in a cluster, its neighborhood, bounded by a radius, must contain at least
a minimum number of points, so that elements of the same cluster are closely compact
and points outside the neighborhood are as far as possible. According to [23], DBSCAN
can discover clusters for data sets of different shapes and sizes containing noises or outliers
and it has its implementation in R (‘dbscan’ packages). According to the authors, the results
obtained by DBSCAN are significantly more effective at discovering clusters than known
partition-based algorithms.

Recently, [36] proposed the DPC algorithm which is based on the assumption that
cluster centers are surrounded by neighbors with lower local density and that they are
at a relatively large distance from any points with a higher local density. However, this
algorithm can produce poor clustering, because the density metric depends strongly on
the data set dimension and the strategy of assigning the remaining points to an incorrect
cluster can cause propagation of errors. To circumvent these problems, it was proposed
the FKNN-DPC algorithm that uses two new assignment strategies based on K-nearest
neighbors and fuzzy weighted K-nearest neighbors as it can be seen in [45].

In addition to these methods, there are approaches which are fusions from different
methods such as density estimation and normal mixture models that have been proposed
and studied in the context of clustering, as seen in [15–17,29,39].

It should be noted that all algorithms presented here are focused on clustering of
multidimensional data which are stored in an m × n matrix. However, many modern
applications such as image and video recognition, text mining, internet search, large-scale
telecommunications and social networking records, generate large amounts of data which
have multiple aspects and high dimensionality. In these cases, the multi-way arrays can
display a natural representation. These applications are beyond the focus of this work, so
for more details see [9,11,12,27].

JOURNAL OF APPLIED STATISTICS 101

Due to the diversity of applications in data analysis area, we also intend to investigate
in the future the viability of our methodology for structured data via tensors, as well as
[22,43,44].

In this paper, we propose a new algorithm, namedMulticlusterKDE, which has received
this denomination because of performing multiple optimizations of Gaussian kernel den-
sity applied for clustering of a multidimensional data set. It is divided into two main steps.
The first determines the number of clusters and respective centers by minimizing a prob-
ability density estimator. The second consists of assigning observations to each cluster
obtained by determining smallest distance, that is, the points are being allocated to the
centers that are closest to them. At the end of the process, the algorithm has determined
the number of clusters which are stored in a matrix.

The new algorithm has the advantage of not requiring, a priori, the number of clusters
and the only input data required to run is a parameter used in the bandwidth matrix. If
the user, it can provide the number of clusters, but this parameter is not necessary. Numer-
ical experiments were implemented in R software [34] and the proposed algorithm was
compared to K-means, K-medoids, CLARA, DBSCAN and PdfCluster algorithms, also
available in R.

The paper is organized as follows. In Section 2, we describe the essential elements to
develop this paper. In Section 3, we established our algorithm and then we analyze its com-
plexity convergence. Numerical experiments are reported in Section 4. Finally, concluding
remarks close our text in Section 5.

2. Kernel density estimation

This section provides background concepts to develop this paper. For further study, we
suggest the following readings [5,19,30,32,38,42].

Let x ∈ R
n be a random variable with probability density function f. The knowledge of

this function provides a natural description of the behavior of the variable x and allows the
characteristics associated with it to be studied and replicated.

The density function of a given set of observations is not always known, especially when
the data set refers to a real phenomenon. This difficulty can be overcome by using non-
parametric estimators such as kernel density estimation – KDE. According to [38], the
parametric estimators focus is on obtaining the best estimator θ̂ for a given parameter
θ while in the non-parametric case the objective is directly linked to obtaining a good
estimate of the density function f̂ .

As presented by [19], a general form of the multivariate kernel density estimator is

f̂ (x,H) = m−1
m∑
i=1

|H|− 1
2K(H− 1

2 (x − Xi))

= m−1
m∑
i=1

KH(x − Xi), (1)

where

KH(x) = |H|− 1
2K(H− 1

2 x), (2)

102 D. SCALDELAI ET AL.

H is a square bandwidth matrix, non-random, symmetric and positive definite, |H| is
the determinant of H, x = (x1, x2, . . . , xn)T ∈ R

n is the vector of n-dimensional space of
the variables and Xi = (X1i,X2i, . . . ,Xni)

T , i = 1, 2, . . . ,m, is the set of observations with
unknown density function.

The kernel density estimator has a standard normal multivariate density given by

K(x) = (2π)−
n
2 exp

(
−1
2
xTx

)
. (3)

Considering Equations (1) and (3) the Gaussian kernel density estimator is given as

f̂ (x) = 1
m

(2π)
−n
2 |H|− 1

2

m∑
i=1

exp
(

−1
2
xTH−1x

)
. (4)

According to [19], the multivariate KDE can be viewed as a weighted sum of density
‘bumps’ that are centered at each data point Xi.

The key to applying the Gaussian kernel density estimator to a data set is to choose
the bandwidth matrix. It is an extremely delicate problem, because few changes in H can
significantly affect the shape and orientation of KDE.

As reported by [19], the bandwidth matrix is defined by three levels. The simplest case
is given by the product of a scalar h ∈ R

∗+ by the identity matrix of dimension n × n,
H = {hIn×n : h > 0}. The second level of bandwidth matrix complexity occurs when H
is a positive definite diagonal matrix, H = diag(h1, h2, . . . , hn). And finally, the third level
and the most complex one occurs when H is a complete matrix, symmetric and positive
definite. In this paper, we use the diagonal matrix.

Based on [32,38], a suitable choice for the components of the diagonal matrix H by
considering on multivariate normality hypotheses is

h∗
i =

(
4

n + 2

) 1
n+4

σim− 1
n+4 , (5)

where n is the dimension of space, σi the standard deviation of the components andm the
number of observations.

Under the hypothesis of normality and in the one-dimensional space, [30,38,42] define
the best choice for h as being

h = 1.06σm− 1
5 . (6)

In [30] it was proposed a flexibilization of this value and the authors introduced a variable
α as follows

h = 1.06σm− 1
α . (7)

In this paper, we will use an extension of h given by [30] and we will apply the relation-
ship (7) on each component of H, that is

hi = 1.06σim− 1
α , i = 1, . . . , n. (8)

JOURNAL OF APPLIED STATISTICS 103

3. MulticlusterKDE algorithm

In this section, we present themain contribution of our paper, that is, theMulticlusterKDE
algorithm. Unlike mean-shift [8] and Expectation-Maximization (EM) [31] algorithms,
which use the gradient of the Kernel function to determine the cluster centers, our
algorithmdetermines the centers byminimizing theGaussian kernel using some optimiza-
tionmethod, for example BFGS. In addition, we emphasize that other kernel functions can
be used instead of Gaussian, what is enough to be differentiable. Another relevant fact of
our algorithm is that it does not need to know the cluster number a priori. However, if the
user wishes, he can provide this data. Therefore, the algorithm is flexible and, as we will
see in the numerical experiments, it is competitive when compared to some of the main
clustering algorithms well known in the literature.

Next, we present and explain the steps of the algorithm. For a better understanding of
the proposed approach, first we present an example and then the algorithm.

Example 1: Consider an example with 20 observations of 2 attributes, randomly generated
with a structure that defines 2 clusters. The data are in the ‘Attributes’ column of Table 1
and represented in Figure 1(a). For this example, we define α = 1.5 as the kernel function’s
smoothing coefficient.

In the first step of the MulticlusterKDE algorithm, the diagonal elements of the matrix
H are determined by equation (8), and then it is built the Gaussian kernel density estimator
(Figure 1(b)). An important observation is that H and f̂ are constructed only once by the
algorithm.

In order to begin the optimization process, the MulticlusterKDE algorithm randomly
chooses the point X4 = (4.78, 1.92), which is represented by x0 in Figure 2(a). Then
the algorithm starts the main loop (while) to find a minimizer point x∗

0 = (5, 2) of −̂f
(Figure 2(b)) and it is assigned to the set S = {S1} as the first center. After this, the algorithm
determines the distance from all 20 observations to the centroid S1 = (5, 2), the result is
shown in column ‘Distance to S1’ of Table 1.

Based on the distances of the centroid S1, the MulticlusterKDE selects the point of the
observations set with the longest distance to S1, that is, it searches in the data set the fur-
thest point of the S1, which is the point X14 = (6.10, 3.11), with an approximate distance

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

 0
 5

10
15

20

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

x1

x2

f

(a) (b)

Figure 1. Data set and Gaussian kernel density estimator. (a) Data set. (b) Gaussian kernel.

104 D. SCALDELAI ET AL.

Table 1. Example data.

Attributes

Data x1 x2 Distance to S1 Distance to S2 Minimum distance

1 4.97 1.98 0.036 1.449 0.036
2 4.94 1.98 0.063 1.471 0.063
3 5.07 1.93 0.099 1.418 0.099
4 4.78 1.92 0.234 1.629 0.234
5 5.06 1.98 0.063 1.387 0.063
6 5.01 2.00 0.010 1.407 0.010
7 4.81 1.91 0.210 1.614 0.210
8 4.93 2.09 0.114 1.405 0.114
9 4.90 2.05 0.112 1.453 0.112
10 5.13 1.95 0.139 1.364 0.139
11 5.00 2.06 0.060 1.372 0.060
12 5.14 2.13 0.191 1.223 0.191
13 5.98 3.17 1.526 0.171 0.171
14 6.10 3.11 1.563 0.149 0.149
15 6.00 2.74 1.244 0.260 0.260
16 5.97 2.95 1.358 0.058 0.058
17 6.01 2.91 1.359 0.091 0.091
18 6.04 3.05 1.478 0.064 0.064
19 5.97 2.99 1.386 0.032 0.032
20 6.10 3.00 1.487 0.100 0.100

1.5627 to S1. So, the algorithm uses X14 (x1 in Figure 2(c)) as the initial point for solve the
subproblem argmin{−̂f (x) : x ∈ R

n} and a new iteration begins.
The second iteration begins with X14 as initial point and the MulticlusterKDE deter-

mines aminimizer x∗
1 = (6, 3) as a solution of the subproblem (Figure 2(d)). Then it checks

if x∗
1 belongs to S, if not, it is designated to the set S = {S1, S2} and, otherwise the loop ends.
Giving continuity to the proposed algorithm, it determines the distance of all observa-

tions to the centroid S2, according to column ‘Distance to S2’ of Table 1. Since we have 2
centroids in the set S, it follows that each of the 20 observations has 2 distances to the set S.
The next step of the algorithm is to determine which of the 20 observations has the furthest
distance to both elements of S, i.e. which of the observations presents the highest degree of
heterogeneity with S. To determine this element, the algorithm scanned all the 20 obser-
vations of the problem, finding the smallest distance between the observation and the two
centroids. The results are in the column ‘Minimum distance’ of Table 1. Then the Multi-
clusterKDE determines X15 = (6.00, 2.74), which has the maximum distance between the
minimum distances. This point is represented by x2 in Figure 2(e) and it is used as initial
point for the new iteration.

The third iteration begins with X15 as initial point and determines x∗
2 = (6, 3) as a

solution of the subproblem which is represented in Figure 2(f). Since this point already
belongs to the set S, the loop ends. The first stage of MulticlusterKDE finishes with S =
{(6, 3), (5, 2)}, that is, the problem will have two clusters, whose centroids are the elements
of S.

The second stage is extremely simple too. Considering the distances of the twenty
observations to the two centroids, as presented by ‘Distance to S1’ and ‘Distance to S2’,
respectively, in Table 1, the proposed algorithm obtains for each observation the nearest
centroid and from there the observation is assigned to the respective cluster. For exam-
ple, the nearest centroid to X1 = (4.97, 1.98) is S1, therefore, X1 belongs to cluster 1. By

JOURNAL OF APPLIED STATISTICS 105

(a) (b)

(c) (d)

(e) (f)

Figure 2. MulticlusterKDE steps.

repeating the process for all observations, the MulticlusterKDE is finished. The final result
is represented in Figure 3.

After this simple example, we shall describe the MulticlusterKDE algorithm
(Algorithm 1).

Firstly, variables and constants are initialized. The matrix X ∈ R
n×m contains the prob-

lem data, where n and m are the number of attributes (variables) and observations,
respectively. The parameter α ∈ R is used in the equation (8) in order to determine the
matrix H, which is responsible for the smoothness of the kernel density estimator func-
tion; nc is an integer number provided by the user, which is optional, and it limits the
number of clusters, and its absence does not disable the algorithm; S is a matrix and F is
a vector used to store the centroids and the values of the objective function evaluated on
centroids, respectively, and rep = 0 to finish the main loop of the algorithm. Finally, the
vector C stores the clustering of data set.

The Algorithm 1 cloops. The first one, represented by the while, has as main task to
determine the cluster centers (or centroids). Note that the loop begins by determining a
maximizer, x∗, of kernel function f̂ . Next, the algorithm checks if this center has already
been selected. If it does, the loop ends and otherwise x∗ is stored in the matrix S as a new
cluster center and the respective value f (x∗) is stored in the vector F. For each iteration k,

106 D. SCALDELAI ET AL.

Figure 3. Clustering result for Example 3.1.

the valueMk gives the furthest distance of all points to the found centers and xk+1 becomes
the point that is farther from all already determined centers being xk used as an initial point
for the next iteration.

After the end of the first loop, and before starting the second one, the algorithm fixes the
number of clusters that can be k or nc. If the user has previously defined it, then the max-
imum number of the cluster is nc and if nc< k so k−nc points will be eliminated between
those already determined by the previous loop (while), that will not be cluster centers.

The second loop, which consists of the commands for j and for i, determines the clus-
ters. The technique used is the one with the smallest distance, that is, the points are being
allocated to the centers that are closest to them. At the end of the process, the algorithm
has determined k or nc clusters which are stored in the matrix C.

The space complexity of MulticlusterKDE is O(k.m), where k is the number of clusters
obtained and m is the size of data set, which stores the distance matrix. In addition, one
matrix and three vectors are used during the algorithm run. The matrix S stores the cluster
centers. The vectors F and C store the values of the objective function evaluated on cen-
troids and the clustering result, respectively. Finally, since the matrix H is diagonal, it is
stored as a vector.

The time complexity of MulticlusterKDE depends mainly on determining the cluster
centers, x∗, which consists of minimizing a function using the BFGS method; the time for
computing the distance matrix and to allocate the points in the clusters. In addition, if the
user has fixed the maximum number of clusters, it is necessary to perform a classification
on the elements in F and S.

In the following theorem, we show that the algorithm is well defined and then that it
stops at a finite number of steps.

Theorem 1: Algorithm 1 is well defined and it stops at iteration k, in which the number of
cluster is given by min{k, nc}.

JOURNAL OF APPLIED STATISTICS 107

Algorithm 1:MulticlusterKDE
1 Given X ∈ R

n×m, α ∈ R and nc ∈ Z
∗+;

2 Set H, k = 0, S = φ, F = φ, C = φ and rep = 0;
3 while rep = 0 do
4 x∗ ∈ argmin

{−̂f (x) : x ∈ R
n};

5 if x∗ ∈ S then
6 rep = 1;
7 else
8 S = S ∪ x∗;
9 F = F ∪ f̂ (x∗);

10 Mk = max
{

min
i=1,··· ,k+1

{dist(Si,X)}
}
; xk+1 = x ∈ X|dist(x, S) = Mk;

11 k = k + 1;
12 end
13 end
14 if nc �= φ and nc < k then
15 sort F in ascending order;
16 sort S according to F;
17 S = S(:, 1 : nc);
18 k = nc;
19 end
20 Set D = dist(X, S)
21 for i = 1 : m do
22 for j = 1 : k do
23 if dist

(
X(:, i), S(:, j)

) = min{D(:, i)} then
24 C = C ∪ {j}
25 end
26 end
27 end
28 Return C

Proof: First, we show that the algorithm is well defined. In fact, in the iteration k of
Algorithm 1 we must determine x∗ as a minimizer of −f̂ which is a smooth function
and has derivatives of all orders. To solve this subproblem, we use the R software that
employs a quasi-Newton method named in optimization as BFGS, which is globally con-
vergent, i.e. the algorithmconverges independent of the initial point (see [33], Theorem8.5,
p. 212). Therefore, the subproblem always has a solution.We now show that the number of
subproblems that Algorithm 1 needs to solve is finite, in other words, the number of min-
imizers of this function for a finite valuem, of the sample points in matrix X, is finite. If all
the points in the sample were isolated, in which case each sample point would be a cluster,
we would have at mostm clusters and therefore it is finite. In the case where we have p<m
minimizers, Algorithm 1 also stops in a finite number of steps. In fact, since p is finite in
some iteration k the algorithm will find a point x∗ that has already been determined and

108 D. SCALDELAI ET AL.

this is the criterion of stopping the main loop (if this does not happen the amount of sam-
ple points will be infinite). Therefore, the maximum number of clusters will be k if the user
has not set nc. The case where the user has set ncwill be the number of clusters determined
by Algorithm 1. �

4. Numerical tests

In this section, we present numerical results that evidence and qualify theMulticlusterKDE
algorithm. The problems analyzed here are divided into two kinds. The first kind are the
problems that grouping structure and the class labels of each observation are known. The
objective is to show the ability of the proposed algorithm in grouping the data set in an
appropriate way. The second kind are the problems with unknown grouping structure,
which requires to get the number of clusters and grouping in order to best fit the data set.

All problems were run by six different algorithms, which are MulticlusterKDE, K-
means, PdfCluster, K-medoids, CLARAandDBSCAN.Themain reason for choosing these
five algorithms is because they are widely used in literature and they are implemented in R
software.

In the following, the parameters of each method are exposed, as well as the package and
function used in R. MulticlusterKDE requires α which is used to calculate the smooth-
ing matrix, and nc (optional) that corresponds to the number of clusters; we implemented
MulticlusterKDE, using only optim() function of stats package for the optimization part,
in which we used the method= ‘BFGS’ as parameter for this function. For K-means only
the number of clusters is given; we used kmeans() function of stats package. PdfCluster
has hmult as parameter, which is a shrink factor that multiplies the smoothing parameter
to be used in Gaussian kernel density estimation, and bwtype corresponding to a kernel
estimator with fixed or adaptive bandwidths; we used PdfCluster() function of PdfCluster
package. K-medoids and CLARA, as well as in K-means, require the number of clusters;
we used pam() (for K-medoids) and CLARA() (for CLARA) functions of cluster package.
For DBSCAN, two parameters are given, eps and minPts, in which a circle of eps radius
contains at least minPts points in its neighborhood; dbscan() function of dbscan package
was used.

A computer Intel (R) Core i5-7200U CPU @ 2.50GHz 2.71GHz processor, Windows
10 home 64-bit operating system, was used to implement the algorithms for all problems.
The version 3.6.1(2019-07-05) of R sofware was used with 1.1.463 RStudion version.

4.1. Numerical tests on known class problems

Initially, in this section, seven problems whose grouping structure is known will be
addressed. The first one is the classification of Iris species (‘Iris data set’), the second one
is the wine production region (‘Wine data set’), the third one is the classification of wheat
seeds (‘Seeds data set’), the fourth one is the olive oil production region (‘Olive oil data
set’), the fifth one corresponds to the type of Erythema-Squamous Disease and the last two
problems refer to waveform classification (‘WaveformDatabase Generator (Version 1)’ and
‘Waveform Database Generator (Version 2)’).

In order to reduce the standard deviation in obtaining thematrixH, byMulticlusterKDE
algorithm, we applied the logarithmic scale to the data set for the problems of this section.

JOURNAL OF APPLIED STATISTICS 109

Asmentioned before, for all these problemswe know the class labels of each observation.
According to [35], with the label information you can create validity metrics that are easier
to understand and compare between clusters. These metrics are known as external metrics
because of their dependency on external class labels. For external metrics, a confusion
matrix is created (also called a match matrix) that is a simple table which shows the match
between the cluster labels determined by the clustering algorithms and the actual cluster
labels of the data. The confusion matrix allows, in a simple way, to visualize an assertive
correspondence of the clustering algorithms in relation to real data, that is, it provides the
number of hits and misses of the clustering process.

4.1.1. Iris data set
The ‘Iris data set’ contains 150 observations of three plant varieties of the Iris species. The
data are equally divided among the varieties of iris, Setosa, Versicolour and Virginica. Each
observation consists of four attributes: the length and width of the petal, the length and the
width of the sepal.

For this data set, the algorithms were calibrated with some specific input parameters,
which are α = 1.35 and nc = 3 for MulticlusterKDE algorithm. For K-means, K-medoids
and CLARA algorithms the exact number of three clusters were specified like input argu-
ment and in PdfCluster the parameter hmult = 0.58 was used. In DBSCAN algorithm the
parameters eps = 0.5 andminPts = 14 were used.

In PdfCluster and DBSCAN algorithms the parameters were obtained by numerical
tests, it means that the algorithms were running several times and at the end, we chose
the parameters based on the best results. In this way, in PdfCluster algorithm we did the
hmult parameter to vary from 0.2 to 1.5 with a range of 0.1 and in DBSCAN the minPts
parameter varied from 1 to 20 with an interval of 1, and for each of its value , eps varied
from 0.1 to 20, with an interval of 0.1. This same strategy was used in all problems of this
section. The clustering results are shown in Table 2.

In Table 3 we show the absolute and relative errors and runtime for each algorithm used
to classify the Iris species. It should be noted that although several tests were performed
with different parameters values, the runtime in this table corresponds to the results printed
in Table 2.

The numerical results indicate that the proposed algorithm spent more computational
time, however, it is more efficient to classify Iris data set elements in comparison with the

Table 2. Confusion matrix for Iris data set.

MulticlusterKDE K-means PdfCluster

Variety C1 C2 C3 C1 C2 C3 C1 C2 C3

Setosa 50 0 0 50 0 0 50 0 0
Versicolour 0 50 0 0 48 2 0 46 4
Virginica 0 7 43 0 14 36 0 13 37

K-medoids CLARA DBSCAN

C1 C2 C3 C1 C2 C3 C1 C2 C3

Setosa 50 0 0 50 0 0 46 0 4
Versicolour 0 48 2 0 48 2 0 37 13
Virginica 0 14 36 0 13 37 0 5 45

110 D. SCALDELAI ET AL.

Table 3. Comparative results for Iris data set.

Algorithms Absolute error Relative error time(s)

MulticlusterKDE 7 4,7% 5.9
K-means 16 10,7% 0.02
PdfCluster 17 11,3% 0.141
K-medoids 16 10.7% 0.016
CLARA 15 10.0% 0.001
DBSCAN 22 14.7% 0.001

K-means, PdfCluster, K-medoids, CLARA andDBSCAN, because it solved with the lowest
error.

4.1.2. Wine data set
The ‘Wine data set’ is a set of 178 wines grown in the same region of Italy, but produced
from three different cultivars (Barolo, Grignolino, Barbera). Each cultivar has 28 chemi-
cal characteristics, however, according to [32] only 13 are commonly chosen among the
28 originals: Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Fla-
vanoids, Nonflavanoid phenols, Proanthocyanins, Color intensity, Hue, OD280/OD315 of
diluted wines e Proline.

As well as done in the previous problem, all algorithms were calibrated with specific
input parameters. Thus, α = 5 and nc = 3 inMulticlusterKDE, 3 is the number of clusters
in K-means, K-medoids and CLARA algorithms. In PdfCluster algorithm, the parame-
ters hmult = 1.2 and bwtype= ‘adaptive’ were used, while in DBSCAN eps = 13.2 and
minPts = 8 were used. The clustering results are shown in Table 4.

For all algorithms, the absolute and relative errors and the runtime to cluster the Wine
data are presented in Table 5. Despite having a longer runtime followed by PdfCluster
algorithm, the results indicate that the MulticlusterKDE algorithm has the advantage of
being more efficient than the other ones. Observe that it solved the problem with almost
half the absolute error compared to PdfCluster, which was the second best algorithm based
on the correct data classifications. According to this evidence, we showed the efficiency and
competitiveness of the proposed algorithm.

Table 4. Confusion matrix for Wine data set.

MulticlusterKDE K-means PdfCluster

Cultivars C1 C2 C3 C1 C2 C3 C1 C2 C3

Barolo 59 0 0 46 0 13 59 0 0
Grignolino 4 66 1 1 50 20 5 62 4
Barbera 0 1 47 0 19 29 0 1 47

K-medoids CLARA DBSCAN

C1 C2 C3 C1 C2 C3 C1 C2 C3

Barolo 46 0 13 48 0 11 58 1 0
Grignolino 2 50 19 2 50 19 61 5 5
Barbera 0 18 30 0 18 30 40 2 6

JOURNAL OF APPLIED STATISTICS 111

Table 5. Comparative results for Wine data set.

Algorithms Absolute error Relative error time(s)

MulticlusterKDE 6 3.4% 5.51
K-means 53 29.7% 0.015
PdfCluster 10 5.6% 2.35
K-medoids 52 29.2% 0.016
CLARA 50 28.1% 0.008
DBSCAN 109 61.2% 0.001

4.1.3. Seeds data set
The ‘Seeds data set’ was collected and analyzed by [6] and presented in [2]. The informa-
tion presented refers to seeds of three wheat varieties: Kama, Rosa and Canadian. This set
consists of 210 observations, 70 seeds for each variety. Each observation is composed of
7 geometric parameters of wheat seeds: area (A), perimeter (P), compactness (C = 4πA

P2),
length of kernel, width of kernel, asymmetry coefficient and length of kernel groove.

In order to execute the MulticlusterKDE algorithm, the parameters α and nc were
defined as 1.85 and 3, respectively. Thus, three clusters were considered for the K-means,
K-medoids and CLARA algorithms. For the PdfCluster algorithm was assigned, bwtype =
‘adaptive’ and hmult=0.8. Finally, in the DBSCAN, we used eps = 0.9 and minPts = 19.
The results are shown in Table 6.

The numerical results presented in Table 7 indicate that, based on absolute and rela-
tive error, the PdfCluster algorithm showed the best performance to solve this problem
followed by K-means, MulticlusterKDE/K-medoids/CLARA and lastly DBSCAN. The
DBSCAN presented the smallest runtime, however, it had the biggest error in clustering
the data set. Thus, it is not enough for an algorithm to guarantee a good runtime, as it is
also absolutely necessary to be efficient in classifying data set.

Table 6. Confusion matrix for Seeds data set.

MulticlusterKDE K-means PdfCluster

Varieties C1 C2 C3 C1 C2 C3 C1 C2 C3

Kama 60 1 9 60 1 9 59 3 8
Rosa 4 65 1 10 60 0 4 66 0
Canadian 8 0 62 2 0 68 3 0 67

K-medoids CLARA DBSCAN

C1 C2 C3 C1 C2 C3 C1 C2 C3

Kama 57 1 12 60 2 8 69 0 1
Rosa 10 60 0 9 61 0 51 19 0
Canadian 0 0 70 4 0 66 39 0 31

Table 7. Comparative results for Seeds data set.

Algorithms Absolute error Relative error time(s)

MulticlusterKDE 23 10.9% 5.28
K-means 22 10.5% 0.003
PdfCluster 18 8.6% 3.25
K-medoids 23 10.9% 0.005
CLARA 23 10.9% 0.003
DBSCAN 64 30.5% 0.001

112 D. SCALDELAI ET AL.

Table 8. Confusion matrix for Olive oil data set.

MulticlusterKDE K-means PdfCluster

macro-area C1 C2 C3 C1 C2 C3 C1 C2 C3

Sul 323 0 0 190 91 42 296 0 27
Sardina 0 97 1 22 76 0 0 98 0
Centre-North 0 26 125 0 17 134 0 6 145

K-medoids CLARA DBSCAN

C1 C2 C3 C1 C2 C3 C1 C2 C3

Sul 196 84 43 204 78 41 323 0 0
Sardina 19 79 0 31 67 0 98 0 0
Centre-North 0 18 133 0 21 130 129 4 18

Table 9. Comparative results for Olive oil data set.

Algorithms Absolute error Relative error time(s)

MulticlusterKDE 27 4.7% 14.87
K-means 172 29.8% 0.001
PdfCluster 33 5.7% 64.12
K-medoids 164 28.7% 0.04
CLARA 171 29.9% 0.001
DBSCAN 231 40.4% 0.001

4.1.4. Olive oil data set
The ‘Olive Oil data set’ was originally presented by [14] and used by several researchers
to validate clustering algorithms, among these [32]. According to [14,32], the data refer to
olive oil produced in nine areas of Italy, concentrated into three geographical macro-areas:
South, Sardinia Island, Centre-North. In the macro-area of the South, one has the regions
of Apulia North, Apulia South, Calabria and Sicily. In the macro-area Sardinia, one has the
regions of the coast and the interior of Sardinia and finally in the macro-area center-north
one has the regions of Liguria East, Liguria West and Umbria.

According to [32], the data set in its raw form is compositional in nature, totaling 10,000
elements. In their paper, the authors adopted an additive log-ratio (ARL) transformation,
which reduces the set of analysis to 572 observations. Each observation consists of eight
chemical measurements of the oil (Palmitic, Palmitoleic, Stearic, Oleic, Linoleic, Linolenic,
Arachidic, eicosenoic), as well as information about its area and macro-area of origin.

As in [32], we chose to cluster the macro-region, for this in the MulticlusterKDE
algorithm we used as input parameters α = 2.8 and nc = 3. In K-means, K-medoids and
CLARA we used three clusters, in PdfCluster the parameters bwtype = ‘Adaptative′ and
hmult = 1.2, while in DBSCAN eps = 12.7 and minPts = 4. The results are shown in
Table 8.

As in the previous cases, Iris andWine data set, for this problem the proposed algorithm
is also more efficient in classifying the data set. Analyzing the results presented in Table 9,
we can conclude that MulticlusterKDE has the advantage of being the most accurate in the
data classification andwith a good runtime. PdfCluster also presented a good performance,
however, with the highest runtime. Finally, the other ones showed excellent computational
time, however, with a high classification error.

JOURNAL OF APPLIED STATISTICS 113

Table 10. Confusion matrix for Dermatology data set.

MulticlusterKDE PdfCluster

Diseases C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

psoriasis 95 5 0 1 9 1 52 15 0 1 11 32
seboreic dermatitis 0 29 0 31 0 0 2 38 15 3 2 0
lichen planus 0 0 70 1 0 0 31 0 40 0 0 0
pityriasis rosea 0 0 0 47 1 0 0 13 27 8 0 0
cronic dermatitis 0 0 0 0 48 0 0 1 1 1 45 0
pityriasis rubra pilaris 0 0 0 0 0 20 8 0 10 0 2 0

K-means K-medoids

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

psoriasis 32 27 0 17 26 9 28 32 15 16 16 4
seboreic dermatitis 19 19 0 2 16 4 2 17 17 9 13 2
lichen planus 17 0 22 4 27 1 6 20 25 14 6 0
pityriasis rosea 15 15 0 5 8 5 5 14 8 10 10 1
cronic dermatitis 14 11 0 5 10 5 6 14 9 8 10 1
pityriasis rubra pilaris 0 1 0 0 0 19 0 0 0 0 2 18

CLARA DBSCAN

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

psoriasis 29 31 15 20 12 4 111 0 0 0 0 0
seboreic dermatitis 6 18 12 10 12 2 11 35 0 13 0 1
lichen planus 6 20 25 18 2 0 38 0 21 0 12 0
pityriasis rosea 7 14 6 10 10 1 10 31 0 7 0 0
cronic dermatitis 8 14 7 8 10 1 27 16 0 4 0 1
pityriasis rubra pilaris 0 0 0 0 2 18 3 0 0 0 0 17

4.1.5. Dermatology data set
The ‘Dermatology data set’ contains 366 observations from patients diagnosed with
erythematous-squamous diseases. Altogether, the group presents patients diagnosed with
6 different types of this disease, namely psoriasis, seborrheic dermatitis, lichen planus,
pityriasis rosea, chronic dermatitis and pityriasis rubra pilar.

Each of the observations (patients) consists of 34 attributes (variables), 33 of which are
integer and 1 nominal, more specifically binary, that specifies if the patient has a family
history of the disease or not. Of the 33 integer attributes, 1 is the patient’s age, 10 is clinical
information that receives the values 0, 1, 2 or 3, where 0 indicates that the characteristic was
not present, 3 indicates the largest possible quantity and 1 and 2 indicate the intermediate
relative values. Finally, the other 22 attributes are histopathological patient information,
which are also graduated by integer values in the range 0 to 3.

The original dermatology data set, available at [2], 8 observations are presented without
information about age attribute, so we decided to exclude them resulting in a data set with
358 observations.

For this data set, the algorithms were calibrated with some specific input parame-
ters. In MulticlusterKDE algorithm was used α = 4.6 and nc = 6. In PdfCluster was used
hmult = 0.7, while in DBSCAN eps = 4.7 andminPts = 12 were considered. In K-means,
K-medoids andCLARAalgorithmswe specified 6 clusters. The clustering results are shown
in Tables 10 and 11.

The results indicate that all algorithms showed high values for absolute and relative
errors, even higher than for the previous problems, however, despite their unsatisfactory

114 D. SCALDELAI ET AL.

Table 11. Comparative results for Dermatology data set.

Algorithms Absolute error Relative error time(s)

MulticlusterKDE 49 13.9% 10.5
K-means 251 70.1% 0.016
PdfCluster 175 48.8% 28.56
K-medoids 250 69.8% 0.031
CLARA 110 30.7% 0.001
DBSCAN 167 46.6% 0.016

Table 12. Confusion matrix for Waveform database (version 1).

MulticlusterKDE K-means PdfCluster

waveform C1 C2 C3 C1 C2 C3 C1 C2 C3

1 1392 29 236 824 11 822 – – –
2 505 1085 57 958 689 0 – – –
3 65 277 1354 0 700 996 – – –

K-medoids CLARA DBSCAN

C1 C2 C3 C1 C2 C3 C1 C2 C3

1 861 9 787 911 673 73 840 817 0
2 945 702 0 0 884 763 703 943 1
3 0 600 1096 870 0 826 766 925 5

Table 13. Comparative results for Waveform database
(version 1).

Algorithms Absolute error Relative error time(s)

MulticlusterKDE 1169 23.4% 3.89
K-means 2491 49.8% 0.02
PdfCluster – – –
K-medoids 2341 46.8% 7.9
CLARA 2379 47.6% 0.013
DBSCAN 3212 64.2% 0.687

performance, the proposed algorithm stands out with the best performance, as we can see
in Table 11.

4.1.6. Waveform database generator (Version 1)
The set ‘Waveformdatabase generator (version 1)’ consists of 5000waveformobservations.
The set presents 3 classes of waves generated from a combination of 2 or 3 basic waves with
noises (with mean 0 and variance 1) added to them, totaling 21 attributes for waveform
classification.

For this data set, the algorithms were calibrated with the input parameters. So, in Mul-
ticlusterKDE algorithm, α = 1.5 and nc = 3 were used. The parameters eps = 4.1 and
minPts = 18 were inserted in DBSCAN. In K-means, K-medoids and CLARA algorithms
we specified three clusters. The PdfCluster algorithm failed to solve this problem in all tests
performed and it stopped with the following message ‘Error: cannot allocate vector of size
2.0Gb’. The results for this data set are shown in Tables 12 and 13.

JOURNAL OF APPLIED STATISTICS 115

Table 14. Confusion matrix for Waveform database (version 2).

MulticlusterKDE K-means PdfCluster

waveform C1 C2 C3 C1 C2 C3 C1 C2 C3

1 1002 425 265 880 12 800 – – –
2 139 1462 52 930 23 0 – – –
3 224 172 1259 0 685 970 – – –

K-medoids CLARA DBSCAN

C1 C2 C3 C1 C2 C3 C1 C2 C3

1 677 303 712 878 20 794 1283 402 7
2 714 939 0 925 728 0 1162 491 0
3 0 646 1009 0 651 1004 1227 420 8

Table 15. Comparative results for Waveform database
(version 2).

Algorithms Absolute error Relative error time(s)

MulticlusterKDE 1277 25.5% 5.08
K-means 2427 48.5% 0.08
PdfCluster – – –
K-medoids 2375 47.5% 3.77
CLARA 2390 47.8% 0.012
DBSCAN 3218 64.4% 1.55

4.1.7. Waveform database generator (Version 2)
The set ‘Waveform database generator (version 2)’ has the same assignments as its first
version, also with 5000 waveform observations, however, each observation consists of 40
attributes.

For this data set, the MulticlusterKDE algorithm was calibrated with α = 4.5 and
nc = 3. In DBSCAN, eps = 8.25 and minPts = 1. In K-means, K-medoids and CLARA
algorithms were considered three clusters. As in the previous problem (version 1), the Pdf-
Cluster algorithm was not able to solve this problem even considering several parameters,
because again it had memory allocation error. The results for this data set are shown in
Tables 14 and 15.

Such as inDermatology data set, inWaveformdatabase (versions 1 and 2), all algorithms
tested classified several elements in a wrongway, causing a high relative error. However, the
smallest error was obtained by theMulticlusterKDE algorithm as it can be seen in Tables 13
and 15.

Further remarks on known class problems
Based on the previous results, we have observed that, according to absolute and relative

errors, the MulticlusterKDE algorithm had the best performance in six of seven problems,
which in three problems (iris, wine and olive oil) the relative errors did not exceed 5%.

For the iris, wine, olive oil, dermatology, waveform 1 and waveform 2 data set, we
compared the MulticlusterKDE algorithm with the second one that obtained the best per-
formance by error criterion, and the results were, respectively, 53.3%, 40%, 18.2%, 55.5%,
50.1% and 46.2% better.

Regarding the runtime, K-means, CLARA and DBSCAN had the best performance
in most of the problems, however, the MulticlusterKDE determined the most accurate
clustering for almost all data sets.

116 D. SCALDELAI ET AL.

4.2. Numerical tests on problemswith no classes defined

In this section, we consider two kinds of problems with no classes defined. For the first one,
we take two real data, USArrests and TripAdvisor [2]. In the second one, eight problems
are randomly generated.

In order to compare the algorithms efficiency, we consider the silhouette coefficient as
a measure of performance. The coefficient was proposed by [37] and is one of the many
indexes to evaluate the clustering structure. It is calculated for each i object in the data set
as follows:

s(i) = b(i) − a(i)
max{b(i), a(i)} i = 1, . . . ,m, (9)

where a(i) is the average dissimilarity between the i object and all other points in the cluster
to which i belongs and b(i) is theminimummean dissimilarity of the objects of each cluster
that are different. The silhouette coefficient is the average of all output values s(i) and is in
the range [−1, 1], such that s(i) near 1 means that the object i is well grouped, while s(i)
near -1 means that it has been misclassified.

The first problem analyzed, consists of the ‘ USArrests data set’, initially presented by
McNeil (1977) [2]. This set contains the number of arrests per 100,000 inhabitants for
crimes of aggression,murder and rape taking into account the 50US states in 1973. Besides
this information, the sample contains 50 observations that refer to the percentage of the
population living in urban areas which are divided in 4.

The second problem consists of user reviews to TripAdvisor.com about 10 categories of
East Asian attractions, including art galleries, nightclubs, juice bars, restaurants, museums,
resorts, parks, beaches, cinemas and religious institutions. The users evaluate each visited
attraction as Excellent (4), Very Good (3), Average (2), Bad (1) or Terrible (0). The average
user rating for each type of attraction is attributed to the ‘Travel Reviews data set’, which
is available by [2] and consists of 980 numerical records.

In order to improve the analysis of algorithms’s performance, besides the two prob-
lems already mentioned, we also consider in this section eight random samples, whose
procedure adopted to generate them will be described now. Initially, a positive integer
g ∈ [a1, a2] was generated, with the objective to determine the number of subgroups or
midpoints used in the generation of subgroups with Gaussian distribution. Then, another
positive integer n ∈ [b1, b2] was generated, that corresponds to the dimension of the
problem and a positive real number σ ∈ [c1, c2] that is the standard deviation.

Then, on each of the g accumulation points, it was generated points of dimension n, that
is,Xj = (X1,X2, . . . ,Xk, . . . ,Xm), withXk ∈ R

n, k = 1, . . . ,m and j = 1, . . . , g. Each com-
ponent xi of Xk was obtained by a Gaussian distribution, xi ∼ N(μ, σ), with i = 1, . . . , n
and μ uniformly distributed, μ ∼ U(d1, d2). Thus, the following set X ∈ R

n×(g.m) we will
have at the end of the procedure. Due to the random nature of the generation of accumu-
lation points and the standard deviation of the components, the data sets can have several
characteristics such as, extremely well-defined groups or even point clouds.

In this section, we tested 10 problems not knowing the ideal number of clusters. To run
all problems, some parameters were defined for each algorithm. In MulticlusterKDE, we
considered α = 5 and nc = φ. In PdfCluster algorithm was used in its default form. As
K-means, K-medoids and CLARA require information on the number of clusters, then
we performed several tests, varying the number of clusters, from 2 to 10 clusters. For two

JOURNAL OF APPLIED STATISTICS 117

Table 16. Comparative results for problems with no classes defined.

USArrests: (4 × 50) Tripadvisor: (11 × 980)

Algorithms nc Sil time(s) Par nc Sil time(s) Par

MulticlusterKDE 2 0.58 0.767 α = 5 6 0.52 6.193 α = 5
PdfCluster 1 – 0.06 – 17 0.0353 305.94 –
DBSCAN 8 0.43 0.001 23.7/1 8 0.54 0.001 4.6/8
K-means 2 0.59 0.01 2:10 2 0.62 0.031 2:10
K-medoids 2 0.59 0.016 2:10 2 0.62 0.172 2:10
CLARA 2 0.59 0.02 2:10 2 0.62 0.031 2:10

Random 1: (4 × 1506) Random 2: (9 × 4084)

MulticlusterKDE 2 0.75 5.88 α = 5 7 0.79 16.145 α = 5
PdfCluster 2 0.75 8.77 – – – – –
DBSCAN 2 0.75 0.02 1.2/1 8 0.78 0.172 2.3/5
K-means 2 0.75 0.049 2:10 6 0.76 0.74 2:10
K-medoids 2 0.75 0.31 2:10 7 0.78 9.052 2:10
CLARA 2 0.75 0.045 2:10 7 0.78 0.701 2:10

Random 3: (4 × 4252) Random 4: (14 × 5845)

MulticlusterKDE 6 0.54 3.88 α = 5 3 0.67 2.25 α = 5
PdfCluster – – – – 3 0.67 423.06 –
DBSCAN 5 0.49 0.1 1.7/5 4 0.67 0.031 7.8/5
K-means 3 0.50 0.365 2:10 3 0.67 0.047 2:10
K-medoids 6 0.56 11.718 2:10 3 0.67 0.225 2:10
CLARA 6 0.56 0.564 2:10 3 0.67 0.048 2:10

Random 5: (38 × 3520) Random 6: (30 × 2072)

MulticlusterKDE 14 0.83 10.1 α = 5 9 0.63 3.78 α = 5
PdfCluster – – – – – – – –
DBSCAN 15 0.83 0.128 5.7/5 10 0.63 0.185 10.2/5
K-means 18 0.64 2.167 2:20 8 0.57 0.373 2:20
K-medoids 14 0.83 16.72 2:20 9 0.63 2.379 2:20
CLARA 14 0.83 1.20 2:20 9 0.63 0.429 2:20

Random 7: (20 × 6412) Random 8: (8 × 10351)

MulticlusterKDE 4 0.74 9.44 α = 5 6 0.76 159 α = 5
PdfCluster – – – – – – – –
DBSCAN 4 0.74 0.80 3.5/5 6 0.76 1.90 2/3
K-means 4 0.74 0.74 2:10 6 0.76 2.95 2:10
K-medoids 4 0.74 11.02 2:10 6 0.76 56.17 2:10
CLARA 4 0.74 9.88 2:10 6 0.76 3.98 2:10

problems we considered 20 as the maximum number of clusters. So, the best configuration
of clustering, according to silhouette coefficient, was considered as the solution and pre-
sented in Table 16. Similarly, it was done in DBSCAN algorithm, we varied the parameter
eps from 0.1 to 50 and the parameterminPts from 1 to 5. The parameters that returned the
best solution were considered.

In Table 16 we show the numerical results obtained by running the algorithms on the set
of problems mentioned above, which were implemented in R. To compare the algorithms
we selected three performance measures, namely, nc (number of clusters), Sil (silhouette
coefficient and times (runtime in seconds). Additionally, it also presents the parameters
adopted (Par).

We can notice an equivalent performance of the algorithms analyzed since none of them
showed to be effectively superior, except to the PdfCluster algorithm which failed to solve
6 problems.

118 D. SCALDELAI ET AL.

Taking into account the small variations in algorithms performance, we observe that K-
medoids and CLARA obtained the best results for silhouette coefficients, however, we need
to carefully observe the analysis because, as well as K-means, they depend on information
about the number of clusters a priori. Furthermore, the DBSCAN algorithm was the one
that presented the smaller runtime in all tests, however, it requires two specific information
of parameters, that can vary from problem to problem.

Finally, although MulticlusterKDE algorithm has presented, in some cases, a slightly
higher runtime, it showed a good performance, since the silhouette coefficient was equiv-
alent to other algorithms and besides it, not necessary to give the ideal number of clusters
a priori.

For all that, we remark that our algorithm has been shown more suitable for the
problems studied by considering both defined and not defined classes.

5. Conclusions

In this paper, we propose a new algorithm for clustering multivariate data, named Multi-
clusterKDE. This algorithm is based on themultiple optimization of Gaussianmultivariate
kernel density, with the objective of determining the number of clusters and their respective
centroids, with posterior allocation of the observations by the criterion of the minimum
Euclidean distance.

MulticlusterKDEwas implemented in R software and applied to several clustering prob-
lems, being some of themwith known label classes. Of the seven problemswith the number
of clusters defined, according to the error measures, the MulticlusterKDE algorithm was
better in six problems, and the second best performance was obtained by PdfCluster
algorithm, despite not getting results in two problems. MulticlusterKDE had four of the
worst runtime because it uses an optimization function in its process. The surprise was the
not good performance of DBSCAN. The other methods had an intermediate performance
with better runtimes.

In the problems whose number of clusters is unknown a priori, according to silhouette
coefficient, no algorithm stood out in relation to the others. The number of clusters varied
considerably, but it is worth mentioning that MulticlusterKDE, without knowing a priori,
found exactly the same value as the CLARA and K-medoids algorithms for nine problems.

Another positive aspect of MulticlusterKDE algorithm is that it does not require, a pri-
ori, the number of clusters as an input parameter, only as an optional argument. We also
show in this paper that the algorithm is well defined and converges independently of the
data set. As a negative aspect of the algorithm, we highlight its dependence on the KDE
function, which in turn is strictly dependent on the bandwidth matrix. But this occurs in
most papers in the literature.

An interesting point about the runtime of MulticlusterKDE is its subdivision between
the 2 or 3 steps. The most of its runtime is concentrated in the first step, that is, in the
multiple optimizations of Gaussian multivariate kernel density, raising the hypothesis that
the MulticlusterKDE has its speed determined by the speed of the optimizer.

In this way, as a proposal to future work, we will focus our efforts on minimizing the
influences of the α parameter used as smoothing coefficient in the kernel function.We will
also look for alternatives to designate the observations to the centroids. We hope to have
some results in this regard in a short period of time.

JOURNAL OF APPLIED STATISTICS 119

Acknowledgments

This work was partially supported by CAPES, CNPq, and Fundação Araucária, Brazil.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was partially supported by 10.13039/501100002322(CAPES), 10.13039/501100003593
(CNPq), and 10.13039/501100004612, Brazil.

ORCID

D. Scaldelai http://orcid.org/0000-0003-2988-2716
L. C. Matioli http://orcid.org/0000-0002-6506-3550

References

[1] M. Ahuja and J. Bal, Exploring cluster analysis, Int. J. Comput. Inf. Technol 3 (2014),
pp. 594–597.

[2] A. Asuncion and D. Newman, Uci machine learning repository (2007).
[3] A. Azzalini and G. Menardi, Clustering via nonparametric density estimation: The r package

pdfcluster, arXiv preprint arXiv:1301.6559 (2013).
[4] A. Azzalini and N. Torelli, Clustering via nonparametric density estimation, Stat. Comput. 17

(2007), pp. 71–80.
[5] J.E. Chacon and T. Duong,Multivariate Kernel Smoothing and Its Applications, Chapman and

Hall/CRC, Boca Raton, FL, 2018.
[6] M. Charytanowicz, J. Niewczas, P. Kulczycki, P.A. Kowalski, S. Łukasik, and S. Żak, Complete

gradient clustering algorithm for features analysis of x-ray images, in Information Technologies
in Biomedicine, Vol. 69, Springer, 2010, pp. 15–24.

[7] J. Chen, K. Li, H. Rong, K. Bilal, N. Yang, and K. Li, A disease diagnosis and treatment rec-
ommendation system based on big data mining and cloud computing, Inf. Sci. (Ny) 435 (2018),
pp. 124–149.

[8] Y. Cheng,Mean shift, mode seeking, and clustering, IEEE. Trans. Pattern. Anal. Mach. Intell. 17
(1995), pp. 790–799.

[9] A. Cichocki, R. Zdunek, A.H. Phan, and S.i. Amari, Nonnegative Matrix and Tensor Factoriza-
tions: Applications to ExploratoryMulti-way Data Analysis and Blind Source Separation, John
Wiley & Sons, Chichester, WSX, 2009.

[10] D. Defays,An efficient algorithm for a complete-link method, Comput. J. 20 (1977), pp. 364–366.
[11] M. Duan, K. Li, X. Liao, K. Li, and Q. Tian, Features-enhanced multi-attribute estimation with

convolutional tensor correlation fusion network, ACM Trans. Multimed. Comput. Commun.
Appl. 15 (2019), pp. 1–23.

[12] M. Duan, K. Li, and Q. Tian, A novel multi-task tensor correlation neural network for facial
attribute prediction, arXiv preprint arXiv:1804.02810 (2018).

[13] M. Ester, H.P. Kriegel, J. Sander, X. Xu et al., A density-based algorithm for discovering clusters
in large spatial databases with noise, in Kdd 96 (1996), pp. 226–231.

[14] M. Forina, C. Armanino, S. Lanteri, and E. Tiscornia, Classification of olive oils from their fatty
acid composition, in Food Research andData Analysis: proceedings from the IUFoST Symposium,
September 20–23, 1982, Oslo, Norway, H. Martens and H. Russwurm Jr., eds., Applied Science
Publishers, London, 1983.

http://orcid.org/0000-0003-2988-2716
http://orcid.org/0000-0002-6506-3550

120 D. SCALDELAI ET AL.

[15] A.E. Fraley C.and Raftery, T.B. Murphy, and L. Scrucca,mclust Version 4 for R: Normal Mixture
Modeling forModel-BasedClustering, Classification, andDensity Estimation, inTechnical Report
No. 597, Department of Statistics, University of Washington. 2012.

[16] C. Fraley and A.E. Rafter, Bayesian regularization for normal mixture estimation and model-
based clustering, J. Classif. 24 (2007), pp. 155–181.

[17] C. Fraley andA.E. Raftery,Model-based clustering, discriminant analysis and density estimation,
J. Am. Stat. Assoc. 97 (2002), pp. 611–631.

[18] J. Gan and Y. Tao, Dynamic density based clustering, in Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, New York, NY, USA, Association for Computing
Machinery, 2017, pp. 1493–1507.

[19] A. Gramacki, Nonparametric Kernel Density Estimation and Its Computational Aspects,
Springer, Cham, CHE, 2018.

[20] T. Gupta and S.P. Panda, A comparison of k-means clustering algorithm and clara clustering
algorithm on iris dataset, Int. J. Eng. Technol. 7 (2018), pp. 4766–4768.

[21] J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques Third Edition, Morgan
Kaufmann, Burlington, MA, 2011.

[22] H. Huang, C. Ding, D. Luo, and T. Li, Simultaneous tensor subspace selection and clustering: the
equivalence of high order svd and k-means clustering, in Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data mining, 2008, pp. 327–335.

[23] A. Kassambara, Practical Guide to Cluster Analysis in R: UnsupervisedMachine Learning, Vol. 1,
STHDA, 2017. Available at http://www.sthda.com/english/download/3-ebooks/.

[24] P.J. Kaufman and L. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis,
Vol. 344, Wiley-Interscience, Hoboken, NJ, 2009.

[25] P. Kulczycki andM.Charytanowicz,A complete gradient clustering algorithm formedwith kernel
estimators, Int. J. Appl. Math. Comput. Sci. 20 (2010), pp. 123–134.

[26] L. Liao, K. Li, K. Li, Q. Tian, and C. Yang, Automatic density clustering with multiple kernels for
high-dimension bioinformatics data, in 2017 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), IEEE, 2017, pp. 2105–2112.

[27] Y. Luo, D. Tao, K. Ramamohanarao, C. Xu, and Y. Wen, Tensor canonical correlation analysis
for multi-view dimension reduction, Transactions on Knowledge and Data Engineering IEEE.
Trans. Knowl. Data. Eng. 27 (2015), pp. 3111–3124.

[28] J. MacQueen et al., Some methods for classification and analysis of multivariate observations, in
Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1.
Oakland, CA, USA, 1967, pp. 281–297.

[29] R. Maitra and V. Melnyko, Simulating data to study performance of nite mixture modeling and
clustering algorithms, J. Comput. Graph. Stat. 19 (2010), pp. 354–376.

[30] L. Matioli, S. Santos, M. Kleina, and E. Leite, A new algorithm for clustering based on kernel
density estimation, J. Appl. Stat. 45 (2018), pp. 347–366.

[31] G.J. McLachlan and T. Krishnan, The EM Algorithm and Extensions, Vol. 382, Wiley Series in
Probability and Mathematical Statistics – John Wiley & Sons, New York, 2007.

[32] G.Menardi andA.Azzalini,Anadvancement in clustering via nonparametric density estimation,
Stat. Comput. 24 (2014), pp. 753–767.

[33] J. Nocedal and S. Wright, Numerical Optimization. Springer, New York, 1999.
[34] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for

Statistical Computing, Vienna, Austria, 2018. Available at https://www.R-project.org/.
[35] S.L. Race, Iterative Consensus Clustering, North Carolina State University, Raleigh, NC, 2014.
[36] A. Rodrìguez andA. Laio,Clustering by fast search and find of density peaks, Science 344 (2014),

pp. 1492–1496.
[37] P.J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,

J. Comput. Appl. Math. 20 (1987), pp. 53–65.
[38] D.W. Scott,Multivariate Density Estimation: Theory, Practice, and Visualization, JohnWiley &

Sons, Hoboken, NJ, 2015.
[39] L. Scrucca,M. Fop, T.B.Murphy, andA.E. Raftery,mclust 5: Clustering, classification and density

estimation using gaussian finite mixture models, R. J. 8 (2016), pp. 205–233.

http://www.sthda.com/english/download/3-ebooks/
https://www.R-project.org/

JOURNAL OF APPLIED STATISTICS 121

[40] G.H. Shah, C. Bhensdadia, andA.P. Ganatra,An empirical evaluation of density-based clustering
techniques, Int. J. Soft Comput. Eng. 22312307 (2012), pp. 216–223.

[41] R. Sibson, Slink: An optimally efficient algorithm for the single-link cluster method, Comput. J.
16 (1973), pp. 30–34.

[42] B.W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall,
London, 1986.

[43] W.W. Sun and L. Li, Dynamic tensor clustering, J. Am. Stat. Assoc. 114 (2019), pp. 1–28.
[44] J. Wu, Z. Lin, and H. Zha, Essential tensor learning for multi-view spectral clustering, IEEE.

Trans. Image. Process. 28 (2019), pp. 5910–5922.
[45] J. Xie, H. Gao, W. Xie, X. Lui, and P.W. Grant, Robust clustering by detecting density peaks and

assigning points based on fuzzy weighted k-nearest neighbors, Inf. Sci. (Ny) 7 (2016), pp. 10–35.

	1. Introduction
	2. Kernel density estimation
	3. MulticlusterKDE algorithm
	4. Numerical tests
	4.1. Numerical tests on known class problems
	4.1.1. Iris data set
	4.1.2. Wine data set
	4.1.3. Seeds data set
	4.1.4. Olive oil data set
	4.1.5. Dermatology data set
	4.1.6. Waveform database generator (Version 1)
	4.1.7. Waveform database generator (Version 2)

	4.2. Numerical tests on problems with no classes defined

	5. Conclusions
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

