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ABSTRACT
In time to event analysis, the situation of competing risks arises
when the individual (or subject) may experience p mutually exclu-
sive causes of death (failure), where cause-specific hazard function is
of great importance in this framework. For instance, in malignancy-
related death, colorectal cancer is one of the leading causes of the
death in the world and death due to other causes considered as
competing causes. We include prognostic variables in the model
through parametric Cox proportional hazards model. Mostly, in lit-
erature exponential, Weibull, etc. distributions have been used for
parametric modelling of cause-specific hazard function but they are
incapable to accommodate non-monotone failure rate. Therefore,
in this article, we consider a modified Weibull distribution which
is capable to model survival data with non-monotonic behaviour
of hazard rate. For estimating the cumulative cause-specific hazard
function, we utilized maximum likelihood and Bayesian methods. A
class of non-informative types of prior (uniform, Jeffrey’s and half-t)
is introduced for Bayes estimation under squared error (symmetric)
as well as LINEX (asymmetric) loss functions. A simulation study is
performed for a comprehensive comparison of Bayes and maximum
likelihood estimators of cumulative cause-specific hazard function.
Real data on colorectal cancer is used to demonstrate the proposed
model.
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1. Introduction

The situation of competing risks is commonly encountered in public health, demography,
actuarial science and engineering applications. In biomedical sciences, it is commonly seen
that an individual may experience pmutually exclusive type of events. For example, in col-
orectal cancer (CRC) study, death due to CRC may be the event of interest, and death
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due to other cause(s) may consider as competing event(s). For more details on compet-
ing risks, refer to [6,9,15]. In survival analysis, the Kaplan–Meier product-limit method is
well known to estimate cumulative survival probability of each event, but it is incapable
to consider competing causes of event. Therefore, to overcome this limitation, cumulative
incidence function (CIF) is recommended in the literature. CIF is also useful for compar-
ison of different group of patients, for detail discussion in this direction, one may refer to
[9,14,20].

The cause-specific hazard function [30] is frequently used for analysing the compet-
ing risks data in survival analysis. The triplet (T,C = j,X); j = 1, 2, . . . , p represents the
standard competing risks setting where T is the survival time, C is the causes of failure
and X is the vector of covariates. This process is defined in terms of cause-specific hazard
function as

hj(t|X) = lim
�t→0

{
P(t ≤ T < t + �t,C = j|T > t, X)

�t

}
; j = 1, 2, . . . , p . (1)

Cause-specific hazard function simply gives the instantaneous failure rate from the
cause j among subjects who are currently event free (i.e. subjects who have not yet expe-
rienced any competing events). The CIF is the probability of failure from cause j in the
presence of all other risks which is defined as

Fj(t|X) = P(T ≤ t, C = j|X); j = 1, 2, . . . , p . (2)

CIF can be obtained in terms of cause-specific hazard function as

Fj(t|X) =
∫ t

0
hj(u|X) exp

⎛
⎝−

p∑
j=1

Hj(u|X)

⎞
⎠ du. (3)

Since

Hj(t|X) =
∫ t

0
hj(u|X)du (4)

and overall survival function is given as

S(t|X) = exp

⎛
⎝−

p∑
j=1

∫ t

0
hj(u|X)du

⎞
⎠ . (5)

For interpretation and application of equations (1)–(5), one could refer to [9,29].
A plenty of work on parametric modelling of competing risks are available in the lit-

erature under the cause-specific hazard function. Bryant and Dignam [7] considered the
constant cause-specific hazard function for the primary event of interest and other mode
of hazard estimated non-parametrically. Benichou and Gail [5] estimated the absolute
risk by assuming that the cause-specific hazard function follows piecewise exponential as
well as exponential distribution. Jeong and Fine [17] considered Weibull cause-specific
hazard likelihood estimation and compared with direct likelihood approach by assum-
ing improper Gompertz distribution for CIF and later Jeong and Fine [18] extend this
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work for parametric regression approach for estimating CIF. Anjana and Sankaran [2] pro-
posed the parametric reverse cause-specific hazard function by assuming inverse Weibull
model under left censoring. Lee [22] considered the parametric quantile inference for
cause-specific hazard function with adjustment of covariates.

In this paper, we consider parametric competing risks survival analysis through cause-
specific hazard approach using the Cox regression model. The commonly used parametric
survival models are exponential, Weibull, gamma and log-logistic, etc. in which only
monotone shape of the hazard function can be accommodate. A number of work on the
generalization of Weibull distribution [21,27] are available in the literature. These distri-
butions have importance due to the flexibility to accommodate various (unimodal and
bathtub) shape of the hazard. Which motivate us to analyse the competing risks data
using the modified Weibull distribution (MWD) [21] via cause-specific hazard function.
The MWD is capable to capture the various behaviour of the hazard depending on shape
parameter.

In the literature, most of the work in this direction are focused on classical approach
rather than Bayesian approach in estimating the cause-specific hazard function. While
dealing with lifetime data, it is obvious that some past information may available in terms
of the past record of the subject. For example, in medical science, before examine a patient,
investigatormay be interested to know his/her history of disease. Classical statistical meth-
ods do not have such flexibility to incorporate the prior information in data analysis.
Bayesian methods of reasoning well known to incorporate the prior information [24].
Bayesian estimation techniquemay give some better inference for small sample size and the
information about the observation is incomplete. These situations are commonly encoun-
tered in reliability and survival analysis. Such factsmotivate us to propose Bayesianmethod
of estimation.

However, in the literature, researchers employ Bayesian methods of estimation through
semiparametric approach in competing risks survival analysis. Sen et al. [31] estimated
the cumulative cause-specific hazard function with masking by considering the Bayes esti-
mate using gammaprocess prior. Sreedevi and Sankaran [34] proposed the semiparametric
Bayesian approach for cause-specific hazard function using gamma process prior for base-
line cumulative cause-specific hazard function. Ge and Chen [10] considered the Bayesian
analysis for fully specified subdistribution hazard function by considering gamma pro-
cess prior for cumulative cause-specific hazard function. The aim of this attempt is to
employ the Bayesian methods of estimation in competing risks modelling through para-
metric cause-specific hazard function. Also, we consider a class of non-informative types
of prior, namely, uniform, Jeffrey’s and half-t with two different loss functions, viz, squared
error (symmetric) and LINEX loss functions (asymmetric).

The rest of the paper is organised as follows: we discuss parametric cause-specific hazard
regression analysis in competing risks set-up through MWD in Section 2. The maxi-
mum likelihood estimation of cause-specific hazard function is presented in Section 3.
The Bayesian analysis is given in Section 4. A simulation study of the proposed methods
is presented in Section 5. Application of the proposed model to CRC study is presented
in Section 6. Moreover, in Section 6, the fit of the proposed model and proposed meth-
ods are compared based on competing causes. Finally, Section 7 presented the brief
conclusion.
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2. Parametric cause-specific hazard regressionmodel

In practical situation, the population may not be homogenous. Heterogeneity can be rep-
resented in terms of covariates or explanatory variables (such as treatment, age, sex, etc.).
In survival analysis, the well-known proportional hazards model [8] used to measure the
effect of covariates on failure time. Cause-specific hazard function can extend in terms of
proportional hazard model as follows:

hj(t|X) = h0j(t) exp(β ′
jX), j = 1, 2, . . . , p, (6)

whereX ism×1 vector of covariates and β j is am×1 vector of regression constant attached
with covariateX. In Equation (6), hj(t|X) is the cause-specific hazard function in the pres-
ence of covariate X and the effect of the covariates are multiplicative. The baseline hazard
rate h0j(t) is assumed to follow an MWD. The distribution function and hazard function
of MWD are given as follows:

F(t) = 1 − exp(−atαeλt); t ≥ 0, α ≥ 0, λ > 0, a > 0, (7)

h(t) = a(α + λt)tα−1eλt ; t ≥ 0, α ≥ 0, λ > 0, a > 0 . (8)

The MWD is competent to modelling the failure data set which exhibit bathtub shape
of the hazard function, where a is the scale parameter, α and λ are the shape parameters.
The MWD received considerable attention in lifetime data analysis. Ng [28] discussed the
parameter estimation of MWD for progressively type -II censored data. Some extensive
study on MWD are available in [19,35]. The MWD is assumed here as a baseline model of
the Cox regression analysis due to its flexibility to accommodate various shape of hazard.

The baseline cause-specific hazard function corresponding to MWD is defined as

h0j(t) = aj(αj + λjt)tαj−1eλjt ; t ≥ 0, αj ≥ 0, λj > 0, aj > 0. (9)

The corresponding regression cause-specific hazard function, survival function and
cumulative hazard function in the presence of covariate X are given below

hj(t|X) = aj(αj + λjt)tαj−1eλjteβ
′
jX , (10)

S(t|X) = exp

⎛
⎝−

p∑
j=1

Hj(t|X)

⎞
⎠ , (11)

Hj(t|X) = ajtαjeλjteβ
′
jX, (12)

where

t ≥ 0, αj ≥ 0, λj > 0, aj > 0, −∞ < β j < ∞.

The main interest of this attempt is the parameter estimation of cause-specific haz-
ard function using Bayes and maximum likelihood estimates. Also, based on it make a
comprehensive comparative of the estimate of cumulative cause-specific hazard function
using (12).
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3. Maximum likelihood (ML) estimation under cause-specific approach

According to Prentice et al. [30], we consider (ti, ji, ci,Xi), i = 1, 2, . . . , n be the observed
samples of the ith individual. Where ti is the observed time, ji is the observed cause of
failure, ciis a censoring variable andXi is the vector ofm covariate of the ith individual. The
likelihood function of n independent observations in the cause-specific hazard framework
is given by

L =
n∏

i=1

⎛
⎝ p∏

j=1
hj(ti|Xi)

I(ci=j)S(ti|Xi)

⎞
⎠ .

The cause-specific hazard likelihood function using Equations (10) and (11) is

L(ti,Xi|aj,αj, λj,β j) =
n∏

i=1

p∏
j=1

(aj(αj + λjti)t
αj−1
i eλjtieβ

′
jXi)

I(ci=j)

× exp

⎛
⎝−

p∑
j=1

ajt
αj
i e

λjtieβ
′
jXi

⎞
⎠ . (13)

The log-likelihood function is given as

l =
p∑

j=1
nj log aj +

p∑
j=1

nj∑
i=1

log(αj + λjti) +
p∑

j=1

nj∑
i=1

(αj − 1) log ti +
p∑

j=1
λj

nj∑
i=1

ti

+
p∑

j=1

nj∑
i=

β ′
jXi −

p∑
j=1

n∑
i=1

ajt
αj
i eλjtieβ

′
jXi .

The normal equations of likelihood function are given below

∂ l
∂aj

= nj
aj

−
n∑
i=1

tαji eλjtieβ
′
jXi = 0 (14)

∂ l
∂αj

=
nj∑
i=1

1
αj + λjti

+
nj∑
i=1

log ti −
n∑

i=1
tαji log tiajeλjtieβ

′
jXi = 0 (15)

∂ l
∂λj

=
nj∑
i=1

ti
αj + λjti

+
nj∑
i=1

ti −
n∑

i=1
tαj+1
i ajeλjtie

β ′
jXi = 0 (16)

∂ l
∂β j

=
nj∑
i=1

Xi −
n∑

i=1
ajt

αj
i e

λjtiXie
β ′
jXi = 0 (17)

The likelihood equations (14)–(17) are not in explicit form and cannot be solved ana-
lytically. We solve the likelihood equations numerically by using the Newton–Raphson
iterative procedure. Under invariance property, the MLE Ĥj(t|X) of cumulative cause-
specific hazard function may be obtained by replacing aj,αj, λj and β j by their MLEs
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âj, α̂j, λ̂j and β̂ j, respectively, in (12). Hence, the same, therefore, given by

Ĥj(t|X) = âjtα̂jeλ̂jteβ̂ jX .

4. Bayes estimate under cause-specific hazard approach

The novelty of Bayesian inference is that it incorporates the prior or past information
with the observed information. The Bayesian analysis involves three steps for obtaining
the Bayes estimates. First, the assumption of prior information which may be informa-
tive, non-informative and weakly informative, i.e. it contains some information between
non-informative and informative information. Second is the posterior distribution of the
underlying parameter of interest. Third is the selection of appropriate loss function for
obtaining the Bayes estimate.

4.1. Assumption of priors

The assumption of priors is fully based on past experiences and expert opinions. The
choice of priors is wholly subjective guess or simply depend on mathematical conve-
nient. If the past information is available enough with the evidence of support, one may
consider the informative priors. In the case, when information relatively little or vague
information (a priori) about the parameter, then non-informative prior may considered.
The non-informative prior often leads to a class of improper priors [33].

In this article, we consider a class of non-informative types of prior which consists
uniform, Jeffrey’s and half-t distributions for baseline parameters. The normal non-
informative prior is assumed for regression parameters.

4.1.1. Uniform prior
We assume that random variables aj,αj and λj are independently follow a uniform dis-
tribution and the random variables β j independently follows normal distribution as a
non-informative priors, i.e.

π1(aj) ∝ 1; 0 < aj < 1 , π1(αj) ∝ 1; 0 < αj < 1, π1(λj) ∝ 1 ; 0 < λj < 1

and π1(β j) ∼ N(0, 1000). The joint prior distribution of aj,αj, λj and β j is equivalent to

π1(aj,αj, λj,β j) ∝ e
−β2j

2×1000 ; −∞ < β j < ∞. (18)

4.1.2. Jeffrey’s prior
We consider the prior according to Jeffrey’s rule (see Sinha [33]) for baseline parameters,
i.e. if the domain of parameter is on positive real line then log of parameter is uniformly
distributed. The formation of prior is as follows:

π2(aj) ∝ 1
aj
; 0 < aj < ∞, π2(αj) ∝ 1

αj
; 0 < αj < ∞, π2(λj) ∝ 1

λj
; 0 < λj < ∞ and

π2(β j) ∝ N(0, 1000); −∞ < β j < ∞ .
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The joint prior distribution of aj,αj, λj and β j under independent assumption is equivalent
to

π2(aj,αj, λj,β j) ∝ 1
ajαjλj

e
−β2j

2×1000 ; aj,αjλj > 0, −∞ < β j < ∞. (19)

4.1.3. Half-t prior
Gelman [11] suggested half-t is a default non-informative prior for a large and finite value
of the variance (scale parameter) of t distribution. It gives relativelymore information com-
pared to uniform/Jeffrey’s priors because half-t prior is not completely flat but nearly flat. In
the case when prior distribution contains enough information, numerical approximation
algorithm easily explore the target density, i.e. posterior distribution (see Akhtar and Khan
[32]). The specification of independent and identically half-t prior for baseline parameters
and normal prior for regression parameters are given below

π3(aj) ∝
(
1 + 1

ν

(aj
σ

))−( ν+1
2
)
, π3(αj) ∝

(
1 + 1

ν

(αj

σ

))−( ν+1
2
)
,

π3(λj) ∝
(
1 + 1

ν

(
λj

σ

))−( ν+1
2
)

and

π3(β j) ∝ e
− β2j

2×1000 ; aj,αj,λj, σ > 0, −∞ < β j < ∞.

The joint prior distribution of aj,αj, λj and β j is given by

π3(aj,αj, λj,β j) ∝
((

1 + 1
ν

(aj
σ

))(
1 + 1

ν

(αj

σ

))(
1 + 1

ν

(
λj

σ

)))−( ν+1
2
)
e

−β2j
2×1000 .

(20)
where ν denotes the degree of freedom and σ > 0 is the scale parameter of the half-
t distribution. Figure 1 shows that at α = 25 and ν = 4 half-t becomes approximate to
uniform.

4.1.4. Posterior analysis
The posterior probability distribution is obtained by combining the past information with
the observed sample through likelihood and prior distribution. The joint posterior prob-
ability density function of parameters is directly proportional to the product of likelihood
and joint prior density, defined as follows:

p(aj,αj, λj,β j|ti,Xi) ∝ L(ti,Xi|aj,αj, λj,β j)π(aj,αj, λj,β j)

By combining the joint prior densities of aj,αj, λj and β j in (18)–(20) with likelihood in
(13), then the joint posterior distributions are obtained as follows:

p1(aj,αj, λj,β j|ti,Xi) = K1

n∏
i=1

p∏
j=1

(aj(αj + λjti)t
αj−1
i eλjtieβ

′
jXi)

I(ci=j)
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Figure 1. Half-t density plot.

× exp

⎛
⎝−

p∑
j=1

ajt
αj
i eλjtieβ

′
jXi

⎞
⎠ e

− β2j
2×1000 (21)

p2(aj,αj, λj,β j|ti,Xi) = K2

n∏
i=1

p∏
j=1

(aj(αj + λjti)t
αj−1
i eλjtieβ

′
jXi)

I(ci=j)

× exp

⎛
⎝−

p∑
j=1

ajt
αj
i eλjtieβ

′
jXi

⎞
⎠ 1

ajαjλj
e

−β2j
2×1000 (22)

p3(aj,αj, λj,β j|ti,Xi) = K3

n∏
i=1

p∏
j=1

(aj(αj + λjti)t
αj−1
i eλjtieβ

′
jXi)

I(ci=j)

× exp

⎛
⎝−

p∑
j=1

ajt
αj
i eλjtieβ

′
jXi

⎞
⎠

×
((

1 + 1
ν

(aj
σ

))(
1 + 1

ν

(αj

σ

))

×
(
1 + 1

ν

(
λj

σ

)))−( ν+1
2
)
e

−β2j
2×1000 . (23)
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where K1, K2 and K3 are the normalizing proportionality constants given by

K1
−1 =

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∫ ∞

0

n∏
i=1

p∏
j=1

(aj(αj + λjti)t
αj−1
i eλjtieβ

′
jXi)

I(ci=j)

× exp

⎛
⎝−

p∑
j=1

ajt
αj
i e

λjtieβ
′
jXi

⎞
⎠ e

−β2j
2×1000 dajdαjdλjdβ j

K2
−1 =

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∫ ∞

0

n∏
i=1

p∏
j=1

(aj(αj + λjti)t
αj−1
i eλjtieβ

′
jXi)

I(ci=j)

× exp

⎛
⎝−

p∑
j=1

ajt
αj
i e

λjtieβ
′
jXi

⎞
⎠ 1

ajαjλj
e

− β2j
2×1000 dajdαjdλjdβ j

and

K3
−1 =

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

∫ ∞

0

n∏
i=1

p∏
j=1

(aj(αj + λjti)t
αj−1
i eλjtieβ

′
jXi)

I(ci=j)

× exp

⎛
⎝−

p∑
j=1

ajt
αj
i e

λjtieβ
′
jXi

⎞
⎠

×
((

1 + 1
ν

(aj
σ

))(
1 + 1

ν

(αj

σ

))(
1 + 1

ν

(
λj

σ

)))−( ν+1
2
)
e

− β2j
2×1000 dajdαjdλjdβ j .

It seems that under uniform prior, the conditional marginal density up to the proportion-
ality of parameter aj to be a gamma density with shape parameter nj and rate parameter∑n

i=1 t
αjeλjtieβ

′
jX. Therefore, the posterior random samples can be easily generated from

the gamma density. However, conditional posterior density functions for other parame-
ters αj andλj are log concave, then Highly Efficient Derivative Free Adaptive Rejection
algorithm [13] can be used for generating the posterior samples. But, for Jeffrey’s and half-
t prior, it is difficult to obtain the log concavity property of conditional posterior densities.
So, in this situation, Metropolis–Hasting algorithm [25,16] is considered.

4.2. Loss function

The selection of the loss function is vital in Bayesian analysis. In this article, we used two
different types of loss function, i.e. symmetric and asymmetric which are squared error
loss function (SELF) [33] and LINEX loss function (LLF) [1], respectively. Under SELF,
the Bayes estimator of Hj(t|X) is the posterior mean, i.e.

Ĥself
j (t| X) = 1

N

N∑
l=1

[Ĥj(t| X)]
αj=αl ,λj=λl ,aj=al ,β j=β l
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and under LLF, the Bayes estimator of Hj(t|X) is defined as

Ĥllf
j (t| X) = −1

p
log

(
1
N

N∑
l=1

e
−p[Ĥj(t| X)]

αj=αl ,λj=λl ,aj=al ,βj=βl

)

where αl, λl, al and β l, l = 1, 2, . . . ,N are the random sample drawn from the poste-
rior distributions of αj, λj, aj and β j, respectively, through MCMC algorithm and p is the
hyper-parameter of LLF which is assumed to be known.

5. Numerical illustration

We conducted a simulation study to observe the behaviour of themaximum likelihood and
Bayes estimators of cumulative cause-specific hazard function. We generate the random
samples through inverse transformation for four different sample sizes (20, 50, 100, 200).
For each sample sizes, we simulated 500 sets of data. In this scenario, we computed average
estimates and empirical mean square error (MSE) for each of cumulative cause-specific
hazard estimators.

In the simulation study, we assume the two causes of failures (j=1,2) and one single
covariate X.We propose MWD baseline hazard function as defined in (9) for (j=1,2) and
assume that λj to be known for mathematical convenient. To generate the data sets, the
following steps are considered:

Table 1. ML, Bayes estimates and their MSEs for cumulative cause-specific hazard function.

n= 20 Cause 1 Cause 2

Time points 0.5 0.8 1.0 0.5 0.8 1.0

True value 0.314 0.44962 0.53625 0.28856 0.37611 0.429

ML Estimate 0.31166 0.46562 0.56964 0.28339 0.38589 0.45099
MSE 2.20604 4.13323 6.00515 2.21305 3.85869 5.26992

Uniform SELF Estimate 0.33451 0.47848 0.57189 0.29453 0.39727 0.462
MSE 1.00098 1.9108 2.71769 1.30191 2.28909 3.12379

Jeffrey’s SELF Estimate 0.31197 0.43964 0.52189 0.26571 0.3514 0.4049
MSE 1.00382 1.88687 2.65315 1.34578 2.26356 2.98688

Half-t SELF Estimate 0.32014 0.48209 0.5946 0.29548 0.40765 0.48072
MSE 2.08172 4.12568 6.37563 2.05055 3.70597 5.19398

Uniform LLF p= 1.5 Estimate 0.32597 0.46312 0.55047 0.28569 0.38265 0.44251
MSE 0.94103 1.77863 2.49443 1.23144 2.10907 2.81362

Jeffrey’s LLF p= 1.5 Estimate 0.30335 0.42442 0.5009 0.25726 0.33775 0.38697
MSE 0.97306 1.85059 2.60594 1.31385 2.1903 2.85998

Half-t LLF p= 1.5 Estimate 0.30824 0.45992 0.56242 0.28435 0.38865 0.45486
MSE 1.88908 3.50911 5.08124 1.85609 3.15865 4.22126

Uniform LLF p= −1.5 Estimate 0.34346 0.49447 0.59423 0.30392 0.41285 0.48291
MSE 1.07572 2.08256 3.01731 1.39152 2.51823 3.52356

Jeffrey’s LLF p= −1.5 Estimate 0.32108 0.45568 0.54411 0.27476 0.3661 0.42439
MSE 1.04877 1.95989 2.76975 1.39482 2.37913 3.18899

Half-t LLF p= −1.5 Estimate 0.33345 0.50769 0.63363 0.30792 0.42955 0.51154
MSE 2.34904 5.05913 8.61909 2.31487 4.51397 6.76714
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Step 1: Let a1 = 0.5,α1 = 0.7,λ1 = 0.1,β1 = 0.1 and a2 = 0.4,α2 = 0.5,λ2 = 0.1,β2 =
0.1 for cause 1 and cause 2, respectively. The covariate X is generated from standard normal
distribution.

Step 2: The inverse transformation method is applied to generate the time variable T,
since the expression of the quantile function atαq e

λtqeβ
′
jX + log(1 − q) = 0 of MWD is not

in explicit form, so we used the uniroot function, see [6] for solving the following equation:

H1(tq) + H2(tq) + log(1 − q) = 0, q ∈ [0, 1] .

Step 3: Further, we generate the two causes of failure from the binomial distribution with
probability of success p(t) is h1(t)/h(t) for cause 1, where h(t) = h1(t) + h2(t) and (1 −
(h1(t)/h(t))) is probability of failure and failure outcome is considered as cause 2.

Step 4: The censoring time Ci is generated from U(0, ci), where ci is imposing the per-
centage of censoring around 20%. The observed failure/censoring time were calculated as
ti = min{Ti,Ci}.

It is noticed that the likelihood equations (14)–(17) are not in explicit form and can-
not be solved analytically. So, as an alternative, the iterative procedure in R through optim
function is used. For obtaining the standard error of themodel parameters, we used inverse
of the hessianmatrix. The Bayes estimators of baseline and regression parameters were cal-
culated for three types of non-informative prior (uniform, Jeffrey’s and half-t) and normal
non-informative, respectively, under SELF as well as LINEX loss function. The joint pos-
terior densities in Equations (21)–(23) are not in explicit form and it is difficult to obtain

Table 2. ML, Bayes estimates and their MSEs for cumulative cause-specific hazard function.

n= 50 Cause 1 Cause 2

Time points 0.5 0.8 1.0 0.5 0.8 1.0

True value 0.314 0.44962 0.53625 0.28856 0.37611 0.429

ML Estimate 0.32066 0.46474 0.55824 0.29061 0.38786 0.44788
MSE 0.8354 1.55794 2.1983 0.74852 1.26721 1.70019

Uniform SELF Estimate 0.32794 0.47099 0.56348 0.29274 0.39201 0.45372
MSE 0.63491 1.2246 1.74489 0.6313 1.10369 1.50926

Jeffrey’s SELF Estimate 0.31936 0.45555 0.54327 0.28203 0.37407 0.431
MSE 0.60652 1.14631 1.6161 0.61198 1.03107 1.37589

Half-t SELF Estimate 0.32141 0.46655 0.56153 0.2933 0.39373 0.45637
MSE 0.76166 1.43693 2.04978 0.66527 1.16057 1.59296

Uniform LLF p= 1.5 Estimate 0.32371 0.46357 0.55326 0.28869 0.38545 0.44508
MSE 0.60848 1.15968 1.63327 0.60978 1.04355 1.40429

Jeffrey’s LLF p= 1.5 Estimate 0.31518 0.44827 0.53328 0.27808 0.36775 0.42274
MSE 0.58685 1.10334 1.54473 0.59926 0.99546 1.31283

Half-t LLF p= 1.5 Estimate 0.31678 0.45853 0.55053 0.28907 0.38689 0.44736
MSE 0.73123 1.35034 1.89116 0.64019 1.08991 1.46941

Uniform LLF p= −1.5 Estimate 0.33231 0.47868 0.5741 0.29696 0.39886 0.46279
MSE 0.66571 1.30204 1.88046 0.65722 1.17594 1.63629

Jeffrey’s LLF p= −1.5 Estimate 0.32369 0.4631 0.55366 0.28613 0.38068 0.4397
MSE 0.6304 1.20124 1.71018 0.62872 1.07744 1.45826

Half-t LLF p= −1.5 Estimate 0.32624 0.47496 0.57317 0.2977 0.4009 0.4659
MSE 0.79855 1.54436 2.25055 0.69574 1.2468 1.74554
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the marginal posterior densities. So, we usedMCMC simulation techniques for generating
the random samples from the posterior distribution for calculating the Bayes estimates.

We generated 8000 MCMC samples by using BUGS software in R through OpenBUGS
interface [23]. The OpenBugs software implements various popular MCMC algorithms
such as Gibbs sampling [12] and Metropolis–Hastings algorithm [16], etc., the implemen-
tation of algorithmdepends on the characteristics of the conditional posterior distribution.
Suppose that if the conditional distribution is log concave then BUGS system use the adap-
tive rejection sampling [13] and if the conditional distribution have unrestricted range,
then BUGS system use Metropolis–Hastings algorithm.

For reducing the effect of the initial values, the first half of the sampleswere used in burn-
in period. The effect of the autocorrelation of the chain is observed and it found that the
chains are autocorrelated. So, for minimizing the effect of the autocorrelation every second
equally spaced outcome is considered, i.e. thin=2. By the visualization of the convergence
diagnostics plots, it is realized that chains are converging nicely.

The comparisons of the proposed estimators were carried out through cumulative
cause-specific hazard function Hj(t|X), j = 1, 2 at different time points with fixed value
of covariate X= −0.3. The findings of simulation study are presented in Tables 1–4 for
varying sample sizes n=20, 50, 100, and 200, respectively, with the fixed parameters value
a1 = 0.5,α1 = 0.7,λ1 = 0.1,β1 = 0.1, and a2 = 0.4,α2 = 0.5,λ2 = 0.1,β2 = 0.1 corre-
sponding to cause 1 and cause 2, respectively. The average estimates and MSE of ML and
Bayes estimates of cumulative cause-specific hazard function are tabulated in these tables.
The simulation results showed that

Table 3. ML, Bayes estimates and their MSEs for cumulative cause-specific hazard function.

n= 100 Cause 1 Cause 2

Time points 0.5 0.8 1.0 0.5 0.8 1.0

True value 0.314 0.44962 0.53625 0.28856 0.37611 0.429

ML Estimate 0.32419 0.46686 0.55869 0.29398 0.38903 0.44713
MSE 0.45332 0.83328 1.16129 0.41779 0.7092 0.94199

Uniform SELF Estimate 0.32726 0.47098 0.56369 0.29443 0.39079 0.45
MSE 0.42371 0.80473 1.13882 0.39568 0.67878 0.90876

Jeffrey’s SELF Estimate 0.32318 0.4633 0.55347 0.28937 0.38213 0.43897
MSE 0.40863 0.76046 1.06445 0.38127 0.63975 0.8449

Half-t SELF Estimate 0.3249 0.46854 0.56141 0.29524 0.39199 0.45146
MSE 0.43737 0.81556 1.14826 0.39667 0.68198 0.91439

Uniform LLF p= 1.5 Estimate 0.325 0.46709 0.55838 0.29235 0.38749 0.44571
MSE 0.41137 0.77309 1.08443 0.38714 0.65593 0.87036

Jeffrey’s LLF p= 1.5 Estimate 0.32095 0.45948 0.54827 0.28733 0.37891 0.43479
MSE 0.39835 0.73535 1.02193 0.37499 0.62306 0.81686

Half-t LLF p= 1.5 Estimate 0.32258 0.46459 0.55605 0.29314 0.38865 0.44711
MSE 0.42566 0.78442 1.09383 0.38756 0.65773 0.87377

Uniform LLF p= −1.5 Estimate 0.32957 0.47496 0.56913 0.29655 0.39416 0.45441
MSE 0.43738 0.84031 1.20069 0.40537 0.70469 0.95253

Jeffrey’s LLF p= −1.5 Estimate 0.32546 0.4672 0.5588 0.29145 0.38543 0.44326
MSE 0.42017 0.78928 1.11403 0.38861 0.65921 0.87776

Half-t LLF p= −1.5 Estimate 0.32727 0.47257 0.56691 0.29737 0.3954 0.45593
MSE 0.4505 0.85097 1.2108 0.40695 0.7094 0.96062
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• for sample size 20, the MSE of the cumulative cause-specific hazard function of both
causes isminimum for Bayes estimators with uniform and Jeffrey’s prior under both loss
functions when compared with MLE. The Bayes estimators of Ĥj(t|X = - 0.3), j = 1, 2
at t=0.5, 0.8 for half-t prior under both loss functions are close to MLE.

• Table 2 shows that the MSE of ML and Bayes estimators for half-t prior are very similar
for sample size 50. Moreover, the Bayes estimates for Jeffrey’s and uniform priors under
both loss functions are giving more precise results.

• For sample sizes 100 and 200, the magnitude of MSE for Bayes and ML estimates is
negligible for both the causes.

• Simulation study shows that the MSE of cumulative cause-specific hazard function is
decreasing while increasing the sample size.

6. Real life application

In this section, we illustrate the proposed estimation procedures of cause-specific hazard

Table 4. ML, Bayes estimates and their MSEs for cumulative cause-specific hazard function.

n= 200 Cause 1 Cause 2

Time points 0.5 0.8 1.0 0.5 0.8 1.0

True value 0.314 0.44962 0.53625 0.28856 0.37611 0.429

ML Estimate 0.32798 0.47007 0.56106 0.29778 0.39253 0.45023
MSE 0.32281 0.6082 0.84975 0.28817 0.48625 0.64169

Uniform SELF Estimate 0.32679 0.46893 0.56017 0.29625 0.39124 0.44925
MSE 0.29283 0.55898 0.78692 0.25087 0.42908 0.57145

Jeffrey’s SELF Estimate 0.32476 0.46509 0.55507 0.29373 0.38692 0.44375
MSE 0.28547 0.53869 0.75376 0.24404 0.41086 0.54225

Half-t SELF Estimate 0.32625 0.46811 0.55918 0.29721 0.39245 0.45061
MSE 0.29017 0.55243 0.777 0.25328 0.43437 0.57918

Uniform LLF p= 1.5 Estimate 0.32563 0.46697 0.55753 0.29521 0.3896 0.44713
MSE 0.28756 0.54564 0.76446 0.24721 0.41965 0.55597

Jeffrey’s LLF p= 1.5 Estimate 0.32361 0.46316 0.55246 0.29269 0.3853 0.44165
MSE 0.28074 0.52701 0.73429 0.24092 0.4029 0.52922

Half-t LLF p= 1.5 Estimate 0.32508 0.46615 0.55653 0.29615 0.39079 0.44846
MSE 0.28505 0.53942 0.75506 0.24943 0.42448 0.56297

Uniform LLF p= −1.5 Estimate 0.32796 0.47091 0.56285 0.2973 0.39289 0.45139
MSE 0.29843 0.5733 0.81122 0.2548 0.4392 0.58814

Jeffrey’s LLF p= −1.5 Estimate 0.32592 0.46706 0.55773 0.29478 0.38857 0.44588
MSE 0.29053 0.55132 0.77502 0.24744 0.41951 0.55644

Half-t LLF p= −1.5 Estimate 0.32742 0.4701 0.56187 0.29827 0.39413 0.45279
MSE 0.29564 0.56644 0.8008 0.25741 0.44499 0.59666

Table 5. Baseline parameter estimate and goodness of fit statistics for CRC.

Model MLE Log-likelihood AIC BIC

MWD a= 0.0785, α = 1.143, λ = −0.039 −1351.447 2708.955 2723.853
Weibull Shape= 0.95586, Scale= 13.6899 −1361.097 2726.194 2736.126
Lognormal Meanlog= 2.2887, Sdlog= 1.6053 −1352.59 2709.179 2719.111
Gamma Shape= 0.97411, Scale= 13.84353 −1361.567 2727.135 2737.067
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analysis withCRCdata. A study onCRCdatawas conducted byTaleghani hospital, Tehran,
Iran, from January 2004 to January 2014. A total of 1462 patients with CRCwere registered
in this study. The patients were followed up, until April 2015 and their survival status were
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Figure 2. Fitted and empirical CDFs plot of CRC.

Table 6. ML and Bayes parameter estimates with standard error for both causes.

CRC Other

a1 α1 λ1 β11 a2 α2 λ2 β12

ML estimates
Estimate 0.038 0.294 0.097 0.047∗ 0.049 0.01 0.026 −0.026
S.E. 0.01 0.032 0.008 0.01 0.012 0.01 0.006 0.012

Bayes estimates (uniform prior)
SELF 0.233 0.471 0.205 −0.032 0.5 0.497 0.2 −25.635∗
LLF p= 1.5 0.203 0.415 0.194 −0.035 0.439 0.436 0.194 −126.374∗
LLF p= −1.5 0.273 0.528 0.217 −0.029 0.562 0.558 0.217 −3.28∗
SD 0.214 0.277 0.124 0.063 0.289 0.288 0.115 18.723

Bayes estimates (Jeffrey’s prior)
SELF 0.145 0.572 0.211 −0.005 0.975 0.984 0.838 −27.554∗
LLF p= 1.5 0.123 0.415 0.189 −0.008 0.458 0.465 0.189 −130.474∗
LLF p= −1.5 0.18 0.856 0.237 −0.002 6.375 10.038 0.237 −3.614∗
SD 0.188 0.527 0.178 0.068 1.341 1.44 1.121 18.562

Bayes estimates (Half-t prior)
SELF 0.271 0.693 0.206 −0.039 24.298 12.214 5.582 −46.925∗
LLF p= 1.5 0.192 0.527 0.188 −0.042 2.565 2.131 0.188 −141.798∗
LLF p= −1.5 1.168 1.074 0.227 −0.036 196.998 69.696 0.227 −8.706∗
SD 0.466 0.556 0.161 0.064 22.155 10.119 4.788 19.473
∗Significant effect.
βj1 = Regression coefficient of BMI for cause j.
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identified. It is observed that 402 patients have incomplete information of non-specific sur-
vival time and they are omitted. The demographic variables and clinical features such as age
at diagnosis, sex, family history of CRC, body mass index (BMI), tumour size and tumour
site were extracted from the hospital records. Death and cause of death were confirmed via
telephone contact to patients’ families.

Baghestani et al. [3,4] and Moamer et al.[26] analysed CRC data in competing risks
set-up by applying the latent failure time approach with Weibull and generalized Weibull
distributions, respectively. But in latent failure time approach, it is difficult to verify the
independence assumption in real life. While in cause-specific hazard approach, no need
to verify the independence assumption. In this article, we include 1060 CRC patients,
in which 380 patients (35.5%) died from CRC and 49 patients (4.6%) died other causes
of death such as myocardial infection, stomach cancer, liver cancer, etc. and remaining
patients are right censored. The survival time of patients is given in months, but we
transform it in years for appropriateness of the model. The CRC data set includes many
covariates, such as age, sex, BMI, etc.; in this study, we consider BMI as a covariate.

First, we compared the goodness of fit statistics of the model with Weibull, lognor-
mal and gamma distributions based on Akaike information criterion (AIC) and Bayesian
information criterion (BIC). The baseline fitting summary of the CRC data are reported
in Table 5. The graph of the empirical and fitted models are shown in Figure 2, which
clearly shows that MWD gives best fit for CRC when compared with Weibull, lognormal
and gamma distributions. It is also clear from the goodness of fit statistics, i.e. MWD have
least AIC and BIC (except, lognormal) among the counter distributions.

Further, we also fit cause-specific hazard MWD for competing events (i.e. death due to
CRC and other cause) by applying both the proposed estimation procedures. The estimates
of baseline parameters and regression parameters with their standard error (S.E.) are given
in Table 6. Figure 3 shows the estimated cumulative cause-specific hazard function for both
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Figure 3. Estimate of baseline cumulative cause-specific hazard for CRC and other causes.
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the competing events with non-parametric estimates. The non-parametric estimates are
obtained without considering the situation of competing risks.

However, to test the significance of BMI effect on CRC, we consider the null hypoth-
esis H0 : β11 = 0 vs. H1 : β11 �= 0. We use the likelihood ratio test procedure, it gives the
p-value 3.09 × 10−7 which is much less than 0.01. This indicates that covariate BMI has
highly significant effect on death due to CRC.

However, the effect of BMI can measure numerically through hazard ratio (HR). The
HR is a descriptive measure which plays a prominent role in survival analysis. Since, BMI
is a continuous random variable with median 24.26, therefore, to calculate the HR, we
consider two values of BMI as X1 = 21.5(first quantile) and X2 = 27.00(third quantile).
For CRC, the HR at X1 relative to X2 is obtained as HRcrc(t|X2,X1) = 1.294. This means
that the risk of dying due to CRC in third quantile of BMI increased by approximately 30%
with respect to first quantile. Hence, the patients with higher BMI had lower survival with
CRC. In similar fashion, one could observe the effect of other risk factor (age, sex, etc.) on
death due to CRC.

7. Conclusion

In this article, we proposed the parametric cause-specific hazard analysis through MWD.
Both, maximum likelihood and Bayesian methods, are utilized for the parameter estima-
tion of the model. A class of non-informative types of prior (uniform, Jeffrey’s and half-t)
are introduced for Bayesian analysis with two different loss function, namely SELF and
LINEX for a comprehensive comparative study.

The conduct of simulation study for cumulative cause-specific hazard function shows
that for small sample size Bayes estimates of cause-specific hazard function for Jeffrey’s
and uniform priors under both loss functions are dominated over likelihood estimates.
Under half-t prior, the Bayes estimates are very close to likelihood estimate except the sam-
ple size 20 and ML and Bayes estimates are approximately very close for sample size 200.
Also, simulation study showed the convergence and the identifiability of the model. In real
data analysis, it is observed that at initial time points, the cumulative cause-specific hazard
function for both the causes are close to non-parametric estimate. CRC shows the larger
cumulative cause-specific hazardwhen comparedwith other causes. BMI have a significant
effect on CRC and other causes under MLE and Bayes estimates, respectively.

It is also conjectured that the class of non-informative types of prior gives better infer-
ence for cause-specific hazard in competing risks. Further, the problem for informative
priors is left for future researchers.
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