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ABSTRACT
The main objective of Statistics of Extremes is the estimation of
probabilities of rare events. When extending the analysis of the lim-
iting behaviour of the extreme values from independent and identi-
cally distributed sequences to stationary sequences a key parameter
appears, the extremal index θ , whose accurate estimation is not easy.
Here we focus on the estimation of θ using blocks estimators, that
can be constructed by using disjoint or sliding blocks. The asymp-
totic properties for both procedures were studied and compared but
both blocks estimators require the choice of a threshold and a block
length. Some criteria have appeared for the choice of those nuisance
quantities but some research is still needed. We will show how the
threshold and the block size choices can affect the estimates. How-
ever the main objective of this work is to revisit another estimation
procedure that only depends on the block length, although some
conditions on the underlying process need to be verified. The asso-
ciated estimator presents nice asymptotic properties, and for finite
samples is here illustrated a stability criterion for choosing the block
length and then obtaining the θ estimate. A large simulation study
has been performed and an application to dailymean flow discharge
rate in the hydrometric station of Fragas da Torre in river Paiva, data
collected from 1 October 1946 to 30 April 2012 is done.
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1. Motivation and introduction

Extreme Value Theory is an area of increasingly vast applications in a very large range of
environmental problems, such as burned areas (Díaz-Delgado et al. [8] and Schoenberg
et al. [24]) and earthquake thermodynamics (Lavenda and Cipollone [16]), to mention a
few recent applications. In many cases, another phenomenon can be observed, namely the
presence of clustering of very large or very small values (extremes) of the data. Figure 1 dis-
plays the occurrence of clusters of high values in a case study of daily mean flow discharge
rate values (m3/s) from the hydrometric station at Fragas da Torre collected from the
‘SNIRH: SistemaNacional de Informação dos Recursos Hídricos’. A pronounced temporal
clustering of the extreme values can be seen, indicating the presence of local dependence
in the extremes. Therefore, quantifying the nature of the dependence structure as well as
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Figure 1. Daily mean flow discharge rate values (m3/s) from 1 November 1946 to 30 April 1947 and
from 1 November 1947 to 30 April 1948 from hydrometric station at Fragas da Torre.

the duration of extreme events becomes an essential part of the understanding of this time
series data.

The extremal index (EI), usually denoted by θ , is the main parameter that describes
and quantifies the clustering characteristics of the extreme values in many stationary time
series. Its formal definition is given in Section 2.

This work was motivated by that real case, with the objective of studying and com-
paring methods to estimate the EI. Classical inference for the cluster size distribution has
been mainly based in the blocks method and in the runs method, see Smith and Weiss-
man [26] andWeissman and Novak [28]. Those procedures require that the block size and
the threshold be chosen, and the estimates strongly depend on that choice. We will illus-
trate that dependence for some stationary processes and some finite samples generated
from those processes.

In Section 2, we introduce the notations used throughout the article, the definition and
some probabilistic characterizations of the EI are briefly reminded. Those characteriza-
tions gave rise to the definition of some estimators. The blocks estimator, Weissman and
Novak [28], will be the classical estimator to be considered as a comparison with another
blocks estimator, derived under some conditions on the stationary process and a differ-
ent definition of blocks. In Section 3. the classical blocks method, properties of blocks
estimators and their difficulties are discussed and illustrated through some simulated sam-
ples. The new approach for defining blocks and the conditions for the definition of a new
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estimator are presented in Section 4. Consistence and asymptotic distributional properties
of the estimator are studied. The EI estimation under this approach is illustrated for some
simulated samples. In Section 5 an heuristic procedure based on a stability criterion is con-
sidered to automatically choose the block size and to obtain the θ estimate. The real case
study thatmotivated this study, will be considered in Section 6 and some general comments
are pointed out in Section 7.

2. Extremal index: definition and characterization

In many practical applications extreme conditions often persist over several consecutive
observations. Under adequate general local and asymptotic dependence conditions, the
limiting point process of exceedances of a high level un by X1, . . . ,Xn, after a suitable nor-
malization is a homogeneous compound Poisson process with intensity θτ and limiting
cluster size distribution, π (Hsing et al. [14]). That constant θ , EI, has an important role in
extreme value theory for weakly dependent processes, reflecting the effect of clustering of
extremes observation on the limiting distribution of the maximum. The EI is the quantity
that measures the amount of clustering of the extremes in a stationary sequence.

Definition 2.1 (Leadbetter et al. [18]): Suppose that {Xn}n≥1 is a strictly stationary
sequence of random variables with marginal distribution function (d.f.) F. This sequence
is said to have an extremal index θ ∈ [0, 1] if, for each τ > 0, there exists a sequence of
levels un ≡ un(τ ), such that

n{1 − F(un)} −→
n→∞ τ and P

{
M1,n ≤ un(τ )

} −→
n→∞ exp(−θτ),

whereM1,n = max{X1, . . . ,Xn}.
When θ = 1 the exceedances of high thresholds tend to occur isolated, as in the

independent context. If θ < 1 we have groups of exceedances in the limit.
The EI measures the relationship between the dependence structure of the data and the

behavior of the exceedances over a high threshold un.
Dependence in stationary sequences can take different forms, and it is impossible to

develop a general characterization of the behavior of extremes unless some constraints are
imposed. It is usual to assume a condition that limits the extend of long-range dependence
at extreme levels, so that the events Xi > u and Xj > u are approximately independent,
provided that u is high enough, and time points i and j have a large separation. Let
us denote Fi1,i2,...,ip(u1, u2, . . . , up) := P(Xi1 ≤ u1,Xi2 ≤ u2, . . . ,Xip ≤ up), the joint d.f. of
(Xi1 ,Xi2 , . . . ,Xip) for any arbitrary positive integers (i1, i2, . . . , ip).

Definition 2.2 (D(un) condition (Leadbetter et al. [18])): TheD(un) condition holds for
a stationary sequence if for every integers p, q and i1 < i2 < · · · < ip < ji < j2 < · · · <

jq < n such that j1 − ip > � ≡ �n, we have∣∣∣Fi1,i2,...,ip,j1,j2,...,jq(un, un, . . . , un)
−Fi1,i2,...,ip(un, un, . . . , un)Fj1j2,...,jq(un, un, . . . , un)

∣∣∣ ≤ αn,�,

where limn→∞ αn,�n = 0 for some sequence {�n = o(n)}.
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Let {Xn}n≥1 be a strictly stationary sequence of random variables that satisfies theD(un)
condition of Leadbetter et al. [18] and has a marginal distribution function F. For large n
and un,

P
{
M1,n ≤ un

} ≈ Fnθ (un).

Further, if there exist normalizing constants an ∈ R
+ and bn ∈ R such that Fn(anx +

bn) −→
n→∞G(x), then G(x) is the distribution function of a GEV distribution, and

P
{
M1,n ≤ un

} −→
n→∞H(x) = Gθ (x).

The corresponding result forM∗
1,n = max{X∗

1 , . . . ,X
∗
n} where X∗

1 ,X
∗
2 , . . . are independent

variables with distribution function F, gives the limiting distribution function G(x) =
H(x)1/θ . Hence, the EI is a key parameter for the distribution of sample extremes.

For illustration of the behaviour of a stationary process compared with the correspon-
dent i.i.d. sequence and the effect let us consider the following example:

Example 2.3 (AMoving Maximum Process, (Süveges [27])): Let {Yn}n≥1 be a sequence
of i.i.d. uniform variables on [0, 1[ with F the common d.f.. Let {Xn}n≥4 be the 4-dependent
moving maxima sequence, defined as

[M1] Xn = max(Yn−3,Yn−2,Yn−1,Yn), n ≥ 4. (1)

Themarginal underlying distribution for {Xn} is F4 and we have θ = 1/4, see Süveges [27].
Consider also {Zn}n≥1 an i.i.d. sequence with the same d.f. F4.

Figure 2 shows one realization of the process [M1] and of Zn. Four-sized clusters of
exceedances of high levels can be seen when Xn is plotted, while for Zn only isolated values
appear.

The next example illustrates the behaviour of a stationary process for different values
of EI.

Figure 2. One realization of an i.i.d. process and a 4-dependent moving maxima process.
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Example 2.4 (A Max-Autoregressive Process I, (Beirlant et al. [2])): Let {Yn}n≥1 be a
sequence of i.i.d., unit-Fréchet. For 0 < θ ≤ 1, let

[M2] X1 = Y1, Xn = max{(1 − θ)Xn−1, θYn} n ≥ 2. (2)

For un = nx, x>0, P(M1,n ≤ un) → exp(−θ/x), as n → ∞, so the EI of the sequence is
θ , see Beirlant et al. [2].

Figure 3 shows partial realizations of the process [M2] with θ = 0.1; 0.5 and 0.9, respec-
tively. The maxima show increasing clustering as θ → 0. Notice also again a ‘shrinkage of
maximum values’ as dependence increases.

Estimation of the EI is often based on the interpretation of θ due to Hsing et al. [14] as
the reciprocal of the mean cluster size in the point process of exceedance times over a high
threshold. Under a mixing condition which is slightly stronger than D(un) those authors
showed that the point process of exceedances converge weakly to a compound Poisson
process, provided that nF(un(τ )) −→

n→∞ τ , i.e. un(τ ) a normalized level. The distribution
πn(j; un, rn) of the cluster sizes is given by

πn(j; un, rn) = P

{ rn∑
i=1

I(Xi > un) = j

∣∣∣∣∣
rn∑
i=1

I(Xi > un) > 0

}
,

for j = 1, . . . , rn, rn → ∞ and rn = o(n), and I(.) denoting the indicator function. Under
additional summability conditions on the πn,∑

j≥1
jπn(j; un, rn) −→

n→∞ θ−1,

i.e. the limiting mean number of exceedances of un in an interval of length rn corresponds
to the arithmetic inverse of the EI. So, we can write,

θ−1 =
∑
j≥1

jπ(j),

i.e. themean cluster size in the limiting point process of exceedance times over high thresh-
olds. This suggest that a suitable way to estimate the EI is to identify clusters of high levels
exceedances, and to calculate the mean size of these clusters. By the way in which clusters
are identified, the estimators fall apart in two types: blocks estimator and runs estimator
(Smith andWeissman [26]; Weissman and Novak [28]; Hsing [13]). These estimators usu-
ally depend on two quantities to be chosen by the statistician: a threshold sequence and a

Figure 3. Samples of size n = 150 fromM2 process, generated for θ = 0.1, θ = 0.5 and θ = 0.9.
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cluster identification schemeparameter, such as the block size or the run length. In addition
to the runs and blocks estimators of EI, two other estimators have recently been proposed:
a two-threshold method (Laurini and Tawn [15]), and the intervals-estimator (Ferro and
Segers [12]). The two-threshold method requires the choice of two declustering parame-
ters. In contrast, inter-exceedance type estimators are attractive since they only depend on
a threshold sequence.

Statistical properties, such as consistence and asymptotic distributional behaviour of
those estimators are well documented in the aforementioned papers.

3. The blocks method to define clusters of exceedances

The blocksmethod consists of partitioning then observations into consecutive kn = [n/rn]
contiguous blocks of a certain length, rn = o(n). In each block, the number of exceedances
over a certain high threshold un are counted, and the blocks estimator is then defined as
the reciprocal of the average number of exceedances per block among blocks with at least
one exceedance, defined by,

θ̂Bn (un) :=
∑kn

j=1 I
(
M(i−1)rn,irn > un

)∑n
i=1 I (Xi > un)

. (3)

This blocks estimator of the EI has been intensively studied in the literature. Hsing [13] and
Weissman and Novak [28] proved its consistency and asymptotic normality under suitable
mixing conditions.

Variants of the blocks estimator were also examined by Smith and Weissman [26] and
Robert et al. [23]. Blocks estimators can be constructed considering continuous blocks or
sliding blocks. The asymptotic properties for both procedures were studied and compared
in Robert et al. [23]. However, for both procedures the blocks estimator requires the choice
of a threshold, un, and a block size, rn. But, the behaviour of the estimates depend strongly
of rn and un. Some recent works trying to deal with that situation can be mentioned, such
as Berghaus and Bücher [3], Drees ([9,10]) and Northop [21].

Let us consider some other models that will be used in the simulation study to illustrate
how the estimates depend on rn and un.

Example 3.1 (AMax-Autoregressive Process II, (Alpuim [1])): Let {Yn}n≥1 be a sequence
of independent, unit-Fréchet distributed random variables and X0 a random variable with
d.f. H0(x) = exp(−x−1(β−1 − 1)). For 0 < β < 1, let

[M3] Xn = β max {Xn−1,Yn} , n ≥ 2. (4)

The EI of this process is θ = 1 − β , see Alpuim [1].

Example 3.2 (A Second order autoregressive process, (Süveges [27])): Let {Yn}n≥1 be a
sequence of independent, unit-Fréchet distributed random variables. Let {Xn}n≥1 be the
second order autoregressive process, defined as

[M4] Xn = 0.93Xn−1 − 0.86Xn−2 + Yn, n ≥ 3. (5)

The EI of this process is approximately 0.23, see Süveges [27].
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Example 3.3 (A Stochastic process, (Smith and Weissman [26])): Let {αn}n≥1 be inde-
pendent, distributed Bernoulli random variables with P{αn = 1} = 1 − P{αn = 0} = θ

and {Yn}n≥1 be independent and identically distributed random variables, also indepen-
dent of {αn}. The process {Xn}n≥1 is defined as follows:

[M5] X1 = Y1, Xn = αnYn + (1 − αn)Xn−1, n ≥ 2. (6)

The marginal d.f. of {Xn} is F, the cluster sizes have geometric distribution with mean 1/θ ,
hence the EI of this process is θ , see Smith and Weissmank [26].

Example 3.4 (AMax-AutoregressiveProcess III, (Smith [25])): Let {Yn}n≥1 be a sequence
of independent, standard Gumbel distributed random variables. For fixed α define

[M6] Xn = max
{
Xn−1 − α,Yn + log

(
1 − exp(−α)

)}
n ≥ 1. (7)

The EI of this process is θ = 1 − exp(−α), see Smith [25].

Example 3.5 (AMoving Autoregressive process of order 2, (Reiss andThomas [22])): Let
{Yn}n≥1 be a sequence of independent, Pareto distributed random variables with tail index
α > 0. Define

[M7] Xn = Yn + a1Yn−1 + a2Yn−2, n ≥ 3. (8)

The EI of this process is θ = 1/(1 + aα
1 + aα

1 ), see Reiss and Thomas [22].

Figure 4. Estimates of θ̂Bn plotted against k (un = Xn−k:n), of a sequence of length n = 1000, with
block lengths rn = 10, 20, 50, 125, 250, for the [M1] process (upper left), [M2] process (upper right), [M3]
process (lower left) and [M4](lower right).
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Figure 5. Estimates of θ̂Bn plotted against k (un = Xn−k:n), of a sequence of length n = 1000, with block
lengths rn = 10, 20, 50, 125, 250, for the [M5] process (left), [M6] process (center), [M7] process (right).

Figures 4 and 5 display blocks EI-estimates based on exceedances over a high threshold
un = Xn−k:n, whereX1:n ≤ X2:n ≤ . . . ≤ Xn:n are the ascending order statistics (o.s.), asso-
ciated to the sample (X1,X2, . . . ,Xn). For each process [M1-M7] a sample of size n = 1000
was generated and the estimates were calculated for several block lengths, rn.

The estimates are almost monotones functions in un and monotonically decreasing
when the block lengths rn increases. It seems difficult to decide what rn should be cho-
sen, there is some block size for which the path estimates do not cross the true value of the
parameter. On the other hand the region of EI-estimates that shows some stability around
the true value of the parameter depends on rn and even for a given rn, it is not obvious how
to choose the threshold appropriately.

4. A new approach for the blocks method estimator

We will consider here an estimator, introduced in Canto e Castro [5] who suggested a
different approach to define the threshold inside each block. This approach works under
a local dependence condition, D(2)(un), of Chernick et al. [6] based on Leadbetter and
Nandagopalan [17] results. D(2)(un) condition, restricting rapid oscillations at high levels,
requires the validity of the dependence condition D(un) and is defined as:

Definition 4.1: Let {Xn}n≥1 be a stationary sequence of random variables.D(2)(un) is said
to be satisfied if

nP
{
Xj > un,Xj+1 ≤ un,Mj+2,rn > un

} −→
n→∞ 0, (9)

with un verifying theD(un) condition and a sequence rn of block sizes such that n/rn → ∞
and rn = o(n).

This condition locally restricts the occurrence of two or more upcrossings, but still
allows clustering of exceedances.

The proposed estimator, Canto e Castro [5], was defined in the following way: let kn
denote the number of blocks, and rn the respective block size. Let vni be a sequence of
levels such that

rnP {X1 ≤ vni < X2} −→
n→∞ 1. (10)

Denoting Ni(rn, vni) as the number of up-crossing of vni in ith block, the estimator is
defined by

θ̃Bn (rn) := kn∑kn
i=1 Ni(rn, vni)

. (11)
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The properties of the estimator θ̃Bn (rn), in (11), were studied in Canto e Castro [5] and
here will be presented the Theorems therein included. Let us first recall some notations:

• Leadbetter and Nandagopalan [17] showed that, under regular conditions, the point
process of up-crossings

Ñn(B) =
n∑

i=1
εi/n(B)I(Xi−1 ≤ un < Xi), B ⊂ [0, 1]

converges to a Poisson point process with intensity that depends on the level un and θ .
• Let μ(u) denotes the probability of a up-crossing can occur (not depending on the

instant j due to the stationarity)

μ(u) = P{Xi ≤ u < Xj+1} = P{Xj ≤ u|Xj+1 > u}P{Xj+1 > u} (12)

The followingTheorems that present conditions for consistence and the asymptotic nor-
mality of the estimator θ̃Bn (rn), in (11) are due to Canto e Castro [5] and there can be found
the respective proves.

Theorem 4.2: Let {Xn}n≥1 be a stationary sequence of random variables that satisfies D(un)
and D(2)(un) conditions for a sequence of levels un such that nμ(un) −→

n→∞ ν.

Then Ñn −→
n→∞ Ñ, where Ñ is a Poisson process in [0, 1] with intensity ν.

If, further, {Xn}n≥1 has extremal index θ , then

nμ(un) −→
n→∞ ν if and only if nP{X1 > un} −→

n→∞ ν/θ .

Theorem4.3: Let kn be a sequence of positive numbers such that kn → ∞ and rn = [n/kn].
Let us suppose that the stationary sequence of random variables, {Xn}n≥1, has extremal index
θ and satisfies D(vn) andD(2)(vn) conditions, and that exists ln such that kn[αn(ln − 2, vn) +
P{M1,ln > vn}] −→

n→∞ 0, for levels vn such that rnμ(vn) −→
n→∞ 1, then

∑kn
i=1 Ni(rn, vn)

kn
−→
n→∞

1
θ
.

Theorem 4.4: If conditions established in Theorem 4.3 hold for levels vni such that
rnμ(vni) −→

n→∞ 1, i = 1, . . . , kn, then the estimator θ̃Bn (rn) is consistent.

Theorem4.5: In conditions established in Theorem 4.3, if E(N2(rn, vn)) −→
n→∞ c2(< ∞), and

if, for each ε > 0, knE(N2(rn, vn)I(N2(rn, vn) > ε)) −→
n→∞ 0 (Lindeberg’s condition), for levels

vn such that rnμ(vn) −→
n→∞ 1, then

k−1/2
n

⎛⎝ kn∑
i=1

Ni(rn, vn) − knE (N(rn, vn))

⎞⎠ d−→N
(
0,

1
θ

√
θ2c2 − 1

)
.
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Theorem 4.6: Suppose in addition to the conditions of Theorem 4.5 that√
kn (Ni(rn, vn) − Ni(rn, vni))

p−→ 0

for levels vni such that rnμ(vni) −→
n→∞ 1, i = 1, . . . , kn, then

√
kn

(
θ̃Bn (rn) − θn

) d−→N(0, θ
√

θ2c2 − 1),

where θn = (E(N(rn, vn)))−1.

Theorem 4.7: Suppose in addition to the conditions of Theorem 4.6 that

θn = θ + o
(

1√
kn

)
.

Then √
kn

(
θ̃Bn (rn) − θ

) d−→N(0, θ
√

θ2c2 − 1).

The estimator in (11) depends on the validity ofD(2)(un) condition, that can be checked
by calculating the proportion of the anti-D(2)(un) events {Xj+1 ≤ un,Mj+2,rn > un|Xj >

un} among the exceedances for a range of thresholds and block sizes, given un and rn, see
Süveges [27], given by

p(un, rn) =
∑n

j=1 I(Xj > un,Xj+1 ≤ un,Mj+2,rn > un)∑n
j=1 I(Xj > un)

, (13)

for the observed sequence {X1, . . . ,Xn}.
Examples are given in Figures 6–8with [M1] process satisfying conditionD(2)(un), with

very low values of p(un, rn). However [M2], [M3], [M5], [M6] and [M7] processes depend
on value of θ , showing higher values of p(un, rn) for high values of θ and small values of
p(un, rn) for small values of θ .

Indeed processes [M2], [M3] and [M6] which are a special case of the general
MARMA(p,q) processes introduced by Davis and Resnick [7] satisfies condition (9) for
small values of θ , see Ferreira [11] and Martins and Sebastião [19]. Process [M4] does not
verify that condition, see Süveges [27].

Figure 6. The observed proportions of p(un, rn) for the [M1–M3] process with rn = 100 (from left to
right).
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Figure 7. The observed proportions of p(un, rn) for the [M4–M6] process with rn = 100 (from left to
right).

Figure 8. The observed proportions of p(un, rn) for the [M7] process with rn = 100.

Figure 9. Estimates of θ̃Bn of a sequence of length n = 1000, for different blocks lengths, from the [M1]
process, (upper left); [M2] process (upper right); [M3] process (lower left) and [M4] process (lower right).
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Figure 10. Estimates of θ̃Bn of a sequence of length n = 1000, for different blocks lengths, from the [M5]
process, (left); [M6] process (middle); [M7] process (right).

To apply this estimator to a given sample the vni levels should be chosen verifying
rnP{X1 ≤ vni < X2} ∼ 1. However the joint distribution of (X1,X2) is unknown and so
the vni is. Under the validity of the D(2)(un) condition, it seems reasonable to substitute
vni, in each block, by adequate levels such that the number of up-crossings is equal to 1,
but low enough to identify exceedances. More precisely, we can define,

Vni = inf {u : Ni(rn, u) = 1} , i = 1, . . . , kn. (14)

For each of processes (even for process [M4], for which we know that D(2)(un) condi-
tion is not verified) a n = 1000 sample-sized was generated and the estimator in (11) was
applied. Figures 9 and 10 display the estimates obtained in each process for several values
of block length.

For processes [M2], [M3] and [M6] the procedure presents very good results, a large
stability region, very close to the true value of the parameter. It seems that we can consider
the small value for rn for which a stability of the estimates path is obtained, and to estimate
θ using that value of rn.

For the [M4] process, forwhich theD(2)(un) condition is not verified, the stability region
stays very far away from the true value of the parameter.

5. A choice of rn: an heuristic sample path stability criterion

A path stability algorithm, see Caeiro and Gomes [4] and Neves et al. [20] has revealed
quite nice results for extreme value parameters estimation and can now be adapted to the
choice of rn and to obtain a θ estimate. Let us see the description of the algorithm, for

̃B(rn) estimator:

1. Given an observed sample (x1, . . . , xn), compute the observed values of 
̃B(rn) for a
range of values of rn (in our simulations we have considered [n/100] � rn � [n/4]).

2. Obtain the rounded values, to 0 decimal places, of the estimates in the previous step.
Define aθ̃B(rn)(0) = round(θ̃B(rn), 0), [n/100] � rn � [n/4], the rounded values of

̃B(rn) to 0 decimal places.

3. Consider the sets of r values associated to equal consecutive values of aθ̃B(rn)(0),
obtained in Step 2. Set rθ̃

B
min and r

θ̃B
max theminimum andmaximum values, respectively,

of the set with the largest range. The largest run size is then lθ := rθ̃Bmax − rθ̃
B

min.
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Table 1. Values of rn0 and the best estimates, θ̃B(rn0), for samples simulated frommodels [M1–M7], and
n = 500, 1000, 2000, 5000 samples-sized.

n = 500 n = 1000 n = 2000 n = 5000

Models θ rn0 θ̃B(rn0) rn0 θ̃B(rn0) rn0 θ̃B(rn0) rn0 θ̃B(rn0)

M1 0.25 95 0.1405 245 0.1423 490 0.1424 1200 0.1428
M2 0.1 90 0.1017 155 0.1086 195 0.1005 995 0.1204

0.5 85 0.5219 190 0.5257 315 0.5395 445 0.5188
0.9 105 0.9 200 0.9 395 0.9089 830 0.9117

M3 0.1 90 0.1071 195 0.1121 320 0.1131 995 0.1174
0.5 65 0.5053 120 0.5144 270 0.5174 550 0.5266
0.9 95 0.8668 240 0.8986 355 0.9027 1225 0.9116

M4 0.23 105 0.608 60 0.6076 425 0.5568 1245 0.5386
M5 0.1 70 0.0418 135 0.0491 495 0.0584 1225 0.0596

0.5 75 0.3421 240 0.3748 230 0.3436 520 0.3476
0.9 45 0.7855 245 0.8931 385 0.848 1055 0.8392

M6 0.1813 115 0.2131 195 0.2045 255 0.193 990 0.2125
0.5034 60 0.5044 95 0.5106 220 0.5182 680 0.5345
0.9093 80 0.8913 225 0.9133 420 0.9149 815 0.9186

M7 0.5858 90 0.6891 150 0.6896 390 0.7235 995 0.7208
0.7934 35 0.837 120 0.9333 265 0.9667 1140 0.9297
0.8803 85 0.8357 190 0.881 385 0.8973 1030 0.9289

4. Consider all estimates, θ̃B(rn), for rθ̃
B

min ≤ rn ≤ rθ̃Bmax, now with two extra decimal
places, i.e. compute θ̃B(rn) = aθ̃B

k (2). Obtain the mode of θ̃B(rn) and denoteRθ̃B the
set of r-values associated with this mode.

5. Take rn0 as the maximum value ofRθ̃B , and consider the adaptive estimate θ̃B(rn0).
6. The best estimate is the value of 
̃B that corresponds to the maximum run size lθ

computed in Step 3.

Table 1 present the result of an application of the algorithm to samples generated from
models [M1–M7], with the choice of rn, rn0, and the associated estimates.

6. An application

The data under study refers to the daily mean flow discharge rate values (m3/s) from 1
October, 1946 to 30 April, 2012 (‘SNIRH: Sistema Nacional de Informação dos Recursos

Figure 11. Daily mean flow discharge rate values (m3/s) from 1 January 1947 to 30 March 1947 from
hydrometric station at Fragas da Torre.
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Figure 12. Daily mean flow discharge rate values (m3/s) from 1 January 1947 to 30 March 1947 from
hydrometric station at Fragas da Torre.

Figure 13. The observed proportions of p(un, rn) for the daily mean flow discharge rate values with
rn = 100.

Figure 14. Estimates of θ̂Bn plotted against k (un = Xn−k:n) (left) and estimates of θ̃Bn plotted
against block length (right) with the choice of rn for the daily mean flow discharge rate
values.
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Hídricos’). After some previous studies the stationarity of the data can be assumed from
November until April (n = 11947).

Figure 11 illustrates the effect of considering different thresholds, when the block length
was fixed as rn = 15, for defining the clusters of exceedances, plotting a subset of the dataset
available while Figure 12 displays the obtention of clusters, applying procedure (14) and
considering three blocks, for the same subset used in Figure 11.

We also checked the proportion of the anti-D(2)(un) events in our data and we verify
that satisfies condition D(2)(un), see Figure 13.

Figure 14 presents sample paths for the block-method EI- estimates. The difficulties of
choosing the block size, rn, as well as of choosing the adequate level k, are clear on the left
plot of this figure.

The right plot of Figure 14 presents the application of estimator (11). The application of
the stability algorithm led to a block length rn0 = 975 and an EI-estimate equal to 0.9231.

7. A few comments

The extremal index estimation is still an issue that needs some more research. Although
some estimators have been recently proposed, the problem of choosing the threshold
and/or the block or run length is not completely solved.

With the proposed estimator, the problem of the threshold choice is solved and here
was proposed to consider a stability criterion for the choice of the block size and the
corresponding estimate.

This is a preliminary approach for trying to consider a more reliable extremal index
estimation procedure.
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