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ABSTRACT
Spatio-temporal disease mapping models give a great worth in epi-
demiology, especially in describing the pattern of disease incidence
across geographical space and time. This paper analyses the spatial
and temporal variability of dengue disease rates based on gener-
alized linear mixed models. For spatio-temporal study, the models
incorporate spatially correlated random effects as well as tempo-
ral effects. In this study, two different spatial random effects are
applied and compared. The first model is based on Leroux spatial
model, while the second model is based on the stochastic partial
differential equation approach. For the temporal effects, both mod-
els follow an autoregressive model of first-order model. The models
are fitted within a hierarchical Bayesian framework with integrated
nested Laplace approximation methodology. The main objective of
this study is to compare both spatio-temporal models in terms of
their ability in representing the disease phenomenon. The mod-
els are applied to weekly dengue fever data in Peninsular Malaysia
reported to theMinistry ofHealthMalaysia in the year 2017according
to the district level.
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1. Introduction

Dengue is the most ordinary mosquito-borne viral disease of humans, mainly transmit-
ted by the female mosquitos Aedes aegypti and Aedes albopictus. Due to the dramatically
increase of dengue cases day by day, dengue has become a major world-wide public health
concern especially for regions near in tropical and sub-tropical climate and until now,
many studies related to dengue are still ongoing with different approach and methodol-
ogy. Presently, dengue outbreak can only be controlled using vector-controlled methods as
licensed vaccine still in the developmental stage.

Mapping of disease risk has been recognized as an essential tool in the disease preven-
tion and control strategies by investigating the spatial relationship of disease burden with
the geographical distribution, environmental risk factors and human populations. Year by
year, numerous methods for disease mapping have been expanded in accordance with the
growing amount of routinely collected health information worldwide.
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The availability of the areal unit data that is recorded periodically led to the expansion of
the spatio-temporal denguemapping analysis from time to time. For every spatial temporal
data, it is believed that there is autocorrelation between areal study units as well as between
previous and subsequent times. Usually, the observation from geographically nearby units
and temporally close time periods tends to have more similar values than areal units and
time periods that are situated at a great distance. Spatial autocorrelation can arise because
of the neighbourhood effects, where the behaviours of individuals in an areal unit are influ-
enced by individuals in adjacent units, and grouping effects where groups of people with
similar behaviours choose to live close together. Meanwhile, temporal autocorrelationmay
occur because the data relate to largely the same populations or same environmental factors
in consecutive time periods.

Various models in spatio-temporal disease mapping have been discussed in the previ-
ous studies. Most of the models are based on conditional autoregressions (CAR) models
with extension to Besag, York and Mollié (BYM) models. For instance, Bernardinelli et al.
[3] proposed a linear time trend model with an additional linear and a differential time
trend. Next, Assunção et al. [1] modified the study by applying second degree polynomial.
Knorr-Held [9] focuses on the inclusion of space–time interactions using non-parametric
time models by proposing four types of interactions together with four different prior dis-
tributions for the interactions. The model proposed by Knorr-Held [9] is very popular
in the spatio-temporal study because the inclusion of spatio-temporal interactions gives
meaningful interpretations. Ugarte et al. [24] compare the performance of six space–time
disease mapping models by adopting the extension proposed by Bernardinelli et al. [3]
and Knorr-Held [9]. In other study,Martínez-Beneito et al. [16] link spatio-temporal study
with the autoregressive approach. Besides that, in different study, Cameletti et al. [6] imple-
mented the stochastic partial differential equation (SPDE) approach proposed by Lindgren
et al. [13] in order to employ the spatial and temporal effects for point-reference data in a
hierarchical spatio-temporal model.

In spatio-temporal study, the smoothing technique is not relating to the use of informa-
tion from spatial neighbours only, but the context is lengthened to borrowing temporal
neighbours too. Information in time is shared in a similar manner as information is
shared in space. Hence, risks are smoother and more reliable since the model is based
on a greater amount of information. The spatio-temporal study is also very interesting to
explore because this study is not yet in abundance as spatial model study.

Bayesianmodels have become a familiar approach for smoothing purposes, both empir-
ical Bayes (EB) and fully Bayes (FB). Several studies such as Clayton and Kaldor [8],
Marshall [15] and Lahiri and Maiti [11] used the EB method for smoothing in their dis-
ease mapping studies while Besag et al. [4], MacNab et al. [14], andWakefield [25] applied
the FB technique. However, with the aid of modern programming, FB is preferably being
used to solve the posterior distribution especially in a complex model that requires many
parameters to be estimated. Commonly, estimating parameter with FB in most studies
will involve Markov chain Monte Carlo (MCMC) algorithm computation but this method
requires a huge computation time and may cause major Monte Carlo errors especially for
a big data set.

In order to circumvent this drawback, an alternative approximation method using inte-
grated nested Laplace approximation (INLA) has been proposed by Rue et al. [19]. INLA is
a powerful tool for Bayesian analysis as it provides precise parameter estimates in a shorter
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time and more practical to use in wide fields and complex models vary from the gener-
alized linear mixed model (GLMM), spatial model and spatio-temporal areal data model
(e.g. [20,23]). Besides that, INLA also works well with SPDE for spatial geostatistical data
as well as spatio-temporal geostatistical data (e.g. [5,6,10]).

As dengue is an infectious disease, it is believed that people close to the infected area
tend to get infected easily compared to people farther from the infected areas (known as
spatial effect) and the number of cases temporally close tend to have more similar values
(known as temporal effect). Hence, statistical models that incorporate these two effects
in a single analysis would provide a better estimation of dengue relative risks. With a
deep concern on dengue incidence in Malaysia and in line with government’s effort to
control this problem, statistically research on dengue with the inclusion of spatial and
temporal trend is considered in this paper because it is believed that there is a relation-
ship between geographical areas and time points on dengue risk. It is hoped that this
research may help the target audiences in planning more systematic vector-control pre-
vention programmes especially for hotspots areas and also areas that have a tendency to
become hotspots area. The objectives of this paper are to analyse the dengue disease phe-
nomenon in Peninsular Malaysia through two different spatio-temporal models and to
visualize the disease phenomenon using graphical representation. This study used areal
data on weekly dengue incidence in 86 districts and 52 weeks in Peninsular Malaysia for
the year 2017 that was obtained from Vector Borne Disease Sector, Ministry of Health
Malaysia.

2. Methodology

Two models with different approaches are considered in this paper for comparison pur-
pose. The first spatio-temporal model is based on Leroux spatial random effect proposed
by Leroux et al. [12], while the second model is based on the SPDE approach proposed by
Lindgren et al. [13]. For the temporal effect, an autoregressive model of first-order (AR1)
model is defined for both models. These two models are built in the form of hierarchy and
involve Gaussian Markov random fields (GMRF) model with the INLA for estimation.

2.1. Model I: spatio-temporal model with Leroux spatial random effect

Model I is built in the form of hierarchy with three stages, involving GLMM to estimate
the relative risk estimation using several modifications of existing methods. GLMM allows
modelling a wide range of response distributions such as Poisson distribution and allows
inclusion of both fixed and random effects. The spatio-temporal hierarchical model is
described in Table 2. The first stage of the hierarchy is the observational model. The study
region, Peninsular Malaysia is divided into n areas as this study is focused on district level.
Data for each area, i (i = 1, 2, . . . , n) with time points, t (t = 1, 2, . . . ,T) are available for
analysis. Assuming the number of dengue cases, Oit conditional to the relative risk, rit to
have Poisson distribution with mean, μit = Eitrit ,

Oit|rit ∼ Poisson(μit = Eitrit)

where Eit is an expected number of cases in district i for time t.
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Taking logarithm to the both side of the mean, μit leads to

log(μit) = log(Eit)+ log(rit). (1)

Different models are defined depending on the specification of the log risk, log(rit). In this
paper, the log risk is modelled as

log(rit) = α + ξi + ϕt + γt + δit , (2)

where α is the logarithm of the global risk, ξi is referring to spatial random effect, ϕt is
defined as the unstructured temporal randomeffect that accounts for temporal heterogene-
ity, γt is structured temporal random effect that allows for temporal dependence, and δit is
space–time interaction random effect. This is a separable space and time model, where the
spatial and temporal effects are joined separably. The advantage of this approach is in terms
of computational cost. This approach ismore practical and gives less computational burden
compared to the non-separable model. According to Shaddick and Zidek [21], modelling
the entire spatial-temporal structure jointly is often complex and impractical due to high
dimensionality in most applications.

The second stage consists of the random effects in Equation (9) that can be modelled as
GMRF as follows:

ξi ∼ N(0, σ 2
s ((1 − λs)Is + λsRs)−1),

ϕt ∼ N(0, σ 2
ϕ It),

γt ∼ N(0, σ 2
γR

−
t ),

δit ∼ N(0, σ 2
δ R

−
δ ),

where this notation− denotes the Moore–Penrose generalized inverse of a matrix,
σ 2
s , σ 2

ϕ , σ 2
γ and σ 2

δ are the variance components corresponding to the spatial, temporal and
spatio-temporal, λs is a spatial smoothing parameter varies between 0 and 1, Is is an n × n
identity matrix, It is a t × t identity matrix, Rs is the spatial neighbourhood matrix, Rt is
the structure matrix of AR1. Here, the Leroux et al. [12] prior is considered for the spa-
tial effect, and AR1 prior is considered for the temporal effects. Leroux prior is chosen
as it can represent a range of weak and strong spatial correlation structures, while AR1
prior is chosen as it can estimate the temporal correlation naturally from the data. For
the Leroux model, when λs = 0, there is no spatial variability and the model reduces to
independent model, ξ ∼ N(0, σ 2

s Is). When λs = 1, there is full spatial variability and the
spatial model results to intrinsic autoregressivemodel, ξ ∼ N(0, σ 2

s R−
s ). Rδ is the structure

matrix of space–time interaction. Briefly, GMRF is latent Gaussianmodel with conditional
independence property and plays a predominant role in hierarchical model [18].

The entries of matrix Rs follow the following rules:

(Rs)ij =

⎧⎪⎨
⎪⎩
ni, i = j,
−1, i ∼ j,
0, otherwise,

where the diagonal elements are equal to ni (i.e. the number of neighbours of district i),
and the off-diagonal elements are equal to −1 for every district that adjacent to district i.
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Meanwhile, the structure for Rt is in the following form:

Rt =

⎡
⎢⎢⎢⎢⎢⎣

1 −ρ
−ρ 1 + ρ2 −ρ

. . . . . . . . .
−ρ 1 + ρ2 −ρ

−ρ 1

⎤
⎥⎥⎥⎥⎥⎦ ,

where ρ is a temporal correlation and |ρ| < 1.
The space–time interaction structure matrix is given by the Kronecker product, cor-

responds to the structure matrices of the main effects. Similar to Knorr-Held [9], four
different types of space–time interactions are considered and can be interpreted in a
different way (refer Table 1).

Maintaining themain effects and dropping the space–time interaction effect leads to the
additive model. The additive model will be represented by Model 1. For the next models,
models with different interaction types are run. Model 2, 3, 4 and 5 follow Type I, II, III
and IV interactions respectively with the unstructured and the structured time effects. In
addition, models without the unstructured time effects are considered in which Model
6 represents the additive models, Model 7 and 8 represent Type II and IV interactions
respectively. Generally, unstructured temporal effect accounts for temporal heterogeneity
while structured temporal effect allows for temporal dependence.

Besides, to guarantee identifiability of the interaction term δ, specific sum-to-zero con-
straints have to be used except for Type I interaction model. The vector δ follows an
intrinsic Gaussian Markov random field (IGMRF). An IGMRF is improper and its struc-
turematrix, Rδ is not full rank. Its improper density is denoted by π∗(δ) and can be written

Table 1. Four different types of space–time interaction terms.

Space–time
interaction Rδ Rank of Rδ Description

Type I Is ⊗ It I × T All δit are independent as they do not
have any structure in space and time

Type II Is ⊗ Rt I × (T − 1) Each δit has a specific time trend but
independent to all other areas

Type III Rs ⊗ It (I − 1)× T Each δit has a specific spatial pattern
but no obvious temporal structure

Type IV Rs ⊗ Rt (I − 1)× (T − 1) All δit are completely dependent over
space and time

Note: Table followed Ugarte et al. [23].

Table 2. Summary of the Bayesian hierarchical model.

Stages Description

First stage – The observational model, y|x ∼ π(y|x)
– y is the observations

Second stage – Components in Equation (9), model as Gaussian Markov random
fields (GMRF) with precision matrix Q, i.e. inverse covariance matrix,
x|θ ∼ π(x|θ)

– x = (α, ξi ,ϕt , γt , δit)′
Third stage – Hyperparameters, θ ∼ π(θ)

– θ = (σ 2
s , λs , σ

2
ϕ , σ

2
γ , ρ, σ

2
δ )

′
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as

π∗(δ) = π(δ|Aδ = e). (3)

where Aδ = e is a linear constraint for δ, A is a matrix consists of Rδ eigenvectors which
span the null space, and e is a vector of zeros. The number of required linear constraint is
equivalent to the rank deficiency of Rδ .

Next, the hierarchical model is completed by the third stage that consists of hyperpa-
rameters. Hyperparameters control the random effects in stage two and an appropriate
prior distribution is assigned to all the hyperparameters. The prior distribution repre-
sents the information that is available for the parameters of interest and may influence the
results (i.e. posterior distributions) and hence, should be carefully considered and com-
pared. Usually, using the prior distributions based on a literature review to determine the
prior distributions is helpful in Bayesian models. For details, see papers by Bernardinelli
et al. [2] and Wakefield [25]. The only priors that should be specified correspond to the
precision parameters are the inverse of the variance components; τs = 1/σ 2

s , τϕ = 1/σ 2
ϕ ,

τγ = 1/σ 2
γ and τδ = 1/σ 2

δ . Here, the hyperprior distribution for the spatial components
are log(τs) ∼ logGamma(1, 0.01) and logit(λs) ∼ logitbeta(1, 1). For the temporal com-
ponents, log(τϕ) ∼ logGamma(1, 0.01), log(τγ ) ∼ logGamma(1, 0.00005) and logit(ρ) ∼
N(0, 0.15) hyperprior are chosen. Meanwhile, a log(τδ) ∼ logGamma(1, 0.00005) is used
for the interaction component. For this study model, non-informative priors are used
because there is a lack of information on the parameters in the study. This allows the data
to speak for themselves and allows the posterior distribution to be dominated by likelihood
or observed data.

Then, to estimate themarginal posterior distribution of all components in Equation (9),
the method of approximation, INLA is used. In the INLA approach, the deviance infor-
mation criterion (DIC) can be evaluated for the best model selection. According to
Spiegelhalter et al. [22], DIC is the summation of the deviance posterior mean, D and the
effective parameters number, pD. The deviance posterior mean is a measure for model fit
while the effective parameters number is a measure for model complexity. The best model
is chosen based on the lowest DIC value. The lowest DIC value provides a balance between
model fit and model complexity

DIC = D + pD. (4)

2.2. Model II: spatio-Temporal model with SPDE for spatial random effect

The SPDE approach is based on some progressive tools of stochastic processes theory [13].
It is designed to use with geostatistical or point-referenced data and particularly for a con-
tinuous spatial process (i.e. a Gaussian Field) to estimate the spatial domain. Since this
model is invented for point-referenced data, the centroids of every district are chosen as
the actual locations of the dengue cases. This is in contrast with Model I where the spatial
structure is based on area-level data.

SPDE involves a triangulation of the spatial domain, D defined as

ω =
N∑
i=1

ψω̃i, (5)
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Figure 1. Locationof the 86 centroids of PeninsularMalaysia districts and the triangulationof Peninsular
Malaysia region with more than 86 vertices.

where N is the total number of vertices of the triangulation, ψ is the set of basis functions
and ω̃i are Gaussian distributed weights. This consists in subdividing D into a set of non-
intersecting triangles meeting at the edges. Figure 1 illustrates the concept of triangulation
where the left panel shows the centroid of each district that acts as the locations of the
dengue cases while the right panel lays a triangulation of the area with several vertices form
based on the triangulation. The triangles are vary in size depending on how the mesh is
specified. The mesh controls the number of vertices in the triangulation where the higher
the number of mesh triangles, the finer the Gaussian Field (GF) approximation but the
drawback is, the computational cost will be higher.

Let yit represent the number of dengue case measured at centroid of location i =
1, 2, . . . ,N at week t = 1, 2, . . . ,T. The model equation is given by

yit = ξit + εit , (6)

where term εit refers to the error term and ξit refers to the latent spatio-temporal process
with changes in time following AR1 model,

ξit = ρξi(t−1) + ωit , (7)

where ρ is the AR1 temporal correlation coefficient and | ρ |< 1, ωit is a zero-mean Gaus-
sian field, assumed to be temporally independent by spatio-temporal covariance function
as follows:

Cov(ωit ,ωju) =
{
0, t �= u
Cov(ωi,ωj), t = u

for i �= j,

where Cov(ωi,ωj) is defined by the Matérn spatial covariance function and is given by

Cov(ωi,ωj) = σ 2

�(ν)2ν−1 (κh)
νKν(κh), (8)

where h is the Euclidean spatial distance between two locations i and j, σ 2 is the marginal
variance, Kν is the modified Bessel function of the second kind ν measures the degree
of smoothness of the process and its value is fixed and greater than zero, κ is a scaling
parameter related to the range r, where r corresponds to the distance where the spatial
correlation is close to 0.1, for each ν, r =

√
8ν
κ

.
When the observations do not occur at mesh points, we need to construct an observa-

tion matrix called A matrix as a tool to map a field defined on the mesh to the observed
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locations. Hence, in short there are several steps involve in constructing SPDEmodel start-
ing with creating a mesh, constructing A matrix, constructing SPDE model with Matérn
spatial covariance function, organizing the data, making a formula and finally doing the
inference.

For the SPDE model, the parameter vectors that need to be estimated are the standard
deviation, the spatial range and also the autoregressive parameters for the spatial field,
ρ. Similar to the previous model, the parameters involved in this study will be estimated
through the INLA estimation method.

The details of INLA can be referred to Rue et al. [19], while the details of SPDE –
INLA can be referred to Krainski et al. [10]. In this study, R-programming is used for the
computational purpose with the aid of R-INLA package for both models.

3. Application to dengue disease case in peninsular Malaysia

3.1. Result and discussion formodel I

The relative risk of dengue disease for each area in every time point is obtained from spatio-
temporal model that has been described in Section 2. Table 3 shows the result for the eight
fitted models that is based on a simplified Laplace approximation. The additive models
exhibit the highest values of DIC and show the worst fit although their estimated model
complexity is lower. This result implies the importance of including space–time interaction
in the studymodel. Among the eightmodels proposed,Model 3 has the smallest DIC value.
Hence, Model 3 is chosen as the best model in terms of model fit and complexity. This
model consists of the spatial effect with a Leroux CAR prior, an unstructured temporal
effect, a structured temporal effect with an AR1 prior and a Type II space–time interaction
effect. Then after choosing the best model, this selective model has been refitted using the
‘full Laplace’ approximation and the result is used for relative risk computation.

FromModel 3, the estimated log-relative risks obtained can be separated into individual
components: an overall global risk (α̂), a risk related to the spatial location (ξ̂ ), a temporal
risk trend (γ̂ and ϕ̂) common to all areas and an area-specific temporal risk trend (δ̂) for
each district. These are useful as the spatial and temporal effects can be varied across time
and districts respectively.

In disease mapping analysis, the results are normally presented in a map form to
provide greater understanding of the trends and variability in spatio-temporal patterns.
Figure 2 presents a spatial dengue risk, ζ̂i = eξ̂i map associated to each district and constant
throughout the year 2017. Meanwhile, Figure 3 presents the map of posterior probability

Table 3. DIC values for the study models.

Model Space–time interaction D pD DIC

1 Additional model 25,539.42 131.0821 25,670.5
2 Type I 17,317.59 1906.961 19,224.55
3 Type II 17,670.85 1041.567 18,712.42
4 Type III 18,201.65 1630.403 19,832.05
5 Type IV 18,297.99 962.1166 19,260.11
6 Additional model 25,540.45 129.215 25,669.67
7 Type II 17,680.31 1035.029 18,715.34
8 Type IV 18,291.68 965.9128 19,257.59
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<0.00

0.00- 0.50

>0.50

Figure 2. The spatial pattern of dengue risk map, ζ̂i = eξ̂i .

<0.50

0.50-0.80

>0.80

Figure 3. The posterior probability of dengue risk map, P(ζ̂i > 1|O).

that the spatial risk is greater than 1, P(ζ̂i > 1|O). The degree of spatial risk is differenti-
ated with different shades. For this model, the darker the region indicates the region’s risk
is higher. Mapping the probability that a relative risk is greater than a specified threshold
of interest has been previously proposed by Clayton [7]. Usually, in the disease mapping
studies, the regions with probabilities above 0.8 and 0.9 are considered as high risk regions,
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similar to Richardson et al. [17] suggested. In this study, a reference threshold equal to 1
and a cut-off value of 0.8 is used to detect high risk regions for all time periods. From both
figures (Figures 2 and 3), it is clearly seen that the districts inwest coast PeninsularMalaysia
such as districts in Selangor, Kuala Lumpur, Penang, Perak,Melaka, Southern part of Johor,
and some districts in Pahang are dengue high risk areas in the year 2017. Terengganu and
Perlis demonstrate a good record in control over dengue threats as none of their districts
lies in high risk region and moderate risk region. Meanwhile, Kuala Lumpur, Selangor and
Perak show a bad and an alarming record as almost all districts in these states lie in high
risk region category.

Figure 4 presents the line graph of the general temporal trend of dengue risk common for
all districts in Peninsular Malaysia. The temporal trend can be split into two components,
AR1 component (represents by the joint line) and independent and identically distributed
(i.i.d) component (represents by the dashed line). The line graph shows a non-linear trend
with a fluctuating pattern throughout the year with slightly a decreasing pattern after
week 33.

For the specific temporal trends, five selected districts are chosen for representing the
northern, eastern, southern, western, and middle part of Peninsular Malaysia in order to
observe the temporal trend of different districts. These specific temporal trends (in log
scale) are represented in Figure 5. These line graphs are not converted to actual values
because we are only interested to see their pattern as using the actual values will reveal the
same pattern too. Johor Bahru, Kuantan andKuala Lumpur show a steady pattern along the
year. However, Kota Setar and Kota Bharu display a different trend. There is an increasing
temporal trend for Kota Setar up to week 33 and decreasing before turning up at week 37.
Meanwhile, for Kota Bharu, the time effect is decreasing at first 25 weeks and again after
week 33.

Figures 6 and 7 display several maps of the relative risk of dengue and the posterior
probabilities that the relative risk greater than 1, P(r̂it > 1|O) for each district in Penin-
sular Malaysia from week 1 to week 52 of 2017 respectively. These figures give a clearer
graphical representation in visualizing dengue disease phenomenon for all areas through-
out the study period. Based on information fromboth figures, there are several districts that
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Figure 4. The general temporal trend of dengue risk.
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Figure 5. Specific temporal trends (in log scale) for five selected districts: Kuala Lumpur, Johor Bahru,
Kota Setar, Kuantan and Kota Bharu.
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Figure 6. Relative dengue risk distribution.
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Week 1 Week 5 Week 9 Week 13 Week 17

Week 21 Week 25 Week 29 Week 33 Week 37

Week 41 Week 45 Week 49 Week 52

<0.50

0.50-0.80

>0.80

Figure 7. Posterior probability distribution, P(r̂it > 1|O) by districts.

show a high significant risk of dengue disease in Peninsular Malaysia for the year 2017. A
group of districts near to the most urbanized area in Peninsular Malaysia, Kuala Lumpur
shows high significant risk throughout the week reported. However, for Kuala Lumpur, the
relative risk of dengue is decreasing after week 33. This is different to Barat Daya in which
the relative risk is increasing after week 33. Other than that, certain areas in Perak show a
high relative risk in the first 25 weeks. For the east coast areas, only Kota Bharu reported a
high relative risk and only for the first nine weeks. Meanwhile, the most southern district,
Johor Bahru exhibits high dengue risk but does not show any significant trend.

Overall, it can be seen that the dengue trend is different for every district throughout the
year. This is in line with Type II space–time interaction where there is a different temporal
trend from region to region, but do not have any structure in space. Some regions expe-
rienced high dengue risk in a first half-year period, some regions started to have a high
risk after the middle of the year, while some regions did not have any significant temporal
trend. This can be related to different environmental factors for each district, for instance,
climate factors, vector control schedule, urbanization and population density.

Districts that lie in a high risk category mostly are the districts that have a high popu-
lation density among their states. A packed area facilitates the spread of the disease faster
compared to an area with a less dense population.

In addition to the aforementioned result, a strong spatial dependence effect and a cluster
of dengue risk seem to exist around Kuala Lumpur areas. Districts around Kuala Lumpur
are the most densely populated areas in Peninsular Malaysia due to their location that
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located in and near to mother country. People chose to live there because of a wider job
opportunity and a convenient accessibility.

However, further study on regression analysis and clustering analysis should be done
to statistically confirm the factors that contribute to the elevation of dengue cases and the
existence of clustering effect in this area.

3.2. Result and discussion formodel II

SPDE model requires the exact points locations and also extra points that are obtained
from the mesh construction. The centroid of each district is acted as the exact point loca-
tions with total number of points equal to 86. The dimension of A matrix based on the
defined mesh is 4472× 14,716. Dividing 14,716 with the number of time points reveals
that the number of edges of the triangulation is equal to 283, implying there are 197 extra
spatial points have been defined through the mesh construction. Table 4 shows the sum-
mary of the posterior marginal distributions for the likelihood precision and the random
field parameters of SPDE models.

Meanwhile, Figures 8 and 9 display the map of the posterior mean of dengue disease
cases and the map of the posterior probability of dengue disease cases exceeding the pos-
terior mean of 10 respectively for the selected weeks in 2017 through the SPDE approach.

Table 4. The summary of the posterior marginal distributions for the likelihood
precision and the random field parameters.

Parameter for spatial field Mean Standard deviation 95% Confidence interval

Standard deviation 2.1636 0.1287 (1.9264, 2.4319)
Range 0.4684 0.0406 (0.3926, 0.5525)
ρ 0.9944 0.0007 (0.9928, 0.9958)

Figure 8. Posterior mean of dengue disease cases for the selected weeks through the SPDE approach.
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Figure 9. Posterior probability of denguedisease exceedingposteriormeanof 10 for the selectedweeks
through the SPDE approach.

These two figures are obtained from the posterior mean of the random field. The posterior
exceedance probability map reported in Figure 9 can be used to detect the areas where the
number of dengue cases is exceeding certain threshold depending on national regulations
and hence, the focus should be given to those areas. Based on both figures, it can be seen
that the areas located near to the most urbanized area, which is Kuala Lumpurare reported
as the areas of high risk of dengue disease throughout the year. Besides that, areas located
to the southern part of Perak and Johor also reported as areas with a high risk of dengue
disease. Other areas that represent a high value of risk are areas in Penang, Kelantan and
Pahang. In overall, it can be seen that both models present a similar result in mapping
dengue disease. However, Model II visualizes the dengue disease phenomenon in Penin-
sular Malaysia without restricting to the district area. Hence, through the SPDE approach,
several areas within the same district may have a different level of risk.

4. Simulation study

Throughout this section, a simulation study is conducted to support the relative risk result
that has been obtained in the previous section. A number of data sets are generated and for
each of these data sets, estimation via INLA is performed. In simulation study for Model
I, the simulated log relative risk is modelled as

log(rbit) = α̂ + ξbi + ϕbt + γ b
t + δbit , (9)

and the number of cases is generated from a Poisson distribution with mean, μit = Eitrbit .
The random effects are generated from multivariate normal distributions as follows:

ξi ∼ N(0, σ̂ 2
s ((1 − λ̂s)Is + λ̂sRs)−1),
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Table 5. Mean values and standard errors of estimated parameters of INLA for Model I.

True values Simulated values

Parameter Mean Standard error
95% Confidence

interval Mean Standard error
95% Confidence

interval

α −1.3765 0.3364 (−2.0594,−0.7094) −1.3160 0.2777 (−1.8612,−0.7714)
σ 2
s 1.8228 0.3487 (1.2808, 2.6300) 1.7162 0.3041 (1.1872, 2.3699)
λs 0.6823 0.1316 (0.4051, 0.9029) 0.6980 0.1244 (0.4309, 0.9043)
σ 2
ϕ 0.0515 0.0526 (0.0079, 0.1878) 0.0513 0.0381 (0.0145, 0.1500)
σ 2
γ 0.0046 0.0020 (0.7141, 0.9916) 0.0036 0.0014 (0.8592, 0.9906)
ρ 0.9201 0.0748 (0.0020, 0.0095) 0.9468 0.0349 (0.0017, 0.0070)
σ 2
δ 0.0382 0.0030 (0.0323, 0.0437) 0.0134 0.0004 (0.0127, 0.0141)

ϕt ∼ N(0, σ̂ 2
ϕ It),

γt ∼ N(0, σ̂ 2
γR

−
t ),

δit ∼ N(0, σ̂ 2
δ R

−
δ ),

where σ̂s, λ̂s, σ̂ϕ , σ̂γ and σ̂δ are model parameter estimates that have been obtained in the
previous section. The estimated values are equal to the mean values of parameters in true
values column in Table 5. Similar to the hyperparameters, the same set of hyperpriors that
have been used in the previous section are considered for the simulation study. Table 5
displays the mean values and the standard errors of the estimated parameters as well as the
95% confidence interval of the estimated parameter for the true data and also the simulated
data. Overall, the mean values of the estimated parameters for the simulated data are very
close to the true values. The estimated values of all parameters for simulated data fall within
the 95% confidence interval. Meanwhile for the standard errors, the simulated standard
errors are reasonably well estimated.

Next, the accuracy and the precision of INLA to estimate the relative risks of dengue
disease have been evaluated by calculating the root mean squared error (RMSE) and the
mean absolute error (MAE) of the estimated risks according to the following formula:

RMSE(r) = 1
nT

n∑
i=1

T∑
t=1

√√√√ 1
B

B∑
b=1

(r̂bit − r̂it)2, (10)

MAE(r) = 1
nT

n∑
i=1

T∑
t=1

1
B

B∑
b=1

| r̂bit − r̂it |, (11)

where r̂bit denotes the estimated relative risk andB is the total number of simulated data sets.
The result of the error measure is shown in Table 6. Based on the results, the error values
obtained are small and it is reasonable to conclude that the INLA approach provides good
point estimates in estimating relative risks of dengue disease in Peninsular Malaysia and
Model I is working on similarly as structured data.

Meanwhile, for Model II, the mean values of the estimated parameters for the simulated
data do not fall within the 95% confidence interval although their mean values are close to
the true values. The result is displayed in Table 7.
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Table 6. The values of the RMSE and the
MAE for the estimated risks.

The accuracy and the
precision measure The error value

RMSE(r) 0.0170
MAE(r) 0.0108

Table 7. Mean values and standard errors of estimated parameters of INLA for Model II.

True values Simulated values

Parameter for
spatial field Mean

Standard
error

95% Confidence
interval Mean

Standard
error

95% Confidence
interval

Standard deviation 2.1636 0.1287 (1.9264, 2.4319) 1.4386 0.0846 (1.2793, 1.6120)
Range 0.4684 0.0406 (0.3926, 0.5525) 0.7569 0.0699 (0.6281, 0.9032)
ρ 0.9944 0.0007 (0.9928, 0.9958) 0.9998 0.0000 (0.9996, 0.9998)

Table 8. The values of the RMSE and theMAE for
the spatial field through the SPDE approach.

The accuracy and the
precision measure The error value

RMSE(s) 2.3578
MAE(s) 1.6966

For the error measure, the result is displayed in Table 8. The error values obtained are
small and reasonable although it is not as small as the error values in Table 6.

Besides comparing the performance of these two models, based on these simulation
results, it can also be concluded that INLA works well in estimating the parameter for
both models under study. This is in line with previous studies that claimed INLA has been
worked well in various models and problems.

5. Conclusion

There are several advantages and disadvantages of both models in comparison. Model I
provides the result for overall spatial estimation, general and specific temporal trend as
well as specific spatial pattern following the specific temporal trend for each area. Mean-
while, since the SPDE approach is based on continuous spatial random field, the result
of Model II only provides the posterior mean of dengue disease incidence for the whole
region in accordance to each time period. This is different to Model I, where we can sepa-
rately analyse the spatial and temporal pattern of the disease under study such as what has
been displayed in Figures 4 and 5.

ForModel II, the advantage is that the evaluation of the spatial effect for every time point
is no longer restricted to be similar to their districts, as the SPDE approach is based on
mesh triangulation. Through the SPDE approach, researchers can analyse spatio-temporal
model based on the exact location and obtained a more meaningful result. Besides that,
the SPDE approach is a very interestingmethod for spatio-temporal study as it can be used
for predicting spatio-temporal data in the locations and time points where the data are not
been collected. It can also do continuous spatial estimation in continuous time points.



JOURNAL OF APPLIED STATISTICS 755

Based on this study, it can be concluded that both models are very beneficial for
spatio-temporal study evolution. However, the appropriate model only can be chosen and
determined by the nature of the data and also based on the objective of the research. In
terms of computational time, the time taken to estimate parameter through the SPDE
approach is slightly faster compared to the first model.

Besides that, our analysis of the dengue disease case in Peninsular Malaysia for the year
2017 from both models shows that the gap of the relative risks of dengue between the dis-
tricts under study is big. There are areas that show significant high risk throughout the year
such as areas near to the capital city of Malaysia, Kuala Lumpur which are Petaling, Sep-
ang, Hulu Langat, Gombak, Klang and Hulu Selangor. Meanwhile, Barat Daya, Kinta and
Johor Bahru have a tendency to become high dengue risk area. Hence, the authorities in
charge should give prioritized to these areas in planning intervention strategies to reduce
the dengue cases. Meanwhile, the other districts are still under control. However, precau-
tionmust be continued andmonitoring should be done from time to time. Besides that, the
results obtained also show that some areas have different temporal trends in dengue out-
break compare to other areas. Hence, the effective time for vector control activities for each
district in Peninsular Malaysia can be identified. For example, districts such as Kota Bharu
and some areas in Perak, the prevention control should be focused more on the beginning
of the year, Barat Daya in the second term of the year while for districts in Selangor and
Johor Bahru, the prevention should be done for the overall weeks throughout the year.

It can be also concluded that this study provides a useful starting point for spatio-
temporal dengue analysis. The result in this study can be used in clustering analysis,
hotspot identification and also spatial regression. As dengue is a major infectious disease
in Malaysia and believes to have a strong relationship with environmental factors, adding
covariate effects in the spatio-temporal model might give a more appropriate model for
dengue study. This result is also advantageous in regional health planning, dengue disease
surveillance and intervention, and also health funding allocation.
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