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A new two-parameter exponentiated discrete Lindley
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ABSTRACT
This paper introduces a new two-parameter exponentiated dis-
crete Lindley distribution. A wide range of its structural proper-
ties are investigated. This includes the shape of the probability
mass function, hazard rate function, moments, skewness, kurtosis,
stress–strength reliability,mean residual lifetime,mean past lifetime,
order statistics and L-moment statistics. The hazard rate function
can be increasing, decreasing, decreasing–increasing–decreasing,
increasing–decreasing–increasing, unimodal, bathtub, and J-shaped
depending on its parameters values. Two methods are used herein
to estimate themodel parameters, namely, themaximum likelihood,
and the proportion. A detailed simulation study is carried out to
examine the bias and mean square error of maximum likelihood
and proportion estimators. The flexibility of the proposed model is
explained by using four distinctive data sets. It can serve as an alter-
native model to other lifetime distributions in the existing statistical
literature for modeling positive real data in many areas.
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1. Introduction

Statistical distributions are commonly applied to describe and predict the probabilistic
behavioral patterns of real-world phenomena. Several classical distributions have been
extensively used for modeling data in several fields, especially, in medical, ecology, renew-
able energy and survival analysis fields. See for example, El-Gohary et al. [12], El-Bassiouny
et al. [10,11], El-Morshedy et al. [14], El-Morshedy, Eliwa [13] and Alizadeh et al. [1],
among others. The Lindley (Li) distribution is one of those distributions, since it has some
favorable properties to be used in lifetime data analysis, and especially in applicationsmod-
eling stress-strength model (see [29]). This distribution can be expressed as a mixture of
exponential and gamma distributions. The cumulative distribution function (CDF), and
the probability density function, of the Li distribution are respectively given by∏

(x; θ) = 1 − e−θx
(
1 + θx

θ + 1

)
; x > 0, (1)
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π(x; θ) = θ2

1 + θ
(x + 1)e−θx; x > 0, (2)

where θ > 0 is a scale parameter. The crucial importance of the Li distribution in solving
lifetime modeling problems urges developing flexible flavors and generalizations of the Li
distribution. See for example, Mahmoudi and Zakerzadeh [31], Nadarajah et al. [35], Bak-
ouch et al. [4], Merovci and Elbatal [32], Merovci and Sharma [33], Liyanage and Pararai
[30], Zeghdoudi and Nedjar [47], Özel et al. [39], Altun et al. [2], Jehhan et al. [23] and
references cited therein.

On the other hand, in several cases, lifetimes need to be recorded on a discrete scale
rather than on a continuous analogue. Therefore, discretizing continuous distributions has
received much attention in the statistical literature. See for example, Roy [43], Inusah and
Kozubowski [22], Krishna and Pundir [25], Ghitany and Al-Mutairi [16], Gó mez-Déniz
[19], Gómez-Déniz and Calderín-Ojeda [20], Bebbington et al. [5], Calderín-Ojeda and
Gómez-Déniz [6], Nekoukhou et al. [36], Bakouch et al. [3], Tanka and Srivastava [44],
Munindra et al. [34], Nekoukhou and Bidram [37,38], Chandrakant et al. [8], Para and Jan
[41], Kundu and Nekoukhou [27], Kus et al. [26], and references cited therein.

Although there are a number of discrete distributions in the literature, there is still a
lot of space left to develop new discretized distributions that are suitable under different
conditions like discrete Lindley (DLi) distribution for example. In this paper, we introduce
a new discrete distribution with two parameters, referred to as the exponentiated discrete
Lindley (EDLi) distribution.

Some characteristics of the EDLi distribution can be summarized as follows: it has closed
forms for both reliability function (RF) and hazard rate function (HRF).Moreover, its HRF
may assume different shapes, and consequently, the parameters of the underlying distribu-
tion can be adjusted to suit most data sets. Secondly, it provides more flexibility than the
DLi distribution to model time and count data sets. It has more flexibility than the Poisson
distribution, to model actuarial data that commonly suffers from the over-dispersion phe-
nomenon. Lastly, the proposed EDLi distribution provides the best fit for both times and
counts data in spite of having only two parameters. So, it can be used for modeling data
in survival analysis, reliability and failure times. We believe that the EDLi distribution is
well-suited to attract a wider set of applications and fields, including problems inmedicine,
engineering, amongst others.

2. The EDLi distribution

Recently, Gómez-Déniz and Calderín-Ojeda [20] introduced the DLi distribution. The
CDF of the DLi distribution and its corresponding probability mass function (PMF) can
be expressed as follows

W(x; a) = P(X ≤ x) = 1 − ax+1 + [
(2 + x) ax+1 − 1

]
log a

1 − log a
; x ∈ N0 (3)

and

w(x, a) = P(X = x) = ax

1 − log a
[a log a + (1 − a)(1 − log ax+1)]; x ∈ N0, (4)
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respectively, where 0 < a = e−θ < 1 and N0 = {0, 1, 2, 3, . . .}. In the context of life-
time distributions with CDF W, the most widely used generalization technique is the
exponentiated-W. Using this method, for b>0, the CDF of the exponentiated-W class
can be defined as follows

F(x; a, b) = [W(x; a)]b , (5)

(see [28]). Therefore, the random variable (RV)X is said to have the EDLi distributionwith
scale parameter 0<a<1 and shape parameter b>0 if its CDF is given by

F(x; a, b) = �(x + 1; a, b)(
1 − log a

)b ; x ∈ N0, (6)

where �(x; a, b) = (1 − ax + [(1 + x)ax − 1] log a)b. The PMF of the EDLi distribution
can be expressed as follows

f (x; a, b) = 1(
1 − log a

)b [�(x + 1; a, b) − �(x; a, b)] ; x ∈ N0. (7)

Figure 1 shows the PMF plots for various values of the model parameters.
From Figure 1, it can be inferred that the EDLi distribution is always unimodal which

is the case for log-concave PMFs in general. The HRF of the EDLi distribution can be
expressed as
follows

h(x; a, b) = f (x; a, b)
R(x; a, b)

= �(x + 1; a, b) − �(x; a, b)(
1 − log a

)b − �(x; a, b)
; x ∈ N0. (8)

where R(x; a, b) = P(X ≥ x) = ((1 − log a)b − �(x; a, b))/((1 − log a)b). Figure 2 shows
the HRF plots for various values of the model parameters.

As we see from Figure 2, a characteristic of the EDLi distribution is that
its HRF can be increasing, decreasing, decreasing–increasing–decreasing, increas-
ing–decreasing–increasing, unimodal, bathtub and J-shaped, which makes the proposed
distribution more flexible to fit different data sets. Hence, the EDLi distribution is more
flexible than other discrete distributions such as geometric (Geo), discrete generalized
exponential second type (DGE II) and DLi distributions. Also, the reversed hazard rate
function (RHRF) of the EDLi distribution can be expressed as follows

r(x; a, b) = 1 − �(x; a, b)
�(x + 1; a, b)

; x ∈ N0. (9)

Figure 3 shows the RHRF plots for various values of the model parameters.
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Figure 1. The PMF of the EDLi distribution.

3. Different properties

3.1. Moments

Assume non-negative RVX ∼ EDLi(a, b). Then, the rthmoment, say�
′
r , can be expressed

as follows

�
′
r =

∞∑
x=0

xrf (x; a, b)

= 1(
1 − log a

)b ∞∑
x=0

xr [�(x + 1; a, b) − �(x; a, b)] . (10)

It is not possible to get a closed form of the rth moment, and consequently, Maple soft-
ware is required to discuss this property numerically. Equation (10) is convergence for
0<a<1 and b > 0. Themean and variance of the EDLi distribution for different values of
its parameters are listed in Tables 1 and 2, respectively, based on a unique random sample.

It is evident that the mean and variance increase with a −→ 1 for fixed value of b or
with b −→ ∞ for fixed value of a. In addition, the EDLi distribution is appropriate for
modeling both over- and under-dispersed data since, in this model, the variance can be
larger or smaller than the mean which is not the case with some standard classical discrete
distributions. Hence, the parameters of the underlying distribution can be adjusted to suit
most data sets. The skewness and kurtosis are reported in Tables 3 and 4, respectively.
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Figure 2. The HRF of the EDLi distribution.

Figure 3. The RHRF of the EDLi distribution.
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Table 1. The mean of the EDLi distribution.

b ↓ a → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2 0.364 0.772 1.269 1.916 2.816 4.165 6.424 10.969
3 0.508 1.023 1.626 2.398 3.463 5.053 7.708 13.033
4 0.631 1.219 1.893 2.752 3.934 5.055 8.637 14.526
5 0.737 1.376 2.102 3.029 4.305 6.204 9.365 15.693

Table 2. The variance of the EDLi distribution.

b ↓ a → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2 0.356 0.793 1.443 2.514 4.430 8.225 17.001 43.702
3 0.435 0.875 1.530 2.623 4.588 8.479 17.463 44.766
4 0.477 0.899 1.553 2.624 4.645 8.568 17.616 45.100
5 0.496 0.901 1.560 2.675 4.668 8.599 17.661 45.181

Table 3. The skewness of the EDLi distribution.

b ↓ a → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2 1.667 1.335 1.264 1.248 1.240 1.232 1.223 1.215
3 1.222 1.176 1.111 1.139 1.148 1.148 1.145 1.142
4 0.966 0.980 1.066 1.098 1.108 1.110 1.109 1.107
5 0.809 0.957 1.051 1.075 1.084 1.088 1.088 1.088

Table 4. The kurtosis of the EDLi distribution.

b ↓ a → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2 6.100 5.491 5.466 5.468 5.452 5.423 5.393 5.368
3 4.679 4.923 5.135 5.200 5.210 5.201 5.189 5.178
4 4.181 4.860 5.051 5.097 5.108 5.108 5.104 5.099
5 4.051 4.845 5.002 5.038 5.055 5.061 5.059 5.059

Tables 3 and 4 show that the EDLi distribution is positively skewed for some values of a
and b. Also, the skewness and kurtosis decrease with b −→ ∞ for fixed value of a.

3.2. Stress–strength (S–S ∗) analysis

S–S∗ analysis has been used in mechanical component design. The probability of failure is
based on the probability of S exceeding S∗. Assume that both S and S∗ are in the positive
domain. The expected reliability (R∗) can be calculated by

R∗ = P [XS ≤ XS∗] =
∞∑
x=0

fXS(x)RXS∗ . (11)

If XS ∼ EDLi(a1, b1) and XS∗ ∼ EDLi(a2, b2), then R∗ can be expressed as follows

R∗ = 1(
1 − log a1

)b1 (
1 − log a2

)b2 ∞∑
x=0

×
(
[�(x + 1; a1, b1) − �(x; a1, b1)] [

(
1 − log a2

)b2 − �(x + 1; a2, b2)]
)
. (12)
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Table 5. The numerical values of R∗ at a1 = 0.2 and a2 = 0.3.

Parameter ↓ → b2

b1 a1 a2 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5

0.1 0.058 0.214 0.344 0.452 0.542 0.616 0.678 0.729 0.772
0.4 0.054 0.198 0.319 0.419 0.503 0.574 0.633 0.682 0.724
0.7 0.2 0.3 0.049 0.183 0.296 0.389 0.469 0.536 0.592 0.640 0.681
1.0 0.046 0.170 0.275 0.363 0.438 0.502 0.556 0.602 0.642
1.3 0.042 0.158 0.256 0.339 0.410 0.471 0.523 0.568 0.606

Table 6. The numerical values of R∗at a1 = 0.6 and a2 = 0.9.

Parameter ↓ → b2

b1 a1 a2 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5

0.1 0.327 0.786 0.921 0.963 0.977 0.981 0.983 0.984 0.9846
0.4 0.282 0.705 0.850 0.904 0.924 0.933 0.937 0.939 0.9399
0.7 0.6 0.9 0.248 0.641 0.790 0.850 0.876 0.888 0.893 0.896 0.8973
1.0 0.222 0.589 0.738 0.803 0.832 0.845 0.852 0.855 0.8568
1.3 0.201 0.545 0.693 0.759 0.790 0.805 0.812 0.816 0.8181

Table 7. The numerical values of R∗ at a1 = a2 = 0.5.

Parameter ↓ → b2

b1 a1 a2 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5

0.1 0.106 0.359 0.536 0.660 0.748 0.810 0.855 0.886 0.909
0.4 0.085 0.290 0.439 0.549 0.629 0.689 0.736 0.771 0.798
0.7 0.5 0.5 0.069 0.239 0.367 0.464 0.538 0.596 0.642 0.679 0.709
1.0 0.057 0.201 0.312 0.398 0.467 0.523 0.568 0.605 0.637
1.3 0.048 0.171 0.269 0.347 0.411 0.464 0.508 0.545 0.577

Table 8. The numerical values of R∗ at b1 = b2 = 0.6.

Parameter ↓ → a2

a1 b1 b2 0.1 0.3 0.5 0.7 0.9

0.1 0.096 0.290 0.494 0.706 0.915
0.3 0.076 0.241 0.433 0.653 0.893
0.5 0.6 0.6 0.054 0.182 0.349 0.566 0.837
0.7 0.031 0.113 0.232 0.412 0.669
0.9 0.009 0.035 0.077 0.152 0.272

Wecannot get a closed form to Equation (12), and consequently,Maple software is required
to discuss this property numerically. Tables 5–8 show the numerical values ofR∗ for various
values of the model parameters.

From Tables 5–7, it is clear that the reliability increases with b2 −→ ∞ for fixed values
of a1, a2 and b1. But, the reliability decreases with b1 −→ ∞ for fixed values of a1, a2 and
b2. Table 8 shows the numerical values of R∗ with a1 −→ 1 and a2 −→ 1 for fixed values
of b1 and b2. From Table 8, it is clear that the reliability increases with a2 −→ 1 for fixed
values of a1, b1 and b2. But, the reliability decreases with a1 −→ 1 for fixed values of a2,
b1 and b2.
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3.3. Mean residual lifetime (MRL) andmean past lifetime (MPL)

There are several measures in the reliability and survival analysis literature that are defined
to study the aging behavior of components. One of those measures is the MRL tool, say
ς(i), which is a helpful tool to model and analyze the burn-in and maintenance policies.
In the discrete setting, the MRL is defined as follows

ς(i) = E (X − i|X ≥ i) = 1
R(i)

l∑
j=i+1

R(j); i ∈ N0, (13)

where 0 < l < ∞. If the RV X ∼ EDLi(a, b), then the MRL can be expressed as follows

ς(i) = 1(
1 − log a

)b − �(i; a, b)

l∑
j=i+1

[(
1 − log a

)b − �(j; a, b)
]
. (14)

Another measure of interest in survival analysis is theMPL, say ς∗(i), it measures the time
elapsed since the failure of X given that the system has failed sometime before i. In the
discrete setting, the MPL is defined as follows

ς∗(i) = E (i − X|X < i) = 1
F(i − 1)

i∑
m=1

F(m − 1); i ∈ N0 − {0}, (15)

where ς∗(i) = 0 (see [18]).

3.4. Order statistics and L-moment statistics

Let X1,X2, . . .,Xn be a random sample from the EDLi distribution, and let X1:n,X2:n, . . . ,
Xn:n be their corresponding order statistics (Os). Then, the CDF of ith Os for an integer
value of x can be expressed as follows

Fi:n(x; a, b) =
n∑
k=i

(
n
k

)
[Fi(x; a, b)]k [1 − Fi(x; a, b)]n−k

=
n∑
k=i

n−k∑
j=0

�(n,k)
(j)

�(x + 1; a, b(k + j))(
1 − log a

)b(k+j) , (16)

where�(n,k)
(j) = (−1)j

( n
k
) (

n−k
j

)
. Furthermore, the PMF of the ith Os can be expressed as

follows

fi:n(x; a, b) =
n∑
k=i

n−k∑
j=0

�(n,k)
(j)

[
�(x + 1; a, b(k + j)) − �(x; a, b(k + j))

](
1 − log a

)b(k+j) . (17)

So, the vth moments of Xi:n can be written as follows

E(Xv
i:n) =

∞∑
x=0

n∑
k=i

n−k∑
j=0

�(n,k)
(j) xv

[
�(x + 1; a, b(k + j)) − �(x; a, b(k + j))

](
1 − log a

)b(k+j) . (18)
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Hosking [21] has defined the L-moments (Lms) to summaries theoretical distribution and
observed samples. He has shown that the Lms have good properties as measure of distri-
butional shape and are useful for fitting distribution to data. Lms are expectation of certain
linear combinations of Os. The Lms of the RV X can be expressed as follows

�s = 1
s

s−1∑
j=0

(−1)j
(
s − 1
j

)
E

(
Xs−j:s

)
. (19)

Since Hosking has defined the Lms of the RV X to be the quantities. Then, we can pro-
pose some statistical measures such as L-moment (Lm) of mean = �1, Lm coefficient of
variation = �2/�1, Lm coefficient of skewness = �3/�2, and Lm coefficient of kurtosis
= �4/�2.

4. Estimationmethods

In this section, two estimation methods are used to estimate the unknown parameters of
the EDLi distribution. Several authors in the literature prefer to use different estimation
methods to study which is the best method for estimating the model parameters. See for
example, Eliwa et al. [15], Cordeiro et al. [9], among others.

4.1. Maximum likelihood estimation (MLE)

In this section, we determine the MLEs of the model parameters from complete sam-
ples. Assume X1,X2, . . . ,Xn be a random sample of size n from the EDLi(a,b). The
log-likelihood function (L) can be expressed as follows

L(x; a, b) = −nb log
(
1 − log a

) +
n∑

i=1
log [�(x + 1; a, b) − �(x; a, b)] . (20)

By differentiating Equation (20) with respect to the parameters a and b, we get the normal
nonlinear likelihood equations as follows

n̂b
â
(
1 − log â

) + b̂
n∑
i=1

[V1(xi + 1; â)]̂b−1 V2(xi + 1; â) − [V1(xi; â)]̂b−1 V2(xi; â)
�(xi + 1; â, b̂) − �(xi; â, b̂)

= 0

(21)
and

− n log
(
1 − log â

) +
n∑

i=1

�(xi + 1; â, b̂) log(V1(xi + 1; â))

−�(xi; â, b̂) log(V1(xi; â))
�(xi + 1; â, b̂) − �(xi; â, b̂)

= 0, (22)

respectively, where V1(x; â) = 1 − âx + [(1 + x)̂ax − 1] log â, and V2(x; â) = x(x + 1)
âx−1 log â − x̂ax−1 + 1/̂a[(1 + x)̂ax − 1]. These equations cannot be solved analyti-
cally, therefore an iterative procedure like Newton Raphson is required to solve them
numerically.
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4.2. Proportion estimation (PnE)

AssumeX1,X2, . . . ,Xn be a random sample of size n from the EDLi(a,b) distribution. Since
we have two unknown parameters, we define two indicators as follows:

I1(xi) =
{
1 if xi = 0
0 if otherwise

(23)

and

I2(xi) =
{
1 if xi = 1
0 if otherwise.

(24)

Assume, Q = ∑n
i=1 I1(xi) and V = ∑n

i=1 I2(xi) denote respectively the number of 0’s and
1’s in the sample. By using Equations (6), (23) and (24 ), we get P(X ≤ 0) = Q/n and
P(X ≤ 1) = (Q + V)/n. Thus, the unknown parameters a and b are estimated by solving
the following two equations[

1 − â
(
1 − 2 log â

)
1 − log â

]̂b

− Q
n

= 0 (25)

and [
1 − (̂a)2

(
1 − 3 log â

)
1 − log â

]̂b

− Q + V
n

= 0. (26)

SinceQ/n andV/n are unbiased and consistent empirical estimators of probabilitiesP(X ≤
0) and P(X ≤ 1), the â of a and b̂ of b are also unbiased and consistent. For more detail,
see Khan et al. [24].

5. Simulation results: MLE versus PnE

In this section, we assess the performance of the MLE and PnE with respect to sample size
n. The assessment is based on a simulation study:

(1) Generate 10000 samples of size n = 50, 150, 250, 350 from EDLi(0.5,0.3),
EDLi(0.5,0.5), EDLi(0.7,0.7), EDLi(0.7,0.9), EDLi(0.9,1.5) and EDLi(0.9,2.5), respec-
tively. A general form to generate a random variable X from the EDLi distribution
is first to generate the value Y from the continuous exponentiated Li distribution and
then to discretize this value to obtainX. The following formula can be used to generate
a random variable Y ,

Q(u) =
{
−1 − 1

θ
− 1

θ
W0

(
−(1 + θ)e−(1+θ)(1 − u1/b)

)}
; 0 < u < 1,

whereW0 represents Lambert function.
(2) Compute the MLEs and PnEs for the 10,000 samples, say âj and b̂j for j =

1, 2, . . . , 10000.
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Table 9. The average bias and average MSE (with in parenthesis) for the MLEs and PnEs.

Parameter Sample size MLE PnE

a b n a b a b

0.5 0.3 50 −0.075(0.048) 0.122(0.057) 0.177(0.153) 0.191(0.147)
150 −0.046(0.033) 0.084(0.039) 0.156(0.128) 0.188(0.130)
250 −0.012(0.020) 0.034(0.026) 0.133(0.118) 0.184(0.119)
350 −0.003(0.007) 0.017(0.005) 0.113(0.109) 0.176(0.108)

0.5 50 −0.089(0.074) 0.101(0.031) 0.138(0.128) 0.187(0.131)
150 −0.063(0.061) 0.077(0.023) 0.119(0.111) 0.163(0.124)
250 −0.031(0.037) 0.052(0.019) 0.117(0.108) 0.154(0.118)
350 −0.019(0.012) 0.021(0.011) 0.112(0.103) 0.137(0.110)

0.7 0.7 50 −0.067(0.066) 0.045(0.034) 0.129(0.124) 0.156(0.129)
150 −0.042(0.042) 0.027(0.022) 0.113(0.116) 0.141(0.126)
250 −0.021(0.028) 0.012(0.013) 0.108(0.111) 0.131(0.119)
350 −0.009(0.010) 0.003(0.001) 0.102(0.108) 0.120(0.108)

0.9 50 −0.069(0.061) 0.055(0.044) 0.133(0.130) 0.144(0.136)
150 −0.044(0.045) 0.038(0.031) 0.124(0.121) 0.131(0.122)
250 −0.032(0.029) 0.027(0.016) 0.111(0.113) 0.124(0.112)
350 −0.018(0.015) 0.011(0.009) 0.105(0.109) 0.112(0.105)

0.9 1.5 50 −0.059(0.067) 0.035(0.021) 0.141(0.110) 0.143(0.124)
150 −0.035(0.051) 0.024(0.015) 0.125(0.104) 0.129(0.120)
250 −0.024(0.032) 0.015(0.011) 0.114(0.101) 0.113(0.112)
350 −0.013(0.017) 0.007(0.004) 0.110(0.100) 0.105(0.108)

2.5 50 −0.051(0.044) 0.034(0.023) 0.150(0.112) 0.125(0.118)
150 −0.032(0.031) 0.020(0.015) 0.133(0.110) 0.111(0.115)
250 −0.018(0.021) 0.011(0.010) 0.127(0.105) 0.104(0.113)
350 −0.005(0.012) 0.004(0.007) 0.114(0.101) 0.100(0.103)

(3) Compute the biases and mean-squared errors (MSEs), where

bias = 1
10000

10000∑
j=1

(
α̂j − α

)
and MSE = 1

10000

10000∑
j=1

(
α̂j − α

)2 .
(4) The empirical results are given in Table 9.

From Table 9, the following observations can be noted:

(1) The magnitude of bias always decreases to zero as n → ∞.
(2) The MSEs always decrease to zero as n → ∞. This shows the consistency of the

estimators.
(3) The performance of the MLE method is better than the PnE method.
(4) Under the MLE method, the estimator of a is slightly negative biased.
(5) The performance of the PnE method is inferior with respect to the MLE method,

because it uses only the information of 0’s and 1’s from the samples and discards all
other information.

We have presented results only for (a, b) = (0.5, 0.3), (0.5, 0.5), (0.7, 0.7), (0.7, 0.9),
(0.9, 1.5) and (0.9, 2.5). But, the results are similar for other choices for a and b. Some
statistical measures are listed in Tables 10–12 for various values of the model parameters.

From Tables 10–12, it is clear that the EDLi distribution is suitable of modeling positive
and negative skewness as well as symmetric data sets.
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Table 10. Some statistical measures based on the MLEs for initial value
a= 0.5 and b= 0.3.

Sample size bias Measures

n a b Skewness Kurtosis Stress–strength|a1=a2=a
b1=b2=b

50 −0.075 0.122 −0.5174 6.724 0.2605
150 −0.046 0.084 −0.4103 6.847 0.2602
250 −0.012 0.034 −0.2217 6.147 0.2565
350 −0.003 0.017 −0.0110 6.218 0.2528

Table 11. Some statistical measures based on the MLEs for initial value
a= b= 0.7.

Sample size bias Measures

n a b Skewness Kurtosis Stress–strength|a1=a2=a
b1=b2=b

50 −0.067 0.045 0.5547 5.998 0.3879
150 −0.042 0.027 0.5190 6.104 0.3748
250 −0.021 0.012 0.3536 6.475 0.3712
350 −0.009 0.003 0.2748 6.365 0.3698

Table 12. Some statistical measures based on the MLEs for initial value
a= 0.9 and b= 1.5.

Sample size bias Measures

n a b Skewness Kurtosis Stress–strength|a1=a2=a
b1=b2=b

50 −0.059 0.035 1.2581 6.3254 0.5785
150 −0.035 0.024 1.3258 6.2354 0.5365
250 −0.024 0.015 1.3254 6.1201 0.4587
350 −0.013 0.007 1.2580 6.1978 0.4101

Table 13. The competitive models of the EDLi distribution.

Model Abbreviation Author(s)

Discrete Lindley DLi Gómez-Déniz and Calderín-Ojeda [20]
Discrete Lindley with two parameters DLi II Bakouch et al. [3]
Geometric Geo Gómez-Déniz [19]
Discrete generalized exponential type II DGE II Nekoukhou et al. [36]
Discrete Rayleigh DR Roy [43]
Discrete Weibull DW Toshio and Shunji [45]
Discrete Pareto DPa Krishna and Pundir [25]
Discrete Burr-XII DB-XII Para and Jan [40]
Discrete Burr DBu Krishna and Pundir [25]
Discrete Lomax DLo Para and Jan [40]
Poisson Poi Poisson [42]

6. Data fitting and testing of hypothesis

In this section, we illustrate the importance of the EDLi distribution using four real data
sets. Two of the data sets consist of count. The other two data sets consist of times. The
competitive models of the EDLi distribution are listed in Table 13.

The first data set (I): represents number of carious teeth among the four deciduous
molars in a sample of 100 children aged 10 and 11 years (see Krishna and Pundir [25]).
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Table 14. The MLEs with their corresponding Se and C.I for data set I.

Parameter → a b

Model ↓ MLE Se C.I MLE Se C.I

EDLi 0.379 0.065 [0.252,0.506] 0.543 0.158 [0.234,0.852]
DLi 0.274 0.029 [0.217,0.331] – – –
DLi II 0.401 0.263 [0,0.916] 0.001 0.652 [0,1.279]
Geo 0.401 0.038 [0.327,0.475] – – –
DGE II 0.468 0.072 [0.327,0.609] 0.718 0.206 [0.314,1.122]
DR 0.665 0.029 [0.608,0.722] – – –
DW 0.374 0.049 [0.278,0.470] 0.895 0.119 [0.662,1.128]
DPa 0.184 0.032 [0.121,0.247] – – –
Poi 0.670 0.082 [0.509,0.831] – – –

We shall compare the fits of the EDLi distribution with some competitive models such as
DLi, DLi II, Geo, DGE II, DR, DW, DPa and Poi distributions.

The second data set (II) : represents the counts of cysts of kidneys using steroids. This
data set originated from a study [7]. We shall compare the fits of the EDLi distribution
with some competitive models such as DLi, DLi II, Geo, DR, DW, DB-XII, DLo and Poi
distributions.

The third data set (III): represents the waiting times (in minutes) before service of 100
Bank customers (see [17]).We approximated this data to the nearestminute.We shall com-
pare the fits of the EDLi distribution with some competitive models such as DLi, DLi II,
Geo, DBu and DPa distributions.

The fourth data set (IV): represents 40 observations of time-to-failure (103h) of tur-
bocharger of one type of engine (see [46]). We approximated this data to the nearest hour.
We shall compare the fits of the EDLi distribution with some competitive models such as
DLi, Geo, DPa, DGE II and DBu distributions.

For the first, second and fourth data sets, the fitted models are compared using some
criteria namely, the maximized log-likelihood (−L), Akaike information criterion (AIC),
corrected Akaike information criterion (CAIC), Bayesian information criterion (BIC),
Hannan-Quinn information criterion (HQIC), Chi-square (χ2) and its p-value. But, for the
third data set, the fitted models are compared using Kolmogorov-Smirnov (K-S) statistic
and its p-value.

For the data set I, the MLEs with their corresponding standard errors (Se) and confi-
dence interval (C.I) are listed in Table 14. Table 10 shows the −L, AIC, CAIC, BIC, HQIC,
χ2, degree of freedom (D.F), observed frequency (O.Fr), expected frequency (E.Fr) and
p-values.

From Table 15, it is clear that the EDLi distribution is the best distribution among all
tested distributions, because it has the smallest value among −L, AIC, CAIC, BIC, HQIC
and χ2, as well as it has the largest p-value. Figure 4 shows the fitted PMFs for data set I,
which support the results in Table 15.

For the data set II, the MLEs and goodness of fit test are reported in Tables 16 and 17,
respectively.

From Table 17, it is clear that the EDLi distribution is the best distribution among all
tested models. Figure 5 shows the fitted PMFs for data set II, which support the results in
Table 17.

For the data set III, the MLEs and goodness of fit test are listed in Table 18.
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Table 15. The goodness of fit test for data set I.

E.Fr

X O.Fr EDLi DLi DLi II Geo DGE II DR DW DPa Poi

0 64 63.57 57.13 59.88 59.88 63.51 33.50 62.58 69.04 51.17
1 17 19.75 26.88 24.02 24.02 20.19 46.94 21.35 15.37 34.28
2 10 9.09 10.45 9.64 9.64 8.81 17.01 8.85 6.01 11.49
3 6 4.19 3.71 3.87 3.87 4.01 2.39 3.88 3.01 2.57
≥ 4 3 3.4 1.83 2.59 2.59 3.48 0.16 3.34 6.57 0.49
Total 100 100 100 100 100 100 100 100 100 100
−L 111.45 113.68 112.47 112.4735 111.80 142.61 112.10 116.83 121.05
AIC 226.91 229.36 228.95 226.95 227.61 287.21 228.20 235.66 244.09
CAIC 227.03 229.39 229.07 227.99 227.73 287.25 228.32 235.70 244.14
BIC 232.12 232.96 234.16 232.56 232.82 289.82 233.41 238.27 246.70
HQIC 229.02 230.41 231.06 230.00 229.72 288.26 230.30 236.72 245.15
χ2 0.739 6.638 3.347 3.347 0.973 66.07 1.507 3.225 23.65
D.F 1 2 1 2 1 2 1 2 2
p-value 0.390 0.036 0.067 0.188 0.324 < 0.0001 0.219 0.199 < 0.0001

Figure 4. The fitted PMFs for data set I.

From Table 18, it is clear that the EDLi distribution is the best distribution among all
tested models. Figures 6 and 7 show the estimated CDFs and P–P plots for data set III,
which support the results in Table 18.

For the data set IV , the MLEs and goodness of fit test are reported in Tables 19 and 20,
respectively.
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Table 16. The MLEs with their corresponding Se and C.I for data set II.

Parameter→ a b c

Model ↓ MLE Se C.I MLE Se C.I MLE Se C.I

EDLi 0.672 0.048 [0.578,0.766] 0.264 0.056 [0.154,0.374] – – –
DLi 0.436 0.026 [0.385,0.487] – – – – – –
DLi II 0.581 0.045 [0.494,0.669] 0.001 0.058 [0,0.115] – – –
Geo 0.582 0.030 [0.523,0.641] – – – – – –
DR 0.900 0.009 [0.882,0.918] – – – – – –
DW 0.421 0.047 [0.329,0.513] 0.629 0.073 [0.456,0.772] – – –
DB-XII 0.003 0.002 [0,0.00692] 12.75 5.060 [2.832,22.67] 0.720 0.087 [0.549,0.891]
DLo 0.150 0.098 [0,0.342] 1.830 0.950 [0,3.692] – – –
Poi 1.390 0.112 [1.17,1.609] – – – – – –

Table 17. The goodness of fit test for data set II.

E.Fr

X O.Fr EDLi DLi DLi II Geo DR DW DB-XII DLo Poi

0 65 64.97 40.25 46.03 45.98 11 63.64 63.32 61.89 27.42
1 14 14.39 29.83 26.77 26.76 26.83 17.45 18.19 21.01 38.08
2 10 9.01 18.36 15.57 15.57 29.55 9.3 9.29 9.65 26.47
3 6 6.14 10.35 9.05 9.06 22.23 5.68 5.49 5.24 12.26
4 4 4.33 5.53 5.27 5.28 12.49 3.73 3.52 3.17 4.26
5 2 3.10 2.86 3.06 3.07 5.42 2.56 2.39 2.06 1.18
6 2 2.24 1.44 1.78 1.79 1.85 1.82 1.69 1.42 0.27
7 2 1.62 0.71 1.04 1.04 0.52 1.32 1.23 1.02 0.05
8 1 1.18 0.35 0.60 0.61 0.11 0.98 0.92 0.76 0.01
9 1 0.85 0.17 0.35 0.35 0.02 0.74 0.70 0.58 0
10 1 0.62 0.08 0.20 0.21 0 0.57 0.55 0.46 0
11 2 1.55 0.07 0.28 0.28 0 2.21 2.71 2.74 0
Total 110 110 110 110 110 110 110 110 110 110
−L 166.9 189.1 178.8 178.8 277.8 167.9 168.8 170.5 246.2
AIC 337.9 380.2 361.5 359.5 557.6 339.9 343.5 344.9 494.4
CAIC 338.0 380.3 361.6 359.6 557.6 340.1 343.8 345.1 494.5
BIC 343.3 382.9 366.9 362.2 560.3 345.4 351.6 350.4 497.1
HQIC 340.1 381.3 363.7 360.6 558.7 342.2 346.8 347.2 495.5
χ2 0.507 43.48 22.89 22.84 321.1 1.04 2.469 3.316 294.1
D.F 3 4 3 4 4 3 3 3 4
p.value 0.917 < 0.01 < 0.001 < 0.01 < 0.01 0.792 0.480 0.345 < 0.01

From Table 20, it is clear that the EDLi distribution is the best distribution among all
testedmodels. Figure 8 shows the estimated PMFs for data set IV, which support the results
in Table 20.

Now, we want to perform the following test:H0 : b=1 (DLi) againstH1 : b �= 1 (EDLi).
The likelihood ratio test statistic (�), D.F and p-values for the DLi distribution are given
in Table 21.

We can conclude that H0 is rejected with 5% level of significance. Hence, the DLi dis-
tribution cannot be used for analyzing the data sets considered. So, we prefer the EDLi
distribution. Figure 9 shows the HRF and RHRF for data sets using the EDLi model. Since
the HRF for data sets III and IV are increasing, then theMRL for these data sets is decreas-
ing. Some statistical measures for data sets using the EDLi model are reported in Table 22
. On the other hand, Table 23 shows the PnEs of the unknown parameters of the EDLi
distribution for just data sets I and II, because this method uses only the information
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Figure 5. The fitted PMFs for data set II.

Figure 6. The estimated CDFs for data set III.
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Figure 7. The P–P plots for data set III.

Table 18. The MLEs and goodness of fit test for data set III.

Model

Statistic EDLi DLi DLi II Geo DBu DPa

a MLE(Se) 0.805(0.017) 0.837(0.011) 0.825(0.011) 0.908(0.009) 0.965(0.040) 0.641(0.028)
C.I [0.772,0.838] [0.815,0.859] [0.803,0.859] 0.890,0.926 [0.887,1] [0.586,0.696]

b MLE(Se) 1.518(0.245) – 2556.9(8.388) – 13.35(1.566) –
C.I [1.038,1.998] – [2540.5,2573.3] – [10.28,16.42] –

−L 318.41 321.63 318.65 334.33 386.14 406.45
K–S 0.0736 0.1381 0.1095 0.2414 0.4017 0.4308
p-value 0.6498 0.0441 0.1814 0.000017 1.93 × 10−14 1.1 × 10−16

AIC 640.83 645.26 641.31 670.67 776.28 814.91
CAIC 640.95 645.29 641.43 670.71 776.39 814.95
BIC 646.04 647.86 646.52 673.27 781.49 817.51
HQIC 642.94 646.31 643.42 671.72 778.38 815.96

Table 19. The MLEs with their corresponding Se and C.I for data set IV.

Parameter → a b

Model ↓ MLE Se C.I MLE Se C.I

EDLi 0.545 0.037 [0.472,0.618] 10.279 3.733 [2.962,17.596]
DLi 0.768 0.022 [0.725,0.811] – – –
Geo 0.863 0.020 [0.824,0.902] – – –
DPa 0.609 0.047 [0.517,0.701] – – –
DGE II 0.608 0.038 [0.534,0.682] 17.317 6.435 [4.704,29.929]
DBu 0.948 0.203 [0.559,1.00] 10.107 40.983 [0,90.433]

of 0’s and 1’s from the samples. Therefore, we cannot apply this method on data sets III
and IV. From Table 22, it is clear that the EDLi model is a good model to fit the data sets
considered.
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Figure 8. The fitted PMFs for data set IV.

Table 20. The goodness of fit test for data set IV.

E.Fr

X O.Fr EDLi DLi Geo DPa DGE II DBu

0 0 0.00 2.85 5.46 11.62 0.00 1.44
1 0 0.02 3.67 4.72 5.16 0.01 10.96
2 2 0.49 3.96 4.07 3.08 0.46 5.39
3 2 2.53 3.92 3.52 2.11 2.62 3.17
4 2 5.54 3.68 3.04 1.56 5.72 2.14
5 7 7.34 3.35 2.62 1.21 7.37 1.57
6 6 7.15 2.97 2.26 0.98 7.00 1.21
7 8 5.76 2.59 1.95 0.81 5.57 0.97
8 9 4.11 2.23 1.69 0.68 3.99 0.80
9 4 7.05 10.78 10.67 12.79 7.26 12.34
Total 40 40 40 40 40 40 40
−L 87.18 107.08 116.78 148.94 87.89 139.77
AIC 178.36 216.17 235.57 299.89 179.78 283.55
CAIC 178.69 216.28 235.68 299.99 180.11 283.87
BIC 181.74 217.86 237.26 301.57 183.16 286.93
HQIC 179.59 216.79 236.18 300.50 181.01 284.77
χ2 2.13 23.22 38.33 127.16 2.38 99.92
D.F 2 3 3 3 2 2
p.value 0.345 < 0.001 < 0.01 < 0.01 0.304 < 0.01

Table 21. The�, D.F andp-values for
the DLi distribution.

Data � D.F p-value

I 4.46 1 0.035
II 44.41 1 0.00
III 6.44 1 0.011
IV 39.82 1 0.00
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Figure 9. The HRF and RHRF for data sets using the EDLi model.

Table 22. Some statistical measures for data sets using the EDLi model.

Data set Mean Variance Skewness Kurtosis MRLi=6

I 1.612 2.177 −1.645 −1.607 –
II 2.774 0.734 −17.678 52.703 –
III 4.989 32.065 −0.055 −0.180 9.25
IV 5.135 33.116 −1.209 −2.288 2.59

Table 23. The PnE summaries for the EDLi model from the data.

Data Parameter Estimate χ2 D.F p-value

I a 0.466 0.307 1 0.579
b 0.403

II a 0.685 0.463 3 0.927
b 0.254

7. Conclusions

In this paper, we have proposed a new two-parameter distribution called the exponen-
tiated discrete Lindley (EDLi) distribution. The proposed distribution is a generaliza-
tion of the standard Lindley distribution, which evidently provides additional flexibil-
ity to analyze real data. Some of its fundamental properties have been discussed in
detail. It is found that the hazard rate function can be increasing, decreasing, decreas-
ing–increasing–decreasing, increasing–decreasing–increasing, unimodal, bathtub, and J-
shaped. The unknown parameters of the EDLi distribution have been estimated by
using two methods, namely, the maximum likelihood and proportion methods. More-
over, their long-run performances have been compared through an extensive simulation
study. The numerical simulation experiments suggest that the method of maximum like-
lihood outperforms the proportion method. The flexibility of the EDLi distribution has
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been empirically proven by using four real-life applications. The EDLi distribution has
proven to provide better fits than some other models. Finally, we believe that the proposed
model will serve a wide spectrum of applications including biology, reliability and survival
analysis.
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