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ABSTRACT
We empirically demonstrate that graphical models can be a valuable
tool in the identification of mediating variables in causal pathways.
We make use of graphical models to elucidate the causal pathway
through which the treatment influences the levels of fatigue and
weakness in people living with HIV (PLHIV) based on a secondary
analysis of a categorical dataset collected in a behavioral clinical trial:
is weakness a mediator for the treatment and fatigue, or is fatigue a
mediator for the treatment andweakness? Causalmediation analysis
could not offer any definite answers to these questions.
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1. Introduction

Mediating variables transmit the effect of a variable on another variable, and are key in
many scientific fields such as social sciences, public health, medicine and psychology for
assessing various causal pathways [4,24,39,46].However, in studies that involve several out-
come variables that are potentially highly correlated with each other, it is unclear which of
these outcome variables are directly influenced by a treatment variable, andwhich outcome
variables are indirectly influenced by the treatment variable through one or severalmediat-
ing variables. In these situations, current statistical methods for causal mediation analysis
variables might not be helpful in determining the variables with a potential mediator role.

Our data come from a study of the longitudinal progression of fatigue and weakness in
people living with HIV (PLHIV). Fatigue and weakness are closely related when self-rated
by PLHIV, and prevalence rates often exceed 50% for both symptoms regardless of HIV
status, treatment status, or age [55,59]. Nearly 40 years into the HIV epidemic, fatigue con-
tinues to be the most frequently reported and debilitating symptom for PLHIV [12,19,32],
and has been documented extensively with prevalence data ranging from 30% to 98%
among multiple samples of PLHIV [2,6,32,59]. Jong et al. [32] identified several predic-
tors of fatigue, including unemployment and inadequate income; combined antiretroviral
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therapy; and psychological factors such as anxiety and depression. Interestingly, labora-
tory values did not predict fatigue. Fatigue has been reported as the most frequent side
effect of antiretroviral medications and is associated with worse health status, decreased
work productivity, and increased health resource use [12]. It interferes with antiretroviral
adherence [2] and is one of several factors that predict virologic failure independent of
medication adherence measures [43].

Fatigue has been classified into normal daily fatigue, a state due to natural variations in a
person’s energy expenditure and circadian rhythms [9]. Normal fatigue is resolved within a
6–8 h rest and sleep period [47]. Chronic fatigue, on the other hand, is hallmarked by per-
sistent or intermittent sensations of tiredness andweariness that last longer than sixmonths
and are very unpredictable in duration and intensity [5]. Rest and sleep do not resolve
chronic fatigue but can rather lead to secondary fatigue resulting from de-conditioning
and altered sleep patterns [30,38,45].

The causal explanations of the origins of fatigue have been divided into threemain areas:
(1) centrally related immune factors that change brain functions and impact cognition,
mood and behavior changes [48]; (2) neuroendocrine and immune contributors [29] –
stressors to the hypothalamic–pituitary–adrenal axis, the autonomic nervous system and
the immune system – that impact how the body responds appropriately to stress and
inflammation; and (3) peripheral factors such as mitochondrial dysfunction related to
fatigue decline in skeletal muscle function – and muscle loss [25]. HIV infection, decon-
ditioning, chronic inflammation and physiological and psychological side effects from
antiretroviral treatments such as poor sleep and depression, stigma and anxiety most
likely impact all three mechanisms [44,50]. Muscle weakness in PLHIV is usually a sign
of deconditioning and frailty hallmarked by significant involuntary weight loss, increas-
ing slowness, and reduction in grip strength, or muscle atrophy – which means the active
loss of muscle tissue, or muscle inflammation – attack of immune cells of the muscle
fibers due to autoimmune or toxicity-related (AZT) processes, or a combination of these
factors [7,10,11,13,21,31,51,53].

Episodic or persistent tiredness and exhaustion related to fatigue andweakness are quite
common, debilitating, and have major impacts on PLHIV’s social, role, and emotional
functioning [23,34]. Patients describe the fatigue and weakness sensations with phrases
such as ‘I feel the same when I wake up than when I went to sleep’; or ‘I ’ve got to drag
myself’ [37]. The perception of fatigue and weakness is for many patients very difficult
to distinguish; however, when asked to rate them, they will distinguish both symptoms.
High rates of fatigue and weakness were previously related to the HIV disease or related
to side effects from antiretroviral therapies [56]. Most investigators have not applied ade-
quate longitudinal analytic methodologies to analyze these symptoms together to establish
whether a symptom cluster of fatigue and weakness is maintained over time in the same
individuals. While fatigue and weakness may have similar sensations and therefore are
used interchangeably to describe them, they have very specific recommendations to alle-
viate them. Practitioners strive in their conversations with patients to better understand
whether the patient is indeed suffering from fatigue and/or from weakness. That differen-
tiation would allow clinicians to make better recommendations to alleviate one and/or the
other symptom.

This paper contributes to a better understanding of the relationship between fatigue
and weakness in PLHIV based on a secondary analysis of a categorical dataset collected
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in a behavioral clinical trial. We aim to elucidate the causal pathway through which the
treatment influences the levels of fatigue and weakness in PLHIV: is weakness a mediator
for the treatment and fatigue, or is fatigue a mediator for the treatment and weakness? We
propose a new method for identifying mediating variables and empirically demonstrate
the value of this method to answer these questions.

2. Data description

The data used in our study consists of responses from 609 study participants from a
3-month, longitudinal, randomized, controlled trial of HIV-positive individuals. The orig-
inal study was reviewed by the Committee on the Protection of Human Subjects at the
University of California, San Francisco, which accepted the protocol [53,56,57]. There
are four variables of interest: (1) signs and symptom checklist fatigue (SSC-F) with four
levels (0 = absent, 1 = mild, 2 = moderate, 3 = severe); (2) signs and symptom check-
list weakness (SSC-W) with four levels (0 = absent, 1 = mild, 2 = moderate, 3 = severe);
(3) treatment (IC) with two levels (0 = control group, 1 = intervention group ); and (4)
data collection time (TIME) with three levels (0 = start of the study, 1 = one month, 2 =
three months). The fatigue and weakness levels were self-scored by the study participants.
Out of the 609 individuals, 173 (28.41%) had only one symptom report, 138 (22.66%) had
two symptom reports, and 298 (48.93%) had three symptoms recorded. After the removal
of the records with missing values, we ended up with 1343 observations. Each observation
represents the measurements of weakness and fatigue of one individual at one time point.

In the control group (IC = 0), 53 study participants did not complain of either fatigue
or weakness at the start of the study (TIME = 0), while 208 study participants experienced
symptoms consistent with fatigue or weakness or both. At onemonth (TIME = 1), the cor-
responding number of study participants decreased to 45 and 143, while at three months
(TIME = 2), these numbers were 47 and 135, respectively. In the intervention group
(IC = 1), 83 study participants did not complain of either fatigue or weakness at the start of
the study (TIME = 0), while 232 study participants complained of fatigue or weakness or
both. At onemonth (TIME = 1), the corresponding numbers of study participants were 69

Table 1. Data recorded in the behavioral clinical trial.

IC 0 1

SSC-F TIME SSC-W 0 1 2 3 0 1 2 3

0 0 53 10 6 6 83 11 6 5
1 0 10 35 7 0 15 39 13 1
2 0 8 18 46 12 16 28 41 4
3 0 3 8 17 22 4 6 19 24
0 1 45 5 5 4 69 9 6 3
1 1 10 22 6 0 11 18 5 0
2 1 10 14 37 4 10 14 22 3
3 1 4 1 4 17 6 4 13 12
0 2 47 9 2 5 87 5 7 2
1 2 13 24 4 1 11 12 6 2
2 2 15 12 22 4 12 12 4 1
3 2 2 0 5 17 3 3 3 12

Note: Study participants are cross-classified by fatigue (SSC-F), weakness (SSC-W), time point (TIME) and treatment group
(IC).
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and 136, while at three months (TIME = 2), these numbers were 87 and 105, respectively.
With respect to gender, the sample was 195 (32.2%) male; 397 (65.19%) female; 17 (2.79%)
transgender. With respect to race, the sample was 10 (1.64%) Asian/Pacific Islander; 214
(35.14%) African American/black; 191 (32.36%) Hispanic/Latino; 8 (1.31%) Native Amer-
ican Indian; 162 (26.60%) white/Anglo (non-Hispanic); and 24 (3.94%) other. The mean
age of the study participants was 44.15 years (SD = 9.16), with a range between 20 and 70
years.

The 1343 observations are cross-classified with respect to SSC-F, SSC-W, TIME and
IC in a four-dimensional contingency table with 4 × 4 × 3 × 2 = 96 cells (see Table 1). In
this contingency table, a cell count represents the number of observations at one time point
associated with the control or with the intervention group who had a certain weakness and
a certain fatigue level.

3. Approach

Hierarchical loglinear models [1,8] give statistical representations of joint distributions
between two or more categorical variables without assuming that some of the variables
involved are outcomes, while the remaining variables are independent. The main effects
associated with every variable are present in each loglinear model. Two loglinear mod-
els involving the same variables may differ in terms of the interaction terms involving
two, three or more variables they include. The interaction terms are included in a log-
linear model in a hierarchical manner: the presence of any higher order interaction term
requires the presence of any of the lower order interactions terms which involve a subset
of the variables present in the higher order term. The selection of the interaction structure
in hierarchical loglinear models is computationally very difficult due to the exponential
increase in the number of possible hierarchical loglinear models: while there are nine
models with 3 variables and 7580 models with 5 variables, there are about 5.6 × 1022

models with 8 variables [14]. Selection of hierarchical loglinear models has been widely
discussed in the statistical literature [1,20,22,58].More recent approaches thatworkwell for
high-dimensional sparse contingency tables involve Bayesian Markov chain Monte Carlo
(MCMC) algorithms [14–18,40–42,52].

A loglinear model is hierarchical if and only if the presence of a higher order interaction
term requires the presence of any or all of its lower order interaction terms [8]. The model
may not be identifiable without imposing some constraints on the interaction terms [1].
Some hierarchical loglinear models are also graphical. The distinction between a graphi-
cal loglinear model and a hierarchical loglinear model that is not graphical can be easily
understood by constructing an undirected graph G, with vertices B and edges E, that is
associatedwith a hierarchical loglinearmodelM [58] – see Figure 1 for an example. Specif-
ically, an edge e = (b1, b2) appears in G if and only if the observed variables Xb1 and Xb2
appear together in an interaction term ofM. The graphG is called the interaction graph of
modelM [36]. ThenM is graphical if and only if the subsets of B that are the vertices of
the complete subgraphs of G that are maximal with respect to inclusion are also maximal
interaction terms in M [36,58]. If M is graphical, the absence of an edge e = (b1, b2) in
G is equivalent with the conditional independence of variables Xb1 and Xb2 given the rest
of the variables under the joint distribution for XB. Moreover, if there is no path inG from
vertex b1 to vertex b2, then b1 and b2 are in two distinct and fully connected components
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Figure 1. Interaction graph associated withModel 9. This is the graphical loglinear model withminimal
sufficient statistics [SSC-W,SSC-F][SSC-W,TIME][SSC-W,IC]. Each vertex of this graph corresponds with an
observed variable. Each edge of this graph corresponds with a pairwise interaction term of Model 9.

of G, and the corresponding variables Xb1 and Xb2 are independent. Most importantly, for
any three disjoint sets A, B and C such that B = A ∪ B ∪ C, we say that B separates A and
C in G if any path that connects a vertex in Awith a vertex in C contains at least one vertex
in B. If B is a complete subset ofG (that is, if the subgraph of G induced by B does not have
any missing edge), we say that B is a separator of G, and that (A,B,C) is a weak decompo-
sition of G [36]. If (A,B,C) is a weak decomposition of G, then XA and XC are conditional
independent given XB.

We propose the following method for the determination of mediating variables:
Step 1. Determine a graphical model that is best supported by the data.
Step 2. Determine a weak decomposition (A,B,C) of the undirected graph G associ-

ated with the graphical model determined in the first step such that the treatment variable
is the only element of the set C. If such a decomposition exists and G has only one
connected component, the variables that belong to the set B are candidate mediator vari-
ables. The effect of the variable XC on the variables in XA is mediated by the variables
in XB.

Step 3. Establish mediation of the variables XB using criteria from causal mediation
analysis.

The weak decomposition (A,B,C) of the graph G can be understood as a system of
multivariate regressions defined by the full conditional distributions of XA, XB and XC as
follows:

P(XA | XB\A) = P(XA | XB), (1)

P(XB | XB\B) = P(XB | XA,XC), (2)

P(XC | XB\C) = P(XC | XB). (3)

In Equation (1), the variable XC does not appear in the conditional distribution of XA
because XA and XC are conditional independent given XB. For the same reason, in
Equation (3), the variables XA do not appear in the conditional distribution of XC. On
the other hand, since the variables in XB appear on paths in G that connect the variables
XA with XC, XA and XC appear in the conditional distribution of XB. Thus Equation (2)
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says that there does not exist a variable in XB that is conditional independent of some of
the variables in XA and XC given the rest of the variables. Moreover, the variables XB must
appear in the conditional distributions of XA and XC – see Equations (1) and (3).

Onemight ask whether it is possible to replace the determination of the graphical model
from the first step of our proposed approach with the determination of relevant regression
models that are best supported by the data corresponding with the three conditionals in
Equations (1)–(3). This is a valid question since regression models are easier to under-
stand than multivariate joint distributions represented as graphical models. However, the
selection of regression models is not straightforward in this situation. First of all, the con-
ditional distributions in Equations (1) and (2) are multivariate since there could exist one,
two or more variables in XA and XB. Performing a model search for multivariate regres-
sions is possible, but becomes difficult when interaction terms among predictor variables
are considered (conditional distributions implied by graphical loglinearmodels can involve
interactions terms defined by complete subgraphs ofGwith three ormore variables).More-
over, different types of regression models need to be considered for the three conditionals
when the types of outcome variables vary (e.g. binary, ordinal or multinomial). Even if
searches for regression models associated with XA, XB and XC were successfully com-
pleted, the resulting conditional models could be incompatible with each other: as shown
in [3], the existence of a valid joint distribution for (XA,XB,XC) that has three multivariate
regression models as its conditional distributions is guaranteed only under very specific
conditions. The simulation study in the Supplemental Material illustrates that performing
separate searches to identify regressions for XA, XB and XC can lead to conditional distri-
butions that are incompatible with each other, and therefore a valid joint distribution for
(XA,XB,XC) cannot exist. On the other hand, by determining a graphical model that is
best supported by the data, the conditional distributions of XA, XB and XC will always be
compatible with each other.

In the second step, Gmust have only one connected component to guarantee that there
exist paths inG that connect the vertex inCwith the vertices inA. These pathsmust involve
vertices in B. If no path exists between XC and a variable in XA, XC is independent of that
variable; hence, the treatment variableXC has no effect on it. Otherwise, thismethod can be
applied to the connected component of G inwhich the vertex associated with the treatment
variable belongs by determining a weak decomposition of the subgraph determined by that
connected component.

The third step is needed because the interaction graphs we defined above are undi-
rected; therefore, they do not convey any structural information about the directionality
of the relationships represented by the edges of these graphs. This distinction is key in
causal inference [46]. It is possible that the hierarchical loglinear model that is best sup-
ported by the data is not graphical. This is more likely to happen when the number of
observed variables becomes large. In these cases, we recommend explicitly restricting the
model determination from the first step to the class of graphical hierarchical models. Such
a restriction is beneficial from a computational point of view because fewer possiblemodels
will be considered. We remark that our proposed method for the identification of mediat-
ing variables is not restricted to categorical data, and can be used for datasets that involve
continuous variables, or continuous and discrete variables. The existing statistical litera-
ture has defined rich families of graphical models that involve only continuous variables
(e.g. Gaussian graphical models) or variables of mixed type – see, e.g. [33,35].
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4. Application

We follow our proposed three-step procedure to determine the mediator roles of weakness
and fatigue for the categorical data described in Section 2. The identification of the most
relevant interactions among SSC-F, SSC-W, TIME and IC is essential due to the ability of
hierarchical loglinear models to capture multivariate association structures that show how
weakness and fatigue evolve over time, as well as their change across treatment groups.

4.1. Loglinearmodels for understanding the relationship betweenweakness
and fatigue over time

We begin by exploring the relationship between weakness (SSC-W) and fatigue (SSC-F)
adjusted for data collection time (TIME) without adjusting for treatment (IC). To this
end, we examine all possible hierarchical loglinear models that involve SSC-W, SSC-F and
TIME – see Table 2.

Only Models 5, 6 and 8 from Table 2 have a p-value associated with the log-likelihood
ratio test statisticG2 greater that 0.05, and fit the data well [8]. These three loglinearmodels
contain the interaction between SSC-W and SSC-F, which implies that these data provide
evidence of a direct relationship between weakness and fatigue. We determine which of
these threemodels is best supported by the data by performing two pairwise comparisons –
see Table 3. First, we compare Models 6 and 8 by testing the null hypothesis that there is
no interaction between SSC-W and TIME, and found Model 8 to be superior to Model 6
(p = 0.004 ).We subsequently compareModels 5 and 8 by testing the null hypothesis of no
interaction between SSC-F and TIME. In this case, the difference between the values ofG2

of these two models was 4.04; hence, we fail to reject the null hypothesis of no interaction
between SSC-F and TIME (p = 0.671). Thus Model 5 is best supported by the data. This

Table 2. Hierarchical loglinear models for SSC-W, SSC-F and TIME.

Model Minimal sufficient statistics G2a DFb p-Valuec

1 [SSC-W][SSC-F][TIME] 859.80 39 0
2 [SSC-W][SSC-F,TIME] 841.50 33 0
3 [SSC-W,TIME][SSC-F] 826.73 33 0
4 [SSC-W,SSC-F][TIME] 51.86 30 0.010
5 [SSC-W,SSC-F][SSC-W,TIME] 18.79 24 0.763
6 [SSC-W,SSC-F][SSC-F,TIME] 33.56 24 0.093
7 [SSC-W,TIME][SSC-F,TIME] 808.44 27 0
8 [SSC-W,SSC-F][SSC-W,TIME][SSC-F,TIME] 14.75 18 0.679
aLog-likelihood ratio test statistic.
bDegrees of freedom.
cp-value associated with G2.

Table 3. Comparison between the three hierarchical loglinear models for SSC-W, SSC-F and TIME that
give a good fit to the data.

Comparison G2a difference DFb difference p-Valuec

Model 6 vs. Model 8 18.82 6 0.004
Model 5 vs. Model 8 4.04 6 0.671
aLog-likelihood ratio test statistic.
bDegrees of freedom.
cp-Value associated with G2.



JOURNAL OF APPLIED STATISTICS 1305

model suggests that TIME does not have a direct effect on fatigue, but it has a direct effect
on weakness. Model 5 also indicates that the effect of TIME on fatigue is indirect.

4.2. Loglinearmodels for understanding the relationship betweenweakness
and fatigue over time as influenced by the treatment

We investigate whether the multivariate relationships among SSC-W, SSC-F and TIME
still hold when controlling for the treatment (IC). For this purpose, we examine the fit of
the three hierarchical loglinear models that include the interactions present in Model 5
(see Table 3) together with interactions between weakness and treatment group (Model 9),
fatigue and treatment group (Model 10), or both (Model 11). The results are summarized
in Table 4.

Model 5 is nested in each ofModels 9, 10 and 11, and these threemodels fit the data well
(p > 0.05 ). Thus the direct relationships between SSC-W and SSC-F, and between SSC-W
and TIME still hold in the presence of the intervention. A comparison of Models 10 and
11 based on their G2 goodness-of-fit statistics leads to rejection of the null hypothesis of
no interaction between SSC-F and IC (p = 0.007) – see Table 5. A similar comparison of
Models 9 and 11 leads us to fail to reject the null hypothesis of no interaction between
SSC-W and IC (p = 0.034 ). As such, the loglinear model with the best fit among the three
models we considered is Model 9. This model shows that SSC-W and SSC-F are directly
related when in the presence of IC and TIME, and that there is no direct effect of TIME
and IC on fatigue. However, both TIME and IC have an indirect effect on fatigue that is
mediated by weakness.

The interaction graph associated with Model 9 is shown in Figure 1. The four vari-
ables SSC-W, SSC-F, TIME and IC are each represented as vertices of this graph. Two
vertices are linked by an edge if Model 9 includes an interaction term between the cor-
responding variables. Since Model 9 involves three pairwise interaction terms, the graph
in Figure 1 has three edges. This model is graphical since each edge corresponds with
a maximal interaction term of Model 9, namely, the three pairwise interaction terms
[SSC-W,SSC-F], [SSC-W,TIME] and [SSC-W,IC]. Since each path that connects SSC-F

Table 4. Hierarchical loglinear models for SSC-W, SSC-F, TIME and IC.

Model Minimal sufficient statistics G2a DFb p-Valuec

9 [SSC-W,SSC-F][SSC-W,TIME][SSC-W,IC] 67.11 68 0.507
10 [SSC-W,SSC-F][SSC-W,TIME][SSC-F,IC] 70.64 68 0.389
11 [SSC-W,SSC-F][SSC-W,TIME][SSC-W,IC][SSC-F,IC] 58.45 65 0.704
aLog-likelihood ratio test statistic.
bDegrees of freedom.
cp-Value associated with G2.

Table 5. Loglinear model selection for SSC-W, SSC-F, TIME and IC.

Comparison G2a difference DFb difference p-Valuec

Model 9 vs. Model 11 8.66 3 0.034
Model 10 vs. Model 11 12.19 3 0.007
aLog-likelihood ratio test statistic.
bDegrees of freedom.
cp-Value associated with G2.
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and TIME, or SSC-F and IC, or TIME and IC must go through SSC-W, Model 9 is the
model of conditional independence of SSC-F, TIME and IC given SSC-W. Furthermore,
each path that connects vertex IC with vertices SSC-F or TIME must go through SSC-W,
thus ({IC}, {SSC-W}, {SSC-F, TIME}) is a weak decomposition of the interaction graph in
Figure 1. Thus the interaction structure of Model 9 suggests that SSC-W is a candidate
mediator variable, and SSC-F cannot be a mediator variable.

We note that a graphical representation ofModel 5 is obtained by eliminating the vertex
IC and the edge between SSC-W and IC from the graph in Figure 1. Model 5 is also a
graphical model: it is the model of conditional independence of SSC-F and TIME given
SSC-W.

4.3. Model validation

Our approach for selecting Models 5 and 9 was solely based on the data available. While
such a model selection strategy is widely used in the modern statistical literature, it poten-
tially raises concerns related to whether the same hierarchical loglinear models would be
selected if new samples involving the same variables became available. In order to address
this question, we design an objective procedure for assessing the out of sample generaliz-
ability of the models we selected. This procedure involves repeatedly sampling a fraction
of the available samples and determining the most relevant loglinear models only based on
the selected samples.

Instead of employing once again the hypothesis testing approach that led us to select
Models 5 and 9, we follow a different approach formodel determination. Here themost rel-
evant hierarchical loglinearmodel is considered to be the loglinearmodel with the smallest
Akaike information criterion (AIC) [26]. The determination of the loglinear model with
the smallest AIC is performed in two different ways:

• Forward search: we start at the loglinear model of independence that involves only the
main effects. This model is the current model at the first iteration. At subsequent itera-
tions, the current loglinearmodel is improved by including additional interaction terms
that are not in the model such that the model is still hierarchical. The search stops when
the inclusion of additional interaction terms does not lead to a hierarchical loglinear
model with a smaller AIC.

• Backward search: we start at the saturated loglinear model that involves all possible
interaction terms. This model is the current model at the first iteration. At subsequent
iterations, the current loglinear model is improved by deleting interaction terms from
the model such that the model is still hierarchical. The search stops when the deletion
of additional interaction terms does not lead to a hierarchical loglinear model with a
smaller AIC.

The forward and backward search procedures have been implemented with functions
from the R [49] package gRim [26]. We consider that we have successfully identified the
model with the smallest AIC if both the forward and the backward search lead to the same
hierarchical loglinear model. Based on all 1343 available samples, Model 5 turns out to
be the hierarchical loglinear model with the smallest AIC that involves variables SSC-W,
SSC-F and TIME. Similarly, based on all the available samples, Model 9 turns out to be the
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hierarchical loglinear model with the smallest AIC that involves variables SSC-W, SSC-F,
TIME and IC. This finding supports our claim that Models 5 and 9 are the most represen-
tative hierarchical loglinear models for these data. We note that, in Section 4.2, we selected
Model 9 by considering only three candidate hierarchical loglinearmodels. This shortcom-
ing is addressed by the combined forward and backward search methods that consider as
candidates all possible hierarchical loglinear models with 4 variables.

Does the AIC-based model selection strategy hold when only a fraction of the available
samples are used? To answer this question, for each q = 1%, 2%, . . . , 99%, we repeat the
following three steps 10,000 times:

(1) Sample without replacement a proportion q of the available samples.
(2) Determine the most relevant hierarchical loglinear model that involves variables SSC-

W, SSC-F and TIME based on the samples selected at Step 1.
(3) Determine the most relevant hierarchical loglinear model that involves variables SSC-

W, SSC-F, TIME and IC based on the samples selected at Step 1.

The determination of themost relevant hierarchical loglinearmodel is performed based
on the forward and backward search methods as described above. When the forward and
backward search methods do not stop at the same loglinear model, no model is recorded
for that particular sampled dataset.

We objectively assess the out of sample properties of our model selection strategy from
Sections 4.1 and 4.2 by reporting the proportions of times Models 5 and 9 were success-
fully identified – see Figures 2 and 3. When 50% or more samples are selected from the
available data, Model 5 is determined at Step 2 for at least 80% of times. When 85% or
more samples are selected, Model 9 is determined at Step 3 for at least 80% of times. The

Figure 2. Out of sample validation for Model 5. Each bar represents the proportion of times based on
10,000 sampled datasets Model 5 has been identified to be the loglinear model with the smallest AIC
involving variables SSC-W, SSC-F and TIME. From left to right, the bars correspondwith sampling propor-
tions of 1%, 2%, . . . , 99%. The horizontal line shows the empirical probability 1/9 = 0.111 of selecting
Model 5 at random from the set of nine hierarchical loglinear models with three categorical variables.
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Figure 3. Out of sample validation for Model 9. Each bar represents the proportion of times based on
10,000 sampled datasets Model 9 has been identified to be the loglinear model with the smallest AIC
involving variables SSC-W, SSC-F, TIME and IC. From left to right, the bars correspond with sampling
proportions of 1%, 2%, . . . , 99%. The horizontal line shows the empirical probability 1/114 = 0.0087
of selecting Model 9 at random from the set of 114 hierarchical loglinear models with four categorical
variables.

increased number of samples needed to recover Model 9 relative to the number of samples
needed to recover Model 5 is consistent with the size of the set of models they are selected
from: while there are only 9 hierarchical loglinear models with 3 variables, there are 114
hierarchical loglinear models with 4 variables. If a hierarchical loglinear model is selected
at random from the pool of hierarchical loglinear models with 3 and 4 variables in the
absence of any data, Model 5 is chosen with a probability of 1/9 = 0.111, and Model 9 is
chosen with a probability of 1/114 = 0.0087. Figures 2 and 3 show that the probabilities of
selecting Model 5 and Model 9 become significantly higher as more samples are employed
in the selection process. These findings confirm that Models 5 and 9 are representative for
the associations that exist among SSC-W, SSC-F, TIME and IC which provides support for
the generalizability of our conclusions.

4.4. Causal mediation analysis

Model 9, the model of conditional independence of SSC-F, TIME and IC given SSC-W,
posits that: (i) there is no direct effect of the treatment on fatigue; (ii) there is a direct
effect of the treatment on weakness; and (iii) there is a direct effect of weakness on fatigue.
This suggests that weakness is a mediator variable. Due to the indirect effect of the treat-
ment on fatigue without a direct effect, Model 9 provides evidence for the strongest type
of mediation which was called full mediation by Baron and Kenny [4].

In the sequel, we want to ascertain whether we can reach the same conclusions by
employing a modeling framework for conducting causal mediation analysis. We follow
methods and algorithms from Imai et al. [27,28] implemented in the R [49] package
mediation [54]. Their model-based causal mediation analysis builds on the procedure



JOURNAL OF APPLIED STATISTICS 1309

of Baron and Kenny [4], and comprises the specification of two statistical models. The first
model is called the mediator model and specifies the conditional distribution of the medi-
ator given the treatment and other pre-treatment covariates. The second model is called
the outcome model and specifies the conditional distribution of the outcome, given the
treatment, the mediator, and the pre-treatment covariates. After these two models are fit
separately, the size of the indirect effect of the treatment on the outcome is estimated by
the average causal mediation effects (ACME), while the direct effect of the treatment on
the outcome is estimated by the average direct effects (ADE). The sums of the indirect and
direct effects are called the total effects.

First, we estimate the causal effects of the treatment on fatigue with weakness as the
mediator variable. The mediator model is an ordinal logistic regression model of SSC-W
conditional on IC and TIME. The outcome model is an ordinal logistic regression model
of SSC-F conditional on SSC-W, IC and TIME. The results obtained with the mediate
function from the mediation R package are shown in Table 6. With a single exception,
the ACME of treatment on fatigue are statistically significant at the α = 0.05 level for the
treated and the control groups. The ADE of the treatment on fatigue are not statistically
significant for both groups. However, the total effects of the treatment on fatigue are sta-
tistically significant at the α = 0.05 level. As such, the indirect effects of the treatment on
fatigue mediated by weakness are strong, while there does not seem to be any evidence of
direct effects of the treatment on fatigue.

Second, we estimate the causal effects of the treatment on weakness with fatigue as
the mediator variable. The mediator and the outcome models are similar to the ones we
specified before with SSC-W and SSC-F replacing each other. The results are presented in
Table 7. In this case, most of the ACME, the ADE and the total effects of the treatment on

Table 6. Estimated causal effects of the treatment on fatigue with weakness as mediator variable.

Pr(SSC − F = 0) Pr(SSC − F = 1) Pr(SSC − F = 2) Pr(SSC − F = 3)

ACMEa (control) 0.0605 0.006589 −0.0268 −0.0403
2.5% 0.0294 0.000664 −0.0494 −0.0633
97.5% 0.0983 0.014627 −0.0136 −0.0174
p-Value < 0.0001 0.028800 0.0008 0.0008
ACMEa (treated) 0.0613 0.005649 −0.0275 −0.0394
2.5% 0.0297 −0.000046 −0.0507 −0.0621
97.5% 0.0988 0.013216 −0.0139 −0.0166
p-Value < 0.0001 0.052000 0.0008 0.0008
ADEb (control) 0.00792 0.000607 −0.00267 −0.00585
2.5% −0.02325 −0.001627 −0.01370 −0.02762
97.5% 0.03867 0.002977 0.00749 0.01670
p-Value 0.62320 0.644000 0.62320 0.62320
ADEb (treated) 0.00866 −0.000334 −0.00342 −0.0049
2.5% −0.02544 −0.003323 −0.01734 −0.0229
97.5% 0.04271 0.001852 0.00987 0.0137
p-Value 0.62320 0.633600 0.62320 0.6232
Total effect 0.0692 0.006256 −0.0302 −0.0452
2.5% 0.0269 0.000358 −0.0568 −0.0748
97.5% 0.1196 0.013460 −0.0130 −0.0154
p-Value 0.0016 0.040000 0.0032 0.0032

Note: The table shows nonparametric bootstrap confidence intervals based on 2500 Monte Carlo draws with the percentile
method.

aAverage causal mediation effects.
bAverage direct effects.
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Table 7. Estimated causal effects of the treatment on weakness with fatigue as mediator variable.

Pr(SSC − W = 0) Pr(SSC − W = 1) Pr(SSC − W = 2) Pr(SSC − W = 3)

ACMEa (control) 0.0539 0.00148 −0.02766 −0.02774
2.5% 0.0132 −0.00603 −0.04233 −0.04571
97.5% 0.0841 0.00893 −0.00635 −0.00599
p-Value 0.0048 0.78160 0.00400 0.01120
ACMEa (treated) 0.0570 −0.00537 −0.02933 −0.02231
2.5% 0.0140 −0.01313 −0.04507 −0.03718
97.5% 0.0887 0.00348 −0.00749 −0.00449
p-Value 0.0040 0.25120 0.00400 0.01200
ADEb (control) 0.0566 0.000629 −0.0245 −0.0327
2.5% 0.0253 −0.004313 −0.0396 −0.0531
97.5% 0.0915 0.004686 −0.0101 −0.0148
p-Value < 0.0001 0.891200 < 0.0001 < 0.0001
ADEb (treated) 0.0597 −0.00622 −0.0262 −0.0273
2.5% 0.0264 −0.01240 −0.0421 −0.0450
97.5% 0.0961 −0.00123 −0.0112 −0.0127
p-Value < 0.0001 0.00560 < 0.0001 < 0.0001
Total effect 0.1136 −0.00474 −0.0538 −0.0550
2.5% 0.0621 −0.01327 −0.0743 −0.0802
97.5% 0.1593 0.00361 −0.0283 −0.0299
p-Value < 0.0001 0.27040 < 0.0001 < 0.0001

Note: The table shows nonparametric bootstrap confidence intervals based on 2500 Monte Carlo draws with the percentile
method.

aAverage causal mediation effects.
bAverage direct effects.

weakness are statistically significant. This suggests that the treatment has strong direct as
well as indirect effects mediated by fatigue on weakness. Baron and Kenny [4] refer to the
presence of both direct and indirect effects as partial mediation.

5. Discussion

Since fatigue and weakness may have similar sensations, PLHIV experience them jointly,
and consequently, themeasurements of these two symptoms are highly correlated. As such,
there is no surprise that a direct effect between fatigue and weakness was identified when
employing graphical loglinear models and in the causal mediation analysis. In that regard,
the two modeling frameworks led to the same expected conclusion. However, our causal
mediation analysis did not offer any definite answer to the question of whether fatigue is
a mediator variable for the effects of the treatment on weakness, or whether weakness is
a mediator variable for the effects of treatment on fatigue. This is an important question
because, in order tomaximize the benefits of interventions that deal with fatigue andweak-
ness, the causal pathways through which the proposed treatments affect the two symptoms
need to be established.

Our causal mediation analysis from Section 4.4 found evidence of partial mediation
of fatigue, and also evidence of full mediation of weakness. Baron and Kenny [4] argue
that mediation is stronger when no direct effect of the treatment on the outcome is found,
but there is evidence of an indirect effect. According to this argument, we could conclude
that weakness is more likely to be a mediator than fatigue for this particular treatment.
Nevertheless, the literature on mediation analysis points out flaws in Barron and Kenny’s
criteria for establishing the strength of mediation. For example, Zhao et al. [60] argue that
the presence of a direct effect can represent evidence for the presence of other unobserved



JOURNAL OF APPLIED STATISTICS 1311

mediators. Consequently, the absence of a direct effect should not constitute a measure
of the strength of mediation. Instead, Zhao et al. [60] propose using the size of the indi-
rect effect of the treatment on the outcome as a more appropriate measure of mediation
strength. However, in this particular application, the estimated ACME from Tables 6 and 7
do not seem to provide decisive evidence aboutwhen the indirect effects are stronger: when
weakness is the mediator, or when fatigue is the mediator?

For these reasons, causal mediation analysis was not helpful in differentiating between
weakness and fatigue as mediator variables. On the other hand, our proposed approach,
which is based on learning the graphical model that is best supported by the data, pro-
vides a clearer answer to this question. The model of conditional independence of fatigue,
treatment and time given weakness we determined in Section 3 shows that weakness is a
mediator variable and that fatigue is not a mediator variable.
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