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ABSTRACT
Despite the growing popularity of human mobility studies that col-
lect GPS location data, the problem of determining the minimum
required length of GPS monitoring has not been addressed in the
current statistical literature. In this paper, we tackle this problem
by laying out a theoretical framework for assessing the temporal
stability of human mobility based on GPS location data. We define
several measures of the temporal dynamics of human spatiotempo-
ral trajectories based on the average velocity process, and on activity
distributions in a spatial observation window. We demonstrate the
use of our methods with data that comprise the GPS locations of
185 individuals over the course of 18 months. Our empirical results
suggest that GPS monitoring should be performed over periods of
time that are significantly longer thanwhat has been previously sug-
gested. Furthermore, we argue that GPS study designs should take
into account demographic groups.
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1. Introduction

Recent developments on global positioning systems (GPS) for wearable technology such
as smartphones have drawn a great amount of interest from scientists studying the effects
of environmental influences on different population groups [2,10,12,13,17,20–23,28,30].
A recent article [18] documents more than 100 studies from 20 disciplines that collect
and analyze human time-stamped GPS location data. This type of data is key for learning
about the places where people routinely spend their time during activities of daily living in
order to establish their relationship with socio-economic outcomes, crime victimization,
and physical andmental well-being. There have been extensive studies on the social stratifi-
cation ofmobility, such as health disparities of different neighborhoods, mental health, and
substance abuse intervention [9,24,28], on the assessment of human spatial behavior and
spatiotemporal contextual exposures [12,17,20], on the characterization of the relationship
between geographic and contextual attributes of the environment (e.g. the built environ-
ment) and human energy balance (e.g. diet, weight, physical activity) [2,30], on the study
of segregation, environmental exposure, and accessibility in social science research [13], or
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on the understanding of the relationship between health-risk behavior in adolescents (e.g.
substance abuse) and community disorder [1,27,28].

Notwithstanding a general consensus across disciplines about the tremendous poten-
tial of GPS location data for studying human mobility, very little is currently known about
how long a GPS study should last. There is an inherent trade-off between collecting loca-
tion data from people for longer vs. shorter periods of time. Recordingmore GPS locations
yields more information about the locations where an individual spends their time, as well
as about the frequency, duration and timing of their visits to these places. However, an indi-
vidual’s participation in a GPS study comes with burdens that often become significant if
accumulated over longer periods of time: the individual needs to carry the device recording
the data (a GPS tracker) everywhere they go and needs to make sure the device is properly
charged at all times and functions properly. Until recently, most GPS study designs stip-
ulated mandatory regular visits to project coordination sites to download data from the
location trackers, to replace batteries, and replace the GPS tracking devices that were lost
or were malfunctioning. While some of these issues have been addressed by using special-
ized apps on smartphones to collect GPS data and wirelessly transmit them into secure
cloud databases, the costs of distributing smartphones to study participants, data plans,
software development, and cloud computing are quite significant. In addition, there are
important privacy considerations related to recording locations that might be sensitive for
study participants for long periods of time. For these reasons, it is desirable to design GPS
studies that are as short as possible to reduce the costs of the projects and the burden of
study participants, while at the same time still providing guarantees that sufficient location
data have been collected to properly address the research aims.

Despite the constant growth in the number of human mobility studies that collect GPS
location data in the last 20 years, the question about the determination of the amount of
time of GPS monitoring has not been asked until recently [29]. In this paper, the authors
argue that an effective GPS study should last until a minimum of 14 to 15 days of valid GPS
data have been collected. While this finding is relevant for numerous research groups that,
in the past, have designedGPS studies with a duration of 7 days (see [29] and the references
therein), two weeks seems to severely underestimate the duration of other, more recent,
GPS studieswhose duration is significantly longer. For example, Refs. [4,19] represent stud-
ies that tracked adolescents in the San Francisco Bay area for one month. Another study
[8] employs a more complex three site design that comprises five assessments that take
place every six months over two years of follow-up for participants enrolled in Chicago,
and three assessments that take place every six months over one year of follow-up for par-
ticipants enrolled in Jackson and New Orleans. During each assessment, participants wear
a GPS tracker for 2weeks. Thus, this study [8] records GPS locations for a total of 10 weeks
and 6 weeks, respectively, but splits the period of observation into several contiguous 2-
week periods of GPSmonitoring. These longer periods of observation time were suggested
in [16] who found 17 weeks to be an adequate period of time to monitor human mobility
based on geotagged social media data.

In this paper, we lay out a theoretical framework for assessing the temporal stability
of human mobility based on GPS location data. Such a framework is missing from the
current statistical literature. Previous work [16,29] on the assessment of the duration of
GPS observation periods is based on empirical findings and lacks any theoretical under-
pinnings. We address this gap by introducing several measures of the temporal dynamics
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of spatiotemporal trajectories of individuals. We illustrate the use of these measures with
publicly available data from a study that recorded GPS locations of 185 individuals that live
in a city in Switzerland over the course of 18 months.

2. Methods

The spatiotemporal trajectory of an individual in a reference time frame [tmin, tmax] and
spatial observation windowW ⊂ R

2+ is a curve

X[tmin,tmax] = {X(t) = (x1(t), x2(t)) : t ∈ [tmin, tmax]} ⊆ W , (1)

where x1(·) and x2(·) represent the longitude and latitude coordinates, respectively, and
X(t) is the location visited by this individual at time t. We assume that this curve is smooth:
x1(·) and x2(·) have continuous derivatives. The length of the curve in Equation (1) is
defined as [6]:

L(X[tmin,tmax]) =
∫ tmax

tmin

√(
dx1(t)
dt

)2
+

(
dx2(t)
dt

)2
dt. (2)

The complete trajectory X[tmin,tmax] is never observed in the real world. Instead, n observa-
tion times t1, . . . , tn are sampled from a distribution on [tmin, tmax] with density ρ(·), and
the corresponding locations X(t1), . . . ,X(tn) on the curve X[tmin,tmax] are recorded. These
locations are realizations of a random variable X(T)where T ∼ q(·). Ideally, we would like
T to follow a uniform distribution to have the same chance of recording a visited location
anywhere in the reference time frame [tmin, tmax]. Due to technological limitations (e.g.
GPS devices running out of power), heterogeneous built environments that prevent GPS
devices to obtain a location (e.g. skyscrapers in downtown areas or buildings without win-
dows and WIFI coverage), or human behavioral factors (e.g. individuals turning off their
GPS devices around certain locations sensitive to them) the distribution of T can be far
from the uniform distribution.

We assume that GPS positional data from K study participants were recorded. We
denote by X[tmin,tmax]

k = {Xk(t) : t ∈ [tmin, tmax]} the unobserved spatiotemporal trajectory
of the kth study participant. The observation times in the reference time frame [tmin, tmax]
can vary between study participants. The GPS data for the kth study participant are the
time-stamped longitude and latitude locations:

{Xk,i = Xk(tk,i) : i = 1, . . . , nk}, (3)

where nk ≥ 1, the time tk,i was sampled from a distribution with density ρk(·) indepen-
dently of the rest of the observation times, and tmin ≤ tk,1 ≤ . . . tk,nk ≤ tmax. Here tk,i
represents the time when the ith location of study participant k was recorded. Our frame-
work allows for the possibility of having different reference time frames for various groups
of study participants.

2.1. Measuring the temporal stability of humanmobility patterns

One possible measure of the dynamics of the spatiotemporal trajectory X[tmin,tmax] is the
average velocity V(τ ) at time τ which is a function V(τ ) of the length of the subcurve
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X[tmin,tmin+τ ] of X[tmin,tmax] from Equation (1):

V(τ ) = 1
τ
L(X[tmin,tmin+τ ]), (4)

for τ ∈ (0, tmax − tmin] and V(0) = 0. A sample estimator of the average velocity for the
kth study participant is

V̂k(τ ) = 1
τ

∑
{i:tk,i+1≤τ }

‖Xk,i+1 − Xk,i‖. (5)

where ‖Xk,i+1 − Xk,i‖ represents an estimate of the distance traveled between times tk,i and
tk,i+1. The average velocity is a straightforward way to quantify the dynamical characteris-
tics of an individual, hence its stability can be used as an intuitive, easy to understand the
measure of temporal stability.

In what follows we will assume that study participants traveled in a straight line or
‘as the crow flies’ between two consecutive observed GPS locations. This is the simplest
assumption one can make which leads to an easy way of calculating Great Circle (WGS84
ellipsoid) distances between two spatial locations [3]. However, this assumption under-
estimates actual distances traveled and consequently underestimates the average velocity.
More accurate approximations of distances traveled can be defined based on the short-
est distances between two locations on a road network that spans the spatial observation
windowW . Calculating distances based on a road network is more complex than calculat-
ing straight-line distances and involves significant GIS work since the maximum speed of
travel on different segments of road needs to be taken into account [7]. Nevertheless, as the
span of time between two consecutive observed locations becomes shorter, the difference
between the road network and straight line distances decrease.

More generally, consider a stochastic process Z = {Z(τ ) : τ ∈ [0, tmax − tmin]}, where
Z(τ ) is a mapping f (·) of the subcurve X[tmin,tmin+τ ] into R+. The mapping f (·) is chosen
such that limτ→(tmax−tmin) Z(τ ) = Z(tmax − tmin). We define the absolute percentage error
(APE, henceforth) φ(Z; τ) which measures the error made when approximating Z(tmax −
tmin) with Z(τ ) for τ ∈ [0, tmax − tmin]:

φ(Z; τ) = |Z(τ ) − Z(tmax − tmin)|
Z(tmax − tmin)

.

We quantify the temporal stability of the process Z by introducing a related process called
the last crossing time process LCTZ = {LCTZ(γ ) : γ ≥ 0}, where

LCTZ(γ ) = max {τ ∈ [0, tmax − tmin] : φ(Z; τ) > γ } . (6)

In Equation (6), LCTZ(γ ) is the last time when the APE made when Z(tmax − tmin) is
approximated with Z(τ ) is above a threshold γ . The last crossing time is well defined since
limτ→(tmax−tmin) φ(Z; τ) = 0.

Consider the process Zk = {Zk(τ ) : τ ∈ [0, tmax − tmin]} associated with the kth study
participant, Zk(τ ) = f (X[tmin,tmin+τ ]

k ), and let Ẑk be its sample estimator based on the posi-
tional data in Equation (3). The average velocity in Equation (4) and its sample estimator
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Figure 1. Estimate of the average velocity (gray curve) of an individual in the MDC data over tmax =
21 weeks. The dashed line indicates the value of V̂(tmax), and the two dotted lines represent the lower
bound (1 − γ )̂V(tmax) and the upper bound (1 + γ )̂V(tmax) for γ = 0.1. These bounds correspond
with times τ for which the APEφ(V ; τ) ≤ γ . The crosses denote the times τ for whichφ(V ; τ) = γ . The
last crossing time for γ = 0.1 is marked with a triangle and occurs at the end of week 10.

in Equation (5) are examples of processes Zk and Ẑk. A sample estimator of the last crossing
time LCTZk(γ ) is

L̂CTZk(γ ) = max
i=1,...,nk

{
tk,i − tmin : φ(̂Zk; tk,i − tmin) > γ

}
. (7)

We note that Ẑk(τ ) in the APE φ(̂Zk; τ) is determined based on the locations recorded for
the kth study participant before time τ : {Xk,i : tmin ≤ tk,i ≤ τ }. As an illustration, Figure 1
shows estimates of the average velocity of an individual in theMDC data, together with the
last crossing time estimate at γ = 0.1. The threshold γ is a precision threshold specified by
the user. It reflects the analyst’s requirement on how stable the estimator (7) has to be. By
decreasing γ , the stability of this estimator increases. Smaller values of γ correspond with
a more stable estimator. For example, the choice γ = 0.1 expresses a 10% relative error to
a long-term study.

The last crossing time of the APE associated with a process that is a function of the
spatiotemporal trajectory of a study participant represents a measure of this individual’s
mobility. Study participants that have more irregular mobility patterns (e.g. regular travel
to locations at various distances from the individual’s residence that change after a few days
orweeks) are expected to have larger last crossing times compared to study participants that
travel to the same locations each week. An example individual with a very regular mobility
pattern that travels every day from his home to his office and back by following the same
route and goes nowhere else will record an APE equal to 0 after one day which leads to last
crossing times of less than one day in Equation (7).

Previous work [29] on the temporal stability of spatiotemporal trajectories has used
the mean absolute percentage error (MAPE) which is the average of the APE across study
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participants:

φK(τ ) = 1
K

K∑
k=1

φ(̂Zk; τ). (8)

We define two measures of the overall temporal stability of the spatiotemporal trajectories
of multiple study participants. The first overall measure is the last crossing time process
LCTφK

= {LCTφK
(γ ) : γ ≥ 0} of the MAPE process φK = {φK(τ ) : τ ∈ [0, tmax − tmin]}.

We refer to this measure as LCT–MAPE(Z). The second overall measure is defined as the
average of the last crossing times of the APE of Ẑk for k = 1, . . . ,K, i.e. LCTK = {LCTK(γ ) :
γ ≥ 0} where

LCTK(γ ) = 1
K

K∑
k=1

LCTZk(γ ).

We denote this second measure by LCT − APE(Z). These two measures are the same only
if they are calculated for a single study participant (K = 1). They are useful for comparing
the temporal regularity of mobility patterns of groups of study participants (e.g. younger
vs. older individuals, men vs. women, high SES vs. low SES).

2.2. The activity distribution of humanmobility patterns

The average velocity associated with the spatiotemporal trajectory of an individual does
not provide any information about the spatial configuration of locations visited. Consider
two example individuals that drive without stopping with the same speed for a long period
of time. The first example individual drives back and forth between two places A1 and
A2. The second example individual drives in a cycle from a place A1 to another place A2,
then to places A3 and A4, then back to place A1. Since the spatiotemporal trajectory of the
second individual involves two additional places, more sample locations will be needed
to understand the mobility pattern of the second individual compared to the mobility pat-
tern of the first individual. However, themobility patterns of these two example individuals
will be indistinguishable based on the last crossing time process associated with their aver-
age velocity processes. We address this issue by introducing a distribution of the locations
visited by an individual.

We assume that the observation window W is partitioned into a set of grid cells G =
{G1, . . . ,GN}. Each location X(t) on the curve X[tmin,tmax] representing the spatiotemporal
trajectory of an individual is mapped into a grid cell G(t) ∈ G. The observed locations for
this individual mapped into G are the sequence of grid cells g1 = G(t1), . . . , gn = G(tn)
that are realizations of a random variableG(T)whereT is a random variable on [tmin, tmax]
with a distribution with density ρ(·).

We define the activity distributionπ = (π1, . . . ,πN) over the grid cellsG. Hereπj repre-
sents the proportion of time in [tmin, tmax] spent by an individual in cellGj ∈ G.We assume
that T follows a uniform distribution on [tmin, tmax] and define:

πj = P(G(T) = Gj), for j = 1, . . . ,N. (9)

The activity distributions associated with the two example individuals we introduced ear-
lier can differentiate between their mobility patterns if the grid cells in whichA3 andA4 do
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not coincide with the grid cells of A1 and A2 and will show that the first example individ-
ual did not spend any time in the grid cells associated with A3 and A4. To employ activity
distributions we need to have a method for recovering them from the available data.

The simplest estimator π̂ = (π̂1, . . . , π̂N) of the activity distribution π is based on the
relative frequency of visitation of the grid cells G:

π̂j = 1
n

n∑
i=1

1(gi = Gj), for j = 1, . . . ,N.

However, this estimator of π is reasonable only if T follows a uniform distribution as in
Equation (9).WhenT follows an arbitrary distribution with density ρ(·), a better approach
is to use a weighted average estimator π̃ = (π̃1, . . . , π̃N) where:

π̃j =
∑n

i=1 ρ−1(ti)1(gi = Gj)∑n
�=1 ρ−1(t�)

, for j = 1, . . . ,N. (10)

Although this estimator can be shown to be statistically consistent, it requires knowledge
of the density ρ(·). There are many methods for estimating ρ(·) from the data such as
histograms or kernel density estimators [26]. We suggest using an estimation method that
assumes that the distribution ofT is approximated by a piecewise uniform distribution.We
take t0 = tmin and tn+1 = tmax. IfT is approximately uniform in [ti−1, ti+1] for i = 1, . . . , n,
then ρ−1(ti) ≈ ti+1 − ti−1. This is a reasonable assumption if the times when locations are
collected are roughly equally spaced in time (e.g. a location is collected every 10 minutes)
since the mean of ti is (ti+1 − ti−1)/2. Thus, an estimator of ρ(·) is

ρ̂(ti) = ω(ti)∑n
�=1 ω(t�)

, ω(ti) = 1
ti+1 − ti−1

, for i = 1, . . . , n.

The weighted average estimator from Equation (10) becomes

π̂o,j =
∑n

i=1 ω−1(ti)1(gi = Gj)∑n
�=1 ω−1(t�)

=
∑n

i=1(ti+1 − ti−1)1(gi = Gj)

tmax − tmin + tn − t1
, for j = 1, . . . ,N. (11)

We call π̂o = (π̂o,1, . . . , π̂o,N) the ordinary proportional time estimator of the activity dis-
tribution π . This estimator relies on the assumption that the length of the time intervals in
which an individual transitions between two grid cells is added to the time spent in both
the grid cell they leave from, and the grid cell they arrive in. More specifically, assume that
the consecutive observation times ti and ti+1 are such that gi �= gi+1. Then π̂o allocates
(ti+1 − ti) to the total time spent in both gi and gi+1.

We introduce a second estimator π̂c = (π̂c,1, . . . , π̂c,N) of the activity distribution π :

π̂c,j =
∑n

i=2(ti − ti−1)1(gi = gi−1 = Gj)∑n
i=2(ti − ti−1)1(gi = gi−1)

, for j = 1, . . . ,N. (12)

We call π̂c the conservative proportional time estimator. This estimator is more conserva-
tive than the ordinary proportional time estimator π̂o from Equation (11) in the sense that
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any time interval defined by consecutive observation times ti and ti+1 such that gi �= gi+1
is ignored. That is, the time spent in a grid cell is calculated only based on time intervals
in which an individual is known to have remained in that cell.

We show two important properties of the ordinary and the conservative proportional
time estimators. First, we prove that both estimators are asymptotically equivalent. Second,
we prove that both estimators are statistically consistent, that is, theywill eventually recover
the true activity distributionπ if sufficient location data are available. These properties rely
on the assumptions (S1), (S2) and (S3) below:

(S1) The length of the time intervals between consecutive observation times
maxi=1,...,n−1 |ti+1 − ti| → 0 as the sampling rate n → ∞.

(S2) The sampling period is such that t1 → tmin and tn → tmax when n → ∞.
(S3) The number of transitions between grid cells is finite, i.e. there existsM < ∞ such

that
∑

t∈[tmin,tmax] 1(G(t+) �= G(t−)) ≤ M, where G(t−) and G(t+) are the left and
right limits of G(·) at t.

Assumptions (S1) and (S2) describe the meaning of asymptotics in our context. They
imply that the observation times t1, . . . , tn will eventually be dense in the reference time
frame, i.e. there will not exist a fixed region of [tmin, tmax] without any observation times
when n → ∞. Assumption (S3) requires that the spatiotemporal trajectory X[tmin,tmax] is
sufficiently smooth such that it will not jump between grid cells infinitely often.

Theorem2.1 (Asymptotic EquivalenceRulewith Large SamplingRate): Under assump-
tions (S1), (S2) and (S3), the ordinary proportional time estimator π̂o from Equation (11)
and the conservative proportional time estimator π̂c from Equation (12) are asymptotically
the same.

The proof of this result is given in Appendix A.1. We can also show that the same
assumptions imply that the two estimators are statistically consistent.

Theorem 2.2 (Convergence Rule with Large Sampling Rate): Under assumptions (S1),
(S2) and (S3), the ordinary proportional time estimator π̂o from Equation (11) and the
conservative proportional time estimator π̂c from Equation (12) converge to the true activity
distribution π from Equation (9).

The proof of this result is given in Appendix A.2.

2.3. Measuring the temporal stability of human activity distributions

We are interested in determining the temporal stability of the activity distribution of an
individual. We assume that the reference time frame [tmin, tmax] is divided into Dmax time
periods of equal lengths (e.g. days or weeks). We denote by π(d) the activity distribution
from Equation (12) associated with time period D, D = 1, . . . ,Dmax. Then π(D) can be
viewed as anN-dimensional random vector whose distribution reflects the variability from
time period to time period of the individual’s mobility patterns. With this understanding,
we are interested in determining the expectation π̄ = E(π(D)). We call π̄ the time period
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activity distribution (e.g. daily or weekly activity distribution). The jth component of π̄ is
interpreted as the average proportion of time spent by the individual in grid cell Gj in a
given time period (a day or a week).

A simple estimator of π̄ is

̂̄π(D) = 1
D

D∑
d=1

π̂ (d), for D = 1, . . . ,Dmax, (13)

where π̂ (d) is the ordinary proportional time estimator π̂o from Equation (11) or the
conservative proportional time estimator π̂c from Equation (12).

Because ̂̄π(D) is a consistent estimator of π̄ , the error we make when approximating
π̄ with ̂̄π(D) decreases as we observe the spatiotemporal trajectory of the individual for a
larger number of time periods Dmax. We define the last crossing time of the sequence of
estimators {̂̄π(D) : D = 1, . . . ,Dmax} as follows:

L̂CTdist(γ ) = max
D=1,...,Dmax

{
D : ‖̂̄π(D) − ̂̄π(Dmax)‖1 > γ

}
, (14)

where ‖v‖1 is the usual L1 norm for a vector v, i.e. ‖v‖1 = ∑
i |vi|. Note in Equation (14)

we used the fact that ‖̂̄π(D)‖1 = 1 for any D.
The last crossing time in Equation (14) is ameasure of the temporal stability of the entire

time period activity distribution π̄ . Individuals that spend approximately the same amount
of time in the same places in every time period need to be observed for a smaller number of
time periods to calculate estimator ̂̄π(D)with the same APE compared to individuals with
heterogeneous mobility patterns that spend different amounts of times at locations that
change substantially across time periods. Therefore, L̂CTdist(γ )will be smaller for individ-
uals whose time period to time periodmobility changes less, and larger for individuals with
irregular mobility patterns.

The disadvantage of using the last crossing time in Equation (14) as a measure of tem-
poral stability comes from the fact that it gives the same weight to the error made when
estimating the proportion of time spent in grid cells in which an individual spends a lot of
their time, and to the grid cells in which the individual rarely visits. The number of grid
cells with a large proportion of time spent in them is likely significantly smaller than the
total number of grid cells N because most people tend to spend time at their residence,
to their work place and perhaps in a few other select locations. For this reason, the error
madewhen estimating the proportion of time spent in grid cells with sparse presence could
dominate the overall APE of ̂̄π(D) and lead to larger values of L̂CTdist(γ ). To remedy this
issue, we define a new measure of temporal stability that focuses on the grid cells in which
an individual spends larger proportions of time.

We define the ranking time period activity distribution r̄ = (r̄1, . . . , r̄N) associated with
π̄ by replacing each component of π̄ with the sum of those components of π̄ that are no
larger than that component, as follows [5]:

r̄j =
N∑
l=1

π̄l1(π̄l ≤ π̄j), for j = 1, . . . ,N. (15)
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Theα-level set (α ∈ [0, 1]) of r̄ is defined to consist of all the grid cells whose corresponding
components in r̄ exceed α:

Lα = {Gj : r̄j ≥ α}. (16)

It turns out that the α-level set covers grid cells whose total sum of components of π̄ is
larger than 1 − α: ∑

Gj∈Lα

π̄j ≥ 1 − α.

Levels sets have an easy to understand interpretation: for a given level α, say α = 0.7, all
the grid cells with a ranking time period activity distribution above 0.7 will jointly cover at
least (1 − 0.7) · 100 = 30% of the time in the time period. Values of α closer to 1 lead
to level sets Lα with a smaller coverage that comprise only the grid cells in which the
individual spends the largest amounts of time. Values of α close to 0 lead to level sets
Lα with a larger coverage that comprise the majority of grid cells the individual spent
time in.

Let̂̄r(D) be the ranking distribution of the estimator ̂̄π(D) of π̄ in Equation (13), and
Lα(D) be the α-level set associated witĥ̄r(D) as in Equation (16). Given a level α ∈ [0, 1]
and a stability threshold γ > 0, we define the last crossing time of the sequence of level
sets {Lα(D) : D = 1, . . . ,Dmax} as follows:

L̂CTlevel,α(γ ) = max
D=1,...,Dmax

{
D :

‖Lα(D)Lα(Dmax)‖
‖Lα(Dmax)‖ > γ

}
, (17)

where  denotes the symmetric difference of two sets, and ‖ · ‖ denotes the number of
elements in a set.

The LCT of the level sets from Equation (17) is a measure of temporal stability of the
time period activity distribution π̄ that takes into account only the error made when esti-
mating the time spent in the grid cells in which an individual spent most of their time. For
the same value of γ , L̂CTlevel,α(γ ) is decreasing as the level α is increasing.

3. Application

Thedatawe analyze come fromNokia’sMobileDataChallenge (MDC) [11,14,15]. Thiswas
a mobile computing research initiative focusing on generating a deeper scientific under-
standing of social and behavioral patterns related to mobile technologies. The study took
place in Switzerland and collected various types of longitudinal information including time
stamped GPS data from the cell phones of 185 study participants over the course of 18
months. Demographic data such as age and sex are also available. There are approximately
57.5 million GPS location records. The average length of observation for study partici-
pants was about 55 weeks. These data are publicly available upon request from the Idiap
Research Institute.

Most activities of daily living of the study participants took place in a rectangular area
that we partitioned into 40002 square grid cells with sides of length 28m. The locations that
do not belong to this spatial observation window were dropped. These locations typically
correspondwith longer trips took by study participants away from their places of residency.
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Figure 2. Summary information of the GPS location data. Left panel: histogram of the total length of
observation for each studyparticipant expressed inweeks. Rightpanel: histogramof theaveragenumber
of GPS locations per week for each study participant.

Table 1. Means,medians and sample standard deviations of three
measures of temporal stability of mobility patterns.

Mobility measure Mean Median St. dev.

LCT-velocity 30.04 26 17.29
LCT-distribution 37.18 37 16.06
LCT-level set (α = 0.2) 17.69 17 9.50

The unit of time is weeks.

Figure 2 displays summaries of theGPS locations that fall in our chosen spatial observation
window.

For each study participant, we calculated three measures of temporal stability of their
mobility patterns: the last crossing time of the average velocity (LCT-velocity) as defined in
Equations (5) and (7), the last crossing time of the activity distribution (LCT-distribution)
as defined in Equation (14), and the last crossing time of the level sets of the weekly activity
distribution as defined in Equation (17). In the calculation of LCT-distribution and LCT-
level set, we used the ordinary proportional time estimator defined in Equation (11). We
chose to use the ordinary proportional time estimator over the conservative proportional
time estimator because the conservative proportional time estimator disregards the pairs
of consecutive time points that are located in different grid cells. The conservative pro-
portional time estimator would most likely yield a smaller sample size compared to the
ordinary proportional time estimator. We used α = 0.2 in the determination of level sets,
and γ = 0.2 as the stability threshold for all three measures. The results are summarized
in Table 1.

About 30 weeks of observation is needed until the mobility patterns stabilize according
to the LCT-velocity measure. A longer period of time, 37 weeks, is needed until the weekly
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activity distribution stabilizes. The increased length of the period of observation for this
measure is not surprising since it is based on an estimated of the full weekly activity distri-
bution in N = 40002 grid cells. About half of this observation time (18 weeks) is needed
to obtain estimates of the 0.2-level set of the weekly activity distribution which comprise
the grid cells in which the study participants spend 80% of their weekly time.

We exemplify how the α-level set Lα from Equation (16) and its corresponding LCT-
level set L̂CTlevel,α(0.2) from Equation (17) change for different values of α ∈ [0, 1]. To this
end, we define an adjacency graph Ggrid whose vertices are theN = 40002 grid cells in the
spatial observation window. Two grid cells are connected by an edge in Ggrid if they share
an edge or a corner in their arrangement in the spatial observation window [3,25]. We
denote by Ggrid(Lα) the subgraph of Ggrid defined by the grid cells in Lα . We chose a study
participant and determined the level set Lα , the last crossing time L̂CTlevel,α(0.2) and the
number of connected components of Ggrid(Lα) for α ∈ {0.1, 0.2, . . . , 1} – see Figure 3. For
smaller values of α, Lα contains grid cells in which the study participant spend the largest
proportion of time. When α ∈ {0.1, 0.2, 0.3, 0.4}, Ggrid(Lα) has one connected component
which implies that the grid cells that belong to Lα are spatially adjacent and define a single
area in which the study participant spends larger amounts of time. The corresponding val-
ues of L̂CTlevel,α(γ ) are less than 20 weeks which represents the length of observation time
needed for reliably detecting this spatial area. For α ∈ {0.5, 0.6}, Ggrid(Lα) has two con-
nected components, and for α ∈ {0.7, 0.8}, Ggrid(Lα) has three connected components.
Thus, this study participant spends their time in grid cells that define two or three spa-
tially contiguous areas. Since these areas include grid cells in which the study participant
spends smaller proportions of their weekly time, the length of the observation time needed
to identify these areas doubles to about 40 weeks. For α = 1, Ggrid(Lα) has 72 connected

Figure 3. Values of the LCT-level sets L̂CTlevel,α(0.2) for α ∈ {0.1, 0.2, . . . , 1} for an MDC study partici-
pant. The unit of time isweeks. The number of connected components ofGgrid(Lα)definedby theα-level
sets Lα is shown above the curve.
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Figure 4. Mean values and 90% confidence intervals of the LCT-level sets L̂CTlevel,α(0.2) for α ∈
{0.1, 0.2, . . . , 1} calculated for five demographic groups: sex (male, female), and age (young,middle, old).

components because Lα includes grid cells in which the study participant spends very lit-
tle time. Figure 3 shows that approximately 70 weeks of observation time are needed to
detect these grid cells. The same type of plots constructed for other study participants show
similar relationships between α, Lα , and L̂CTlevel,α(0.2).

Next, wewant to determinewhether the temporal stability of activity distributions varies
by the demographic characteristics of the population. We group the study participants by
sex (male, female) and age group (young age 15–34 years old, middle age 35–54 years old,
and old age ≥55 years old). For each of these five demographic groups, we calculated the
average of the last crossing times of the activity distribution L̂CTlevel,α(0.2) for every α ∈
{0.1, 0.2, . . . , 1}. The resulting curves are presented in Figure 4. The last crossing times at all
levels are similar for men and women (see the top left panel). As such, there do not seem
to be any sex-based differences in the temporal stability of men and women who live in
Switzerland. However, since Switzerland is known to be a country with very high equality
between the two sexes, this finding might not extend to other countries with profound sex
inequality.

In the top right and bottom panels of Figure 4, we find evidence that the average last
crossing times decrease with age especially for levels below 0.5. This means that mobility
patterns are more regular, and consequently are more temporally stable for older study
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participants compared to younger study participants. The average last crossing times are
larger and become very similar across demographic groups for levels above 0.5 compared to
smaller levels below 0.5. Thus, study participants that belong to any of the five demographic
groups tend to visit locations they do not typically visit. Longer observation periods are
needed to successfully determine these locations. Nevertheless, in order to identify the
areas in which study participants spend most of their time, Figure 4 suggests that 10 weeks
of observation of GPS locations should suffice for individuals older than 55. Middle age
individuals require about 15 weeks of observation time, while young individuals require
about 20 weeks.

4. Discussion

The contributionwemade in this paper is two fold.On the theoretical side, we proposed the
use of last crossing time processes associated with spatiotemporal trajectories of individu-
als to assess the temporal stability of their mobility patterns. We defined several measures
of the temporal dynamics of spatiotemporal trajectories based on the average velocity pro-
cess, and on human activity distributions in a spatial observation window. We defined the
ordinary and the conservative proportional time estimators of human activity distributions
and proved that they are consistent and asymptotically equivalent. We introduced the time
period and the ranking time period activity distributions that capture the change in human
activity distributions across time periods. We presented related estimators based on GPS
location data.

On the empirical side, we analyzed GPS location data collected over a period of 18
months. The previous empirical study [29] that focused on assessing the duration of GPS
studies is based on data collected over 30 days. By using our new statistical methods and
GPS data collected over amuch longer period of time, we determined that GPSmonitoring
needs to be done for at least 15 weeks which represents a minimum study duration about
seven times longer than the 14 days minimum duration recommended in [29]. We also
put forward the idea that the duration of GPS studies should be assessed by demographic
groups. We determined that younger population groups should be monitored for longer
periods of time compared to middle age population groups because of their more irregular
patterns of mobility. On the other hand, shorter monitoring periods might be needed for
older population groups that exhibit mobility patterns that are temporally more stable. We
also suggest using our methods to assess the need for different time spans of GPSmonitor-
ing for men and women in countries with a known history of inequality between the two
sexes. To the best of our knowledge, differential periods of GPS data collection based on
demographic groups have not been discussed before. Our work suggests that GPS study
designs should take demographic groups into account.
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Appendix. Proofs of theoretical results

A.1 Proof of Theorem 2.1

Proof: We note that the ordinary proportional time estimator in Equation (11) can be written as

π̂o,j =
1
2
∑n−1

i=2 (ti+1 − ti−1)1(gi = Gj)
1
2 (T + tn − t1)

, (A1)

where T = tmax − tmin. We will first show that the denominators of π̂o,j and π̂c,j are asymptotically
the same. Assumption (S2) implies that 1

2 (T + tn − t1) → T , which shows the asymptotic behavior
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of the denominator of π̂o,j. For π̂c,j, we have

n∑
i=2

(ti − ti−1)1(gi = gi−1) =
n∑
i=2

(ti − ti−1) −
n∑

i=2
(ti − ti−1)1(gi �= gi−1),

= T −
n∑

i=2
(ti − ti−1)1(gi �= gi−1),

≥ T − Mmax
i

|ti+1 − ti|,

→ T ,

whereM is the constant from assumption (S3). The limit in the above equation is due to assumption
(S1). Thus, the denominators of π̂o,j and π̂c,j are asymptotically the same. Next we focus on the
numerators of the two estimators.

The numerator of π̂c,j can be written as

n∑
i=2

(ti+1 − ti)1(gi+1 = gi = Gj) =
n∑
i=2

Ai,

where Ai = (ti+1 − ti)1(gi+1 = gi = Gj). Let Bi = ((ti+1 − ti−1)/2)1(gi = Gj). Using
Equation (A1), the numerator of π̂o,j can be written as

1
2

n−1∑
i=2

(ti+1 − ti−1)1(gi = Gj) =
n−1∑
i=2

Bi.

When gi−1 = gi = gi+1 = Gj, we have 2Bi = Ai + Ai−1. By assumption (S3), there are at most 2M
number of time points ti such that the equality gi−1 = gi = gi+1 = Gj does not hold. Thus

n−1∑
i=2

Bi1(gi−1 = gi = gi+1 = Gj) ≥
n−1∑
i=2

Bi − 2M · max
i

|ti+1 − ti|,

which implies that

π̂o,j → 1
T

n−1∑
i=2

Bi1(gi−1 = gi = gi+1 = Gj),

= 1
T

n−1∑
i=2

Ai + Ai−1

2
1(gi−1 = gi = gi+1 = Gj). (A2)

Again, using the fact that there are at most 2M number of time points ti such that the equality gi−1 =
gi = gi+1 = Gj does not hold, we obtain

n−1∑
i=2

Ai1(gi−1 = gi = gi+1 = Gj) ≥
n∑
i=2

Ai − (2M + 1) · max
i

|ti+1 − ti|,

n−1∑
i=2

Ai−11(gi−1 = gi = gi+1 = Gj) ≥
n∑
i=2

Ai − (2M + 1) · max
i

|ti+1 − ti|.
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It follows that

π̂c,j =
∑n

i=2(ti − ti−1)1(gi = gi−1 = Gj)∑n
i=2(ti − ti−1)1(gi = gi−1)

→ 1
T

n∑
i=2

Ai,

→ 1
T

n−1∑
i=2

Ai + Ai−1

2
1(gi−1 = gi = gi+1 = Gj),

which is the same limit in Equation (A2) we obtained for π̂o,j. Therefore the numerators of π̂o,j and
π̂c,j are asymptotically the same, which proves that π̂o,j and π̂c,j are asymptotically equal. �

A.2 Proof of Theorem 2.2

Proof: Theorem 2.1 proves that the two estimators are asymptotically equivalent. Thus, we only
need to derive the convergence of one of the two estimators to the true activity distribution π =
(π1, . . . ,πN) from Equation (9). In what follows we focus on the conservative proportional time
estimator.

Without loss of generality, we assume that there exist K ≥ 1 disjoint time intervals in which the
individual is inside grid cell Gj, i.e. there are [a1, b1], . . . , [aK , bK] such that ai < bi < ai+1 for i =
1, . . . ,K − 1, tmin ≤ a1, bK ≤ tmax and

{t : G(t) ∈ Gj} = [a1, b1] ∪ · · · ∪ [aK , bK].

Since, in the definition of the true activity distribution π , T follows a uniform distribution on the
reference time frame [tmin, tmax], we can express πj as

πj = P(G(T) ∈ Gj) =
K∑

k=1

P(T ∈ [ak, bk]) = 1
T

K∑
k=1

(bk − ak).

As before, T = tmax − tmin.
For the interval [ak, bk], we let ti∗ be the first observation time after ak, and ti∗∗ be the last

observation time before bk:

ti∗ ≥ ak, ti∗−1 < ak, ti∗∗+1 > bk, ti∗∗ ≤ bk.

BecauseG(t) ∈ Gj for all t ∈ [ak, bk], we have gi ∈ Gj for all i ∈ {i∗, i∗ + 1, . . . , i∗∗}. The conservative
proportional time estimator estimates the length of the interval [ak, bk] based on the length of the
interval [ti∗ , ti∗∗ ]. The corresponding error is

|(bk − ak) − (ti∗∗ − ti∗)| ≤ ti∗ − ak + bk − ti∗∗ ,

≤ (ti∗ − ti∗−1) + (ti∗∗+1 − ti∗∗),

≤ 2 max
i=1,...,n−1

|ti+1 − ti| → 0,

due to assumption (S1).
By applying the above argument to each interval [ak, bk], k = 1, . . . ,K, we conclude that

n∑
i=2

(ti − ti−1)1(gi = Gj) →
K∑

k=1

(bk − ak).

Because
n∑
i=2

(ti − ti−1)1(gi = Gj) ≥
n∑

i=2
(ti − ti−1)1(gi = gi−1 = Gj) − M · max

i=1,...,n−1
|ti+1 − ti|,
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we further conclude that
n∑

i=2
(ti − ti−1)1(gi = gi−1 = Gj) →

K∑
k=1

(bk − ak).

This proves the convergence of the conservative proportional estimator to the true activity distribu-
tion:

π̂c,j →
∑n

i=2(ti − ti−1)1(gi = gi−1 = Gj)

T ,

→
∑K

k=1(bk − ak)
T ,

= πj.

�
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