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Zero-inflated models for adjusting varying exposures: a
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ABSTRACT
Zero-inflated count data are frequently encountered in public health
and epidemiology research. Two-parts model is often used tomodel
the excessive zeros, which are a mixture of two components: a point
mass at zero and a count distribution, such as a Poisson distribution.
When the rate of events per unit exposure is of interest, offset is com-
monly used to account for the varying extent of exposure, which is
essentially a predictor whose regression coefficient is fixed at one.
Such an assumption of exposure effect is, however, quite restrictive
for many practical problems. Further, for zero-inflated models, off-
set is often only included in the count component of the model.
However, the probability of excessive zero component could also
be affected by the amount of ‘exposure’. We, therefore, proposed
incorporating the varying exposure as a covariate rather than an off-
set term in both the probability of excessive zeros and conditional
counts components of the zero-inflated model. A real example is
used to illustrate the usage of the proposedmethods, and simulation
studies are conducted to assess the performance of the proposed
methods for a broad variety of situations.
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1. Introduction

In public health and epidemiology research, count data with a large proportion of zeros
are often encountered. For example, in health services utilization study, the number of
service utilization often includes a large number of zeros representing the patients with
no utilization during the study period. A common feature of this type of data is that the
count measure tends to have excessive zeros beyond a common count distribution that can
accommodate, such as Poisson or negative binomial (NB).

To overcome the issue with excessive zeros, the so-called zero-inflated (ZI) models [19]
can be specified, which are a mixture of two components: a point mass at zero and a count
distribution, such as a Poisson or negative binomial distribution. An alternative model-
ing strategy is hurdle model [17,23], which assumes all zero data are from one ‘structural’
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source with one part of themodel being a binarymodel formodeling whether the response
variable is zero or positive, and another part using a zero truncated model, such as a
zero truncated Poisson or a zero truncated NB distribution for the positive data. Both
types of models were rapidly embraced by a large number of areas, from population and
epidemiological studies to ecological studies [7,10,11,20,22,24,25,27,34,35].

Despite the widespread application of both types of models in the literature, one ques-
tion arises of how to address the effect of varying exposure (underlying population or
duration at risk) in such models. For example, for geographically distributed disease count
data, the number of cases in region imight be larger than that in the region j because region
i had a substantially larger population at risk than the region j. As a result, a higher number
of disease counts in one region compared to another does not necessarily imply subjects
in this region have a higher susceptibility to this disease. Similarly, in longitudinal studies,
the number of repeated events may depend on the follow-up time for the patients. Event
rates can be calculated as events per unit time, which allows the observation window to
vary for each unit. In these examples, exposure is respectively unit area, person–years and
unit time.

In literature, a commonly usedmethod for incorporating a population size at risk and/or
the amount of exposure time is through the introduction of an offset term, i.e. the log of
exposure, as an explanatory variable whose coefficient is fixed at one [1]. For example, for a
Poisson log-linearmodel with expectedmeanμi and covariateXi, themodel can bewritten
as log(μi) = XT

i α + log(Ei), where log(Ei) is referred to as an offset. This implies

μi = eX
T
i α+log(Ei), i.e. μi = Ei eX

T
i α . (1)

This means that the mean count μi has a proportionality constant for Ei that depends on
the values of the explanatory variables. However, such proportionality assumptionmay not
be plausible. For example, formodeling the incidence of infectious disease, the heterogene-
ity of the underlying population may have a varying effect on the likelihood and intensity
of disease transmission. As a result, the number of events in the response variable may
increase non-proportionally with the population at risk. When such sophisticated expo-
sure effects arise from applications, the assumption embedded in the offset term becomes
inadequate.Hence, using offset to adjust the varying extent of exposure as awidely accepted
common practice should be carefully examined and used with caution.

For zero-inflated models, offset is often incorporated only in the count component of
the model ([13,20,21,32,38], for example). Hall [16] considered relaxing the assumption
in offset by setting the coefficient on the logarithm of exposure as an unknown parame-
ter in the count component to be estimated in the model-fitting procedure. However, the
probability of observing excessive zeros can also be impacted by varying exposure in many
situations; that is, the probability of excessive zeros is expected to decrease with increasing
exposure. Baetschmann et al. [4] proposed amodified zero-inflated countmodel where the
probability of extra zero is derived from an underlying durationmodel withWeibull hazard
rate. However, to the best of our knowledge, no attempt has been made to extend the zero-
inflatedmodel to adjust for the extent of exposure as a covariate in both excess zeros and the
count components, particularly in the context ofmodeling disease incidence collected over
a geographical region. Further, simulation studies to explore the impact ofmisspecification
of modeling the effect of varying exposures are limited and therefore warranted.
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The overall goal of this study is to discuss the impact ofmisspecification of themodeling
method for varying exposures for zero-inflated models. We explored two potential types
of misspecification:

• The effect of varying exposure may differ from one. In the situation when the mean
count is not proportional to the population at risk, imposing the offset term by con-
straining the effect of the population at risk as one can be very restrictive. Such a
constraint may lead to a biased estimation of the parameter estimates and prediction
through a biased estimation of the effect of exposure.

• Both excess zero and count componentsmay depend on varying exposures. In literature,
the zero-inflated model typically only includes the exposure as an offset in the count
component of the zero-inflatedmodel.We show that ignoring varying exposures for the
binary part can lead to biased parameter estimates and can be sensitive to the degree of
the effect of exposures.

The results for the hurdle models are consistent with zero-inflated models, so for the
ease of presentation, we chose to focus on the zero-inflated models. The remainder of the
paper is organized as follows. In Section 2, a review of zero-inflated models without and
with varying extent of exposure is presented. Section 3 describes the methods for model
selection and diagnosis check for zero-inflatedmodels. To demonstrate the pitfalls of using
an offset term for zero-inflated models, in Section 4, a real example of a health care uti-
lization study is given. Simulation studies comparing the finite sample performance of
the approaches for accounting for varying extent of exposure for zero-inflated models are
presented in Section 5. Concluding remarks are given in Section 6.

2. Statistical models

2.1. Zero-inflatedmodel

In a zero-inflated (ZI) model [19], zero observations have two different origins: ‘structural’
and ‘sampling’. The sampling zeros are due to the usual Poisson or negative binomial (NB)
distribution, which assumes that those zero observations happened by chance.

Let Yi denote the response for the ith subject, i = 1, . . . , n. The zero-inflated Poisson
(ZIP) model is given by:

Yi ∼
{
0 with probability πi
Poisson(μi) with probability 1 − πi

, (2)

where πi denotes the probability of the observation arising from the degenerated distribu-
tion at zero andμi represents themean of the Poisson distribution. This formulation allows
formore zeros than permitted under the Poisson assumptionwhenπi > 0. The probability
distribution function of the ZIP model can be written as

P(Yi = yi | πi,μi) =

⎧⎪⎨
⎪⎩

πi + (1 − πi) e−μi if yi = 0,

(1 − πi)
e−μiμ

yi
i

yi!
if yi > 0

. (3)
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ZIP model can include covariates for modeling both μi and πi. Generally, πi is modeled
with a logistic regression and μi is modeled as a log-linear regression. The ZI model can
be written as,

logit(πi) = ZT
i β

log(μi) = XT
i α

, (4)

where β = (β0,β1, . . . ,βp1)
T is the (p1 × 1) column vector of parameters associated with

the excess zeros andα = (α0,α1, . . . ,αp2)
T is a (p2 × 1) column vector of parameters asso-

ciated with the Poisson process and ZT
i(1×p2) and XT

i(1×p2) are the vectors of covariates for
the ith study subject for the excess zeros and Poisson processes, respectively. Note that the
explanatory variables describing the μi do not need to be the same as those describing
πi. To account for the unobserved heterogeneity, one can assume the Poisson process as
log(μi) = XT

i α + bi, where bi is a random effect term, which can follow an independent
Normal(0, σ 2

b ). In this article, we consider the common logit and log link functions for the
binary and count outcomes. Other choices of link functions are possible, such as probit or
complementary log-log link functions for the binary component.

The ZIP model can be regarded as a mixture of Poisson and a degenerate component
with all of its mass at zero. As such, this model posits an unobserved and latent binary
variable δi with δi = 1, yi = 0 and δi = 0, yi is a Poisson (μi) variate. The marginal mean
of the ZIP model can be then derived as

E(Yi) = E[E(Yi | δi)] = p(δi = 1)E(Yi | δi = 1) + p(δi = 0)E(Yi | δi = 0) = (1 − πi)μi.
(5)

The second equality holds because δi = 1 implies yi = 0. The variance can be derived as

Var(Yi) = E[Var(Yi | δi)] + Var[E(Yi | δi)] (6)

= [πi · 0 + (1 − πi)μi] + {
πi[0 − (1 − πi)μi]2 + (1 − πi)[μi − (1 − πi)μi]2

}
(7)

= (1 − πi)μi[1 + πiμi]. (8)

As a result, zero-inflated model can accommodate overdispersion relative to a Poisson
model, since Var(Yi) > E(Yi). This also indicates that model misspecification of either
the binary or Poisson component of a ZIP model can lead to biased predicted mean and
variance estimations.

2.2. Zero-inflatedmodels with varying exposures

In modeling zero-inflated count data, the population at risk and/or the amount of time
of exposure are often heterogeneous among the study subjects. In this article, we refer
to the population at risk and/or amount of time of exposure as ‘exposure’. The variable
exposure for the positive count process is handled typically through an offset term, as is
typically done in a log-linear Poisson regression. For example, let Ei denote the population
at risk for the disease of interest. An offset term, log(Ei) is often incorporated into the count
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component of a ZI model to account for variable exposure, so the model can be written as,

logit(πi) = ZT
i β

log(μi) = XT
i α + log(Ei)

. (9)

This model implicitly assumes that all subjects who belong to the excessive zero compo-
nent with the same covariates profiles are at the same risk of experiencing the outcome
regardless of the size of the population at risk. This may not be plausible, as the probability
of observing excessive zero is likely to decrease as the exposure size increases. Ignoring
the differential exposure may result in biased estimates for both the binary and Poisson
components of the ZIP model. A direct adaptation of the model ZIP-Oc is to introduce an
offset term in the binary component of the model as well; that is,

logit(πi) = ZT
i β + log(Ei)

log(μi) = XT
i α + log(Ei)

. (10)

Nevertheless, thismodel can be implausible, since zero inflation and the conditional model
work in opposite directions. (i.e. a higher expected value for the zero inflation (πi) leads
to a lower response, but a higher value for the conditional model (μi) leads to a higher
response). Further, restricting the effect of exposure as one can be inconsistent with the
true extent of association between exposure and the outcome.

Therefore, we propose modifying the ZIP model to addresses the variable exposure not
only for the count component but also for the binary process by incorporating exposure as
a covariate in both binary and count components of the model. The modified ZIP model
can be expressed as,

logit(πi) = ZT
i β + g1(Ei)

log(μi) = XT
i α + g2(Ei)

, (11)

where g1(Ei) and g2(Ei) represent the functional effects of the extent of exposure (Ei) for
the binary and count components of a ZIPmodel, respectively, which can take on any form,
such as polynomials or spline functions, or can be modeled as:

g1(Ei) = ξ1 log(Ei), g2(Ei) = ξ2 log(Ei), (12)

where ξ1 and ξ2 are the regression coefficients for the logarithm transformedEi. Thismodel
relaxes the assumption made on the offset term by allowing ξ1 and ξ2 to deviate from one
and also have opposite signs.

2.3. Statistical inference

The log-likelihood function for the proposed ZIP model as presented in Equation (11) is
given by:

log L(β ,α) =
n∑

i=1

(
I(yi = 0) log[πi + (1 − πi) e−μi]

+ I(yi > 0)
[
log(1 − πi) − μi + yi log(μi) − log(yi!)

])
,
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where πi = exp[ZT
i β + g1(Ei)]/{1 + exp[ZT

i β + g1(Ei)]} and μi = exp[XT
i α + g2(Ei)].

For the model accounting for the unobserved regional variation, the marginal log like-
lihood function of the ZIP model with random effects can be written as,

log L(β ,α, σ) =
n∑

i=1
log

[∫ +∞

−∞
P(Yi = yi | bi,β ,α, σ)�(bi) dbi

]
, (13)

where the unobserved heterogeneity is quantified by the randomeffect bi, which is assumed
to be Gaussian on the scale of the linear predictor with mean zero and standard error σb.
�(·) is the standard normal density function. Lambert [19] expressed the log-likelihood in
terms of latent variables δi and used the EM algorithm for maximum likelihood fitting by
treating δi as missing values. For a model with random effect terms, numerical integration
techniques, such asGauss-Hermite quadrature orMarkov chainMonteCarlo (MCMC) can
be used. Nevertheless, those methods can be computationally intensive. Alternatively, the
models can be fitted using glmmTMB R package [8], which performs maximum likelihood
estimation via TMB (TemplateModel Builder) [18]. Tomaximize computational efficiency,
TMB uses the Laplace approximation to integrate over random effects and automatic dif-
ferentiation to estimate the first and second derivatives of the log likelihood function [18].
This package is more flexible than other packages available for estimating zero-inflated
models via maximum likelihood estimation and is faster than packages that use MCMC
sampling for estimation [8].

3. Model selection and diagnostic checks

To inform model selection, we use the Akaike Information Criterion (AIC) [2] and
Bayesian information criteria (BIC) [28]. AIC and BIC are defined as AIC = D + 2p,
BIC = D + m log(n), where m is the number of parameters in the model, n is number
of observations, D is the deviance defined as twice of negative log likelihood in the ZIP
model. D = ∑n

i=1 di, where

di = −2

⎧⎪⎨
⎪⎩
log

[
πi + (1 − πi) e−μi

]
if yi = 0,

log

[
(1 − πi)

e−μiμ
yi
i

yi!

]
if yi > 0

. (14)

The smaller the values of AIC and BIC, the better amodel fits the data. Examining residuals
is a standard tool for assessing the adequacy of regression models. For discrete response,
Pearson or deviance residuals are far from normality; graphical and quantitative inspec-
tion of these residuals provides little information for model diagnosis [14]. Hence, the
adequacy of the ZIP models is examined on the basis of randomized quantile residuals
(RQR), as developed by Dunn and Smyth [14]. RQR can be defined as follows. Sup-
pose F(yi;πi,μi) denote the CDF for the response variable yi following ZIP distribution
given the set of covariates Zi and Xi, for the binary and count component, respectively,
where πi = exp(ZT

i β + g1(Ei))/[1 + exp(ZT
i β + g1(Ei))] and μi = exp(XT

i α + g2(Ei)).
Let d(yi;πi,μi) be the corresponding probability mass function of F(yi;πi,μi). Since F is
discrete, it is then randomized into a uniform random number, which is defined as a func-
tion with a random number ui from the uniform distribution on (0, 1] as an additional
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argument,

F(yi; π̂i, μ̂i, ui) = F(yi−; π̂i, μ̂i) + ui d(yi; π̂i, μ̂i), (15)

where F(yi−; π̂i, μ̂i) is the lower limit of F at yi, i.e. supy<yi F(y; π̂i, μ̂i), the lower limit in
the ‘gap’ of F(·, π̂i, μ̂i) at yi. RQR for yi is the standard normal quantile corresponding to
the random lower tail probability with πi and μi estimated from the sample,

ri = �−1[F(yi; π̂i, μ̂i, ui)], i = 1, . . . , n, (16)

where �−1(·) is the quantile function of the standard normal distribution, and ui is a
random number uniformly distributed on (0, 1]. These residuals are expected to approxi-
mately follow a standard normal distribution, if themodel is correctly specified. Hence, the
validity of the model can be assessed by graphing the RQRs versus the predicted response
variable. If the model fits the data well, RQRs should be randomly scattered between −3
and 3without a discernible pattern. The normality of the RQRs can be examined usingQ-Q
plots, which should lie along the straight diagonal line, if the model is correctly specified.

4. Motivating example: respiratory hospital admissions data

The adverse effect of ambient air pollution has drawn considerable attention over the past
decade and has been shown to be associated with respiratory morbidity and mortality. In
this motivating example, our goal is to study the relationship between nitrogen dioxide
(NO2) and the number of hospital admissions for respiratory causes in Turin province
(Italy) in 2004, while accounting for the differential size of the population at risk from
the study area. The dataset records the number of observed hospitalizations for respiratory
causes and population size at themunicipality level as well as the average NO2 for the same
period and the same areas. The data were obtained from the data repository of the Spatial
and Spatial-temporal Bayesian Models with R-INLA [6].

Of the 315 municipalities, 173 (54.9%) had zero hospitalizations. We categorize NO2
according to its tertiles, i.e. 80.57 and 126.54 into three levels NO2 ≤ 80.57 (reference cat-
egory), 80.57 < NO2 ≤ 126.54 and NO2 > 126.54. As shown in Figure 1, the distribution
of the hospitalization counts is highly positively skewed and the distribution depends on
the values of NO2 with higher response values occurring at a higher level of NO2. Let Yi
and ni denote the number of observed hospitalizations and size of the population at risk
at the ith municipality, respectively. In the context of disease mapping, the expected num-
ber is often included as an offset term, which is often expressed as the number of cases
defined by an epidemiologic ‘null model’ of incidence, i.e. the product of ni, the number
of individuals at risk in region i, and r, a constant ‘baseline’ risk per individual defined
as r = ∑n

i=1 Yi/
∑n

i=1 ni, the global observed disease rate. The following four competing
models are considered, which are expressed as

ZIP-Wb

{
logit(πi) = β0 + β1NO

(1)
2i + β2NO

(2)
2i + ξ1 log(Ei)

log(μi) = α0 + α1NO
(1)
2i + α2NO

(2)
2i + bi + ξ2 log(Ei),

(17)
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Figure 1. Distributions of number of hospital admissions for respiratory causes over 315 municipalities
in Turin province (Italy) in 2004. The top left panel is for the whole data and rest of the panels are for the
data stratified by three categories of NO2.

ZIP-Wc

{
logit(πi) = β0 + β1NO

(1)
2i + β2NO

(2)
2i

log(μi) = α0 + α1NO
(1)
2i + α2NO

(2)
2i + bi + ξ2 log(Ei),

(18)

ZIP-Ob

{
logit(πi) = β0 + β1NO

(1)
2i + β2NO

(2)
2i + log(Ei)

log(μi) = α0 + α1NO
(1)
2i + α2NO

(2)
2i + bi + log(Ei),

(19)

ZIP-Oc

{
logit(πi) = β0 + β1NO

(1)
2i + β2NO

(2)
2i

log(μi) = α0 + α1NO
(1)
2i + α2NO

(2)
2i + bi + log(Ei),

(20)

where πi is the probability of no hospital admissions at the ith municipality and μi is
the expected mean number of hospitalizations of the Poisson distribution; NO(1)

2 and
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NO(2)
2 denote the dummy variables for 80.57 < NO2 ≤ 126.54 andNO2 > 126.54, respec-

tively. To account for unobservable heterogeneity, the area-specific random effect, bi ∼
Normal(0, σ 2

b ), is included in the model. In the model ZIP-Wb, the coefficient on log(Ei) is
considered as an unknown parameter in both the binary and Poisson processes to be esti-
mated in the model-fitting procedure, where the superscript b refers to ‘both’ components;
ZIP-Wc includes log(Ei) as an explanatory variable only in the count component, where
the superscript c refers to ‘count’ component. In contrast, ZIP-Ob considers the population
at risk as an offset term in both the binary and count components of the ZIP model and
ZIP-Oc only includes the offset term in the count component. The parameter estimations
were carried out in R (R Core Team, 2019) via glmmTMB package [8]. For the binary com-
ponent of the candidate models, NO(1)

2 and NO(2)
2 are not significantly associated with the

probability of excessive zeros and therefore were removed from the binary component of
the models.

From Table 1, ZIP-Wb gave the smallest values of AIC and BIC, suggesting that they
provided the best fit to the data compared to the other competing models. The intercept
for the binary component of the ZIP-Wb model is significantly different from zero with
β̂0 = 4.24(p-value < 0.001) and is positive. Under model ZIP-Ob, the estimated intercept
is negative and significantly different from zero β̂0 = −3.31(p-value < 0.001). By com-
parison, the estimated intercept of the binary component is not significantly different from
zero undermodels ZIP-Wc andZIP-Oc. The opposite signs of the estimated intercept under
ZIP-Ob compared to ZIP-Wb and non-significance under models ZIP-Wc and ZIP-Oc are
due to the model misspecification of the exposure effect in the binary component, so β0 is
trying to recover from this misspecification.

The effect of log(Ei) for the binary component of themodel ZIP-Wb is estimated as ξ1 =
−2.27(p-value < 0.001), which models the fact that the probability of observing an excess
zero count decreases as the extent of exposure increases. In other words, odds of observ-
ing an excess zero count are inversely proportional to Ei. In contrast, the effect of log(Ei)
for the count component of the ZIP-Wb model is estimated as ξ2 = 0.73(p-value < 0.001),
which reflects that the conditionalmean count increases as the extent of exposure increases.

Table 1. Parameter estimates (Est), standard error (SE), p-value, AIC and BIC values for the ZIP-Wb, ZIP-
Wc , ZIP-Ob and ZIP-Oc models for modeling the number of hospital admissions for respiratory causes
over 315 municipalities in Turin province (Italy) in 2004.

ZIP-Wb ZIP-Wc ZIP-Ob ZIP-Oc

Est SE p-value Est SE p-value Est SE p-value Est SE p-value

Binary component
β0(intercept) 4.24 0.52 0.00 0.03 0.12 0.81 −3.31 0.20 0.00 −0.11 0.13 0.39
ξ1(log(E)) −2.27 0.27 0.00

Count component
α0 (intercept) 1.04 0.13 0.00 0.79 0.14 0.00 −0.55 0.15 0.00 0.21 0.13 0.10
α1(NO

(1)
2 ) 0.24 0.12 0.04 0.34 0.12 0.00 0.85 0.17 0.00 0.36 0.14 0.01

α2(NO
(2)
2 ) 0.43 0.12 0.00 0.48 0.13 0.00 0.91 0.17 0.00 0.26 0.14 0.07

ξ2(log(E)) 0.73 0.04 0.00 0.78 0.04 0.00
σ 2
b 0.15 0.38 0.00 0.15 0.39 0.00 0.48 0.69 0.00 0.23 0.48 0.00

Model fit
AIC 1358.04 1560.22 1856.33 1585.32
BIC 1384.30 1582.74 1875.10 1604.08
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Thus, including the population at risk as an offset term by imposing its effect as one results
in an incorrect assumption, particularly for the binary component. This is evident from
the model comparison between ZIP-Wb (AIC = 1358.04, BIC = 1384.30) and ZIP-Ob

(AIC = 1856.33, BIC = 1875.10) or ZIP-Wc (AIC = 1560.22, BIC = 1582.74) and ZIP-
Oc (AIC = 1585.32, BIC = 1604.08). For covariates included in the Poisson component
of the ZIPmodels, NO(1)

2 and NO(2)
2 are significantly and positively related to the expected

counts of hospital admissions under the best fitting model ZIP-Wb with the estimated
effects equal to α̂1 = 0.24 for NO(1)

2 and α̂1 = 0.43 for NO(2)
2 . The effects of NO(1)

2 and
NO(2)

2 are estimated to be slightly larger under model ZIP-Wc andmuch larger under ZIP-
Ob as compared to ZIP-Wb. A notable difference between ZIP-Wb and ZIP-Ob is that the
two methods provide estimates of opposite signs for the intercept. Under model ZIP-Oc,
only NO(1)

2 is positively and significantly associated with the conditional mean number of
hospitalizations with α̂1 = 0.36, but NO(2)

2 is not significant at the 5% level of significance.
The variances of the random effect σ 2

b are all estimated significantly different from zero,
suggesting the importance of accounting for unobserved regional effect. We also observe
that the variance component under the model ZIP-Ob (σ̂ 2

b = 0.48) is much larger than the
model ZIP-Oc (σ̂ 2

b = 0.23). Models ZIP-Wb and ZIP-Wc give an almost identical estimate
for the variance component (σ̂ 2

b = 0.15). These results suggest that including exposure as
a covariate in either or both of the binary and count components of the ZIP model can
explain the residual variation of the response variable.

We have so far only considered NO2 and extent of exposure have an ‘additive’ effect;
however, NO2 and exposure may have an interaction effect. We, therefore, extended ZIP-
Wb andZIP-Wcmodels by including the interactions between log(E) andNO(1)

2 andNO(2)
2

in both the binary and count components, named as ZIP-Wb2 and only in the count com-
ponent, named as ZIP-Wc2. Our model fit shows that NO(1)

2 and NO(2)
2 have no main and

interaction effect with log(E) for the binary component of the ZIP model and therefore
were excluded from the model ZIP-Wb2. Nevertheless, NO(1)

2 and NO(2)
2 have significant

interaction effect with exposure for the Poisson component of the ZIP-Wb2 model, but
not for ZIP-Wc2, as shown in Table 2. ZIP-Wb2 also gives the best model fit among all the
competing models (AIC = 1325.53, BIC = 1359.30). These results indicate that (i) failing
to include log(E) in the binary component of the model may lead to incorrect inference
for the parameters in the count component (ii) covariates and extent of exposure can have
a significant interaction effect on the outcome.

We also considered fitting Poisson and NB models including the random effect term at
the municipality level with and without interactions between NO2 and log(E) to examine
if a simpler model can adequately describing the data. Our results indicate that Poisson
and NB models fit to the data worse than the candidate ZIP models, i.e. for Poisson with-
out interaction (AIC = 1771.9, BIC = 1786.9) andNBwithout interaction (AIC = 1720.7,
BIC = 1739.5) and Poissonwith interaction (AIC = 1710.0, BIC = 1736.3)NBwith inter-
action (AIC = 1711.1, BIC = 1741.1). These results suggest the importance of accounting
for excess zeros in this application.

In many applications, interest focuses on estimating and predicting marginal means
given the explanatory variables.Misspecification of the extent of the population at riskmay
also have an impact on the marginal mean response, since the marginal means depend on
the estimated parameters in both binary and Poisson processes. In this application, we are
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Table 2. Parameter estimates (Est), standard error (SE), p-value, AIC and BIC values
for the ZIP-Wb2 and ZIP-Wc2 models including the interaction between exposure and
NO2 for modeling the number of hospital admissions for respiratory causes over 315
municipalities in Turin province (Italy) in 2004.

ZIP-Wb2 ZIP-Wc2

Est SE p-value Est SE p-value

Binary component
β0 (Intercept) 4.25 0.52 0.00 0.13 0.15 0.39
ξ1(log(E)) −2.28 0.27 0.00

Count component
α0(Intercept) 2.21 0.26 0.00 1.37 0.72 0.06
α1(NO

(1)
2 ) −0.57 0.31 0.06 0.24 0.73 0.74

α2(NO
(2)
2 ) −1.26 0.31 0.00 −0.44 0.73 0.55

α3(NO
(1)
2 : log(E)) 0.34 0.12 0.00 0.04 0.28 0.90

α4(NO
(2)
2 : log(E)) 0.63 0.11 0.00 0.31 0.27 0.25

ξ2(log(E)) 0.25 0.10 0.02 0.57 0.27 0.04
σ 2
b 0.11 0.33 0.00 0.12 0.35 0.00

Model fit
AIC 1325.53 1550.40
BIC 1359.30 1580.42

interested in estimating and predicting the population-level mean counts of the number
of hospitalizations over the studied area in association with the NO2 and size of the pop-
ulation at risk. For ease of computation without marginalizing and conditioning on the
random effects, the population-level predicted values of the response variable are calcu-
lated as the predicted unconditional counts at the mode (i.e. area-level effect bi = 0), as
suggested by Brooks et al. [8]. For example, the predicted response value under model
ZIP-Wb2 can be calculated as,

E(Yi) = E[E(Yi | δi)] = (1 − πi)μi

=
{
1 − logit−1

[
β̂0 + ξ̂1 log(Ei)

]}
× exp

[
α̂0 + α̂1NO

(1)
2i + α̂2NO

(2)
2i + α̂3NO

(1)
2i log(Ei)

+ α̂4NO
(2)
2i log(Ei) + ξ̂2 log(Ei)

]
.

For the standard errors of the predicted values, posterior predictive simulations were used
by drawing multivariate normal samples from the parameters for the fixed effects, given
that the resulting estimators follow asymptotically normal distributions [8].

Figure 2 displays the predicted response value and 95% point-wise confidence intervals
of the respiratory hospitalization counts at the mode (i.e. area-specific random effect bi =
0) against log(E) by the three categories of NO2 for all the considered ZIP models. The
results based on models ZIP-Wb2 and ZIP-Wc2 clearly demonstrate the significance of the
interaction effect between NO2 and log(E), with the number of hospitalizations increases
more sharply as log(E) increases for NO2 at the highest category (127, 196] as compared
to the other NO2 levels. For the models without interaction terms, i.e. ZIP-Wb, ZIP-Wc,
and ZIP-Oc, the predicted marginal means did not differ substantially at various levels of
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Figure 2. The predicted number of respiratory hospitalization count at the mode, i.e. area-specific ran-
dom effect bi = 0 (labeled as ‘RESP’) and 95% point-wise confidence intervals against the log of the
population at risk, i.e. log(E), by the categories of NO2.

NO2 and appeared to be averaged out across the levels. ZIP-Ob yielded unreasonably low
predicted values compared to other models.

We also examined the model goodness of fit by comparing the predicted and the
observed response variable, as shown in Figure 3. The panels in the left column are for
the entire data and the panels in the right column are for displaying the data after exclud-
ing the largest observed response value for the ease of visualization. It is evident that the
predicted values under models ZIP-Wb2 and ZIP-Wb are very close to the observed values.
The other competing models result in underestimated response values. The results suggest
that the models ZIP-Wb2and ZIP-Wb predict the number of hospitalizations better than
the other candidate models.

Despite the aforementioned numerical comparisons ofmodel fit, a careful residual anal-
ysis indicates that model ZIP-Wb2 has the best model fit with RQRs nearly normally
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Figure 3. Fitted vs. observed response variable values based on the models ZIP-Wb2 (panels in row 1),
ZIP-Wc2 (panels in row 2), ZIP-Wb (panels in row 3), ZIP-Wc (panels in row 4), ZIP-Ob (panels in row 5)
and ZIP-Oc (panels in row 6). The panels in the left column are for the full data. For ease of visualization,
the panels in the right column display the results after suppressing the largest value of the observed
response variable.
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Figure 4. Scatter plots of RQRs vs. fitted values (first column), histograms of RQRs (second column) and
QQ plots of RQRs (third column) based on the models ZIP-Wb2 (panels in row 1), ZIP-Wc2 (panels in
row 2), ZIP-Wb (panels in row 3), ZIP-Wc (panels in row 4), ZIP-Ob (panels in row 5) and ZIP-Oc (panels
in row 6).
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distributed and no discernible pattern, as shown in the top panels of Figure 4. The dis-
tributions of the RQRs under the models ZIP-Wc2, ZIP-Wc, ZIP-Ob and ZIP-Oc exhibit
bimodal pattern separated at zeros, which suggest the importance of including exposure
as an exploratory variable in the binary component of the ZIP model in this applica-
tion. Altogether, failure to properly model the effect of exposure in both the binary and
count components of the ZIP model can have a serious impact on the marginal parameter
estimates. Inevitably, incorrect inferences may follow.

5. Simulation studies

Simulations were carried out to investigate the performances of the proposed method rel-
ative to the traditional methods specifying the underlying population at risk as an offset
term in the model under a wide range of scenarios.

5.1. Data-generatingmechanism

In the simulations, zero-inflated counts were generated from ZIP-Wb model of sizes
n = 250, 500 and 1000, defined as

ZIP-Wb
{
logit(πi) = β0 + β1xi1 + β2xi2 + ξ1 log(Ei)
log(μi) = α0 + α1xi1 + α2xi2 + ξ2 log(Ei),

(21)

where (β0,β1,β2) = (5,−1,−1), (α0,α1,α2) = (1, 1, 1), x1i ∼ Bernoulli(0.3) and x2i ∼
Normal(τ , σ 2) with τ = 0 and σ 2 = 0.25. We considered ξ1 = −2 and ξ2 = 0.8, respec-
tively, to reflect the fact that the probability of excessive zeros decreases with increasing
extent of exposure and the conditional mean count increases over the increased extent of
exposure. The values are chosen to mimic our motivating example presented in Section 4.
The intercept for the binary component β0 is set as 5 to yield about 53% zeros in the
simulated datasets. The expected population at risk Ei is simulated from a zero trun-
cated negative binomial distribution with probability mass function [
(x + r)pr(1 −
p)x]/[
(n)x!(1 − pr)] where r is set as 0.1 and p is set as 0.0005, which gives the mean
about 40, median 10 and variance 6000. For simplicity of presentation, we assume xi1, xi2
and log(Ei) do not interact.

For each simulation scenario, we generated 200 random samples from the true model
and fitted ZIP-Wc, ZIP-Ob and ZIP-Ob2 to determine the impact of mismodelling the
effect of exposure on the parameter estimates in both parts of the ZIP model and the
overall model fits. To simulate zero inflated data, we firstly simulate the latent variable
δi from Bernoulli (πi) with πi = exp[β0 + β1xi1 + β2xi2 + ξ1 log(Ei)]/{1 + exp [β0 +
β1xi1 + β2xi2 + ξ1 log(Ei)]}. Then, if δi = 1, yi = 0; otherwise, simulate yi from Poisson
with mean μi = exp[α0 + α1xi1 + α2xi2 + ξ2 log(Ei)].

To assess how biased the parameter estimates can be related to the increased or
decreased effect of exposures, additional simulation studies were conducted by setting
ξ1 = −2, ξ2 = 2 and ξ1 = −0.5, ξ2 = 0.5, respectively.We also considered simulating data
fromZIP-Oc, which includes the exposure as an offset term only in the count component of
the model, to examine the impact of over parametrization of our proposed model ZIP-Wb

on statistical inference.
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5.2. Performancemeasures

The goals of the simulation study are to determine how parameter estimates, standard
errors, coverage probability and overall model fits are affected by misspecification of the
effect of the extent of exposures. To this end, we present the bias (the mean of the esti-
mated parameter minus the true value), mean square error (MSE, the average of the sum
of the squared differences between the estimated parameter and the true value), the cover-
age probabilities (CP) of 95% confidence intervals of the estimated parameters and average
values of AIC and BIC over repeated samples.

5.3. Simulation results

Table 3 reports the bias, MSE, and CP of the 95% confidence intervals for the parameter
estimates from ZIP-Wb, ZIP-Wc, ZIP-Ob and ZIP-Oc fitted to the 200 simulated datasets
generated frommodel ZIP-Wb of sample size n = 250, 500 and 1000, respectively. For the
binary component, only ZIP-Wb results in unbiased estimates with CPs very close to the

Table 3. Bias, MSE and coverage probability (CP) of the 95% confidence intervals for the parameter esti-
mates from models ZIP-Wb, ZIP-Wc , ZIP-Ob and ZIP-Oc fitted to the 200 simulated datasets generated
from the model ZIP-Wb of sample size n = 250, 500 and 1000, respectively.

Binary component Count component

ZIP-Wb ZIP-Wc ZIP-Ob ZIP-Oc ZIP-Wb ZIP-Wc ZIP-Ob ZIP-Oc

n = 250
Bias β0 0.229 −4.786 −8.100 −4.944 α0 −0.005 −0.012 −0.946 −0.938

β1 −0.033 0.667 1.248 0.778 α1 0.000 0.001 0.030 0.025
β2 −0.097 0.674 1.273 0.787 α2 0.002 0.003 0.039 0.033

MSE β0 0.583 22.918 65.716 24.464 α0 0.002 0.002 0.896 0.881
β1 0.252 0.539 2.246 0.705 α1 0.000 0.000 0.006 0.005
β2 0.240 0.524 2.166 0.695 α2 0.000 0.000 0.008 0.008

CP β0 0.965 0.000 0.000 0.000 α0 0.950 0.940 0.000 0.000
β1 0.935 0.345 0.285 0.265 α1 0.940 0.945 0.360 0.365
β2 0.955 0.275 0.240 0.230 α2 0.975 0.970 0.260 0.290

n = 500
Bias β0 0.088 −4.764 −8.437 −4.966 α0 −0.001 −0.010 −0.958 −0.949

β1 0.003 0.707 1.528 0.845 α1 0.000 0.001 0.021 0.015
β2 −0.024 0.714 1.436 0.845 α2 0.000 0.001 0.033 0.027

MSE β0 0.255 22.703 71.240 24.668 α0 0.001 0.001 0.919 0.900
β1 0.128 0.542 2.721 0.759 α1 0.000 0.000 0.002 0.002
β2 0.121 0.546 2.396 0.754 α2 0.000 0.000 0.004 0.003

CP β0 0.960 0.000 0.000 0.000 α0 0.955 0.935 0.000 0.000
β1 0.955 0.090 0.100 0.020 α1 0.955 0.950 0.425 0.475
β2 0.940 0.040 0.070 0.020 α2 0.970 0.975 0.285 0.300

n = 1000
Bias β0 0.051 −4.811 −8.644 −5.028 α0 −0.001 −0.009 −0.991 −0.982

β1 −0.007 0.703 1.494 0.849 α1 0.000 0.001 0.023 0.018
β2 −0.027 0.713 1.390 0.848 α2 −0.001 0.000 0.027 0.022

MSE β0 0.137 23.146 74.749 25.284 α0 0.000 0.000 0.982 0.965
β1 0.057 0.513 2.424 0.741 α1 0.000 0.000 0.002 0.002
β2 0.052 0.529 2.129 0.742 α2 0.000 0.000 0.002 0.002

CP β0 0.950 0.000 0.000 0.000 α0 0.950 0.935 0.000 0.000
β1 0.950 0.000 0.020 0.000 α1 0.955 0.935 0.290 0.310
β2 0.950 0.000 0.005 0.000 α2 0.935 0.920 0.255 0.270
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nominal level of 0.95. In contrast, fitting the misspecified model results in severely biased
parameter estimates with CPs far from the nominal level. CP also decreases towards zero as
the sample size increases from250 to 1000. In particular, the intercept (β0) is highly affected
by model misspecification yielding very large bias and there is also a substantial bias in the
estimated regression coefficients β1 and β2. The biased parameter estimates of the ZIP-Wc

model indicates that omitting exposure as a covariate in the binary component of themodel
results in biased estimates and invalid inference. This result is consistent with the finding
from the literature, which showed that if a covariate is removed from a Poissonmodel, both
the estimated regression coefficient and the standard error are the same as the results based
on the full model [5]. ZIP-Ob gives the worst model fit, yielding the largest bias, MSE, and
lowest CP. This result is not surprising, since ZIP-Ob constrains the regression coefficients

Figure 5. Estimated regression coefficients for the binomial process for modeling the probability of
excess zeros (left panels) and the Poisson process (right panels) over 200 simulated datasets from the
model ZI-Wb of sample size n1 = 250, n2 = 500 and n3 = 1000.
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for the exposure in both model components equal to one; nevertheless, both the binary
and count processes are influenced by the exposure, but in opposite directions. Hence, the
degree of model misspecification is higher compared to other candidate models.

For the count component of the ZIPmodels, ZIP-Wb and ZIP-Wc result in nearly unbi-
ased estimates with CPs very close to the nominal level of 0.95. The results based on the
ZIP-Wc model indicate that omitting exposure as a covariate in the binary component has
minimal impact on the parameter estimates for the count component. This result is con-
sistent with the finding from the literature that if a covariate is removed from a Poisson
model, both the estimated regression coefficient and the standard error are the same as
those of the full model [26]. Nevertheless, under ZIP-Ob and ZIP-Oc models, the intercept
is severely underestimated, the estimated regression coefficients are biased upward and the

Figure 6. Coverage probabilities of the 95% confidence intervals of the estimated regression coeffi-
cients for the binomial process for modeling the probability of excess zeros (top panels) and the Poisson
process (bottompanels) over 200 simulated datasets frommodel ZI-Wb of sample size n = 250, 500 and
1000. The black solid and dashed lines are for themodels ZI-Wb and ZI-Wc , respectively; the red solid and
dashed lines are for the models ZI-Ob and ZI-Oc , respectively.
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Table 4. Comparison of model fit of ZIP-Wb, ZIP-Wc , ZIP-Ob

and ZIP-Oc in terms of average AIC and BIC across 200 simu-
lated datasets generated from the model ZIP-Wb.

n ZIP-Wb ZIP-Wc ZIP-Ob ZIP-Oc

AIC
250 976.520 1162.257 2064.654 1732.514
500 1900.825 2288.361 4130.966 3448.865
1000 3887.104 4671.542 8960.393 7597.910

BIC
250 1004.692 1186.908 2085.782 1753.643
500 1934.542 2317.863 4156.254 3474.153
1000 3926.366 4705.896 8989.840 7627.356

CPs decline as sample size increases. For the ease of comparison of the results among the
consideredmodels, we also graphed the estimated regression coefficients over the 200 sim-
ulated samples in Figure 5 and the CPs of the 95% confidence intervals for the regression
coefficients in Figure 6. Table 4 presents the average AIC and average BIC over 200 sim-
ulated datasets for model comparison. The results indicate that ZIP-Wb consistently gives
the smallest AIC and BIC compared to other competing models in all scenarios, followed
by ZIP-Wc, ZIP-Oc and ZIP-Ob. Model ZIP-Ob gives the worst model fit, since it forces a
model fit that is inconsistent with the binary and Poisson processes of the ZIP model.

Additional simulation studies were conducted by increasing or decreasing the values of
ξ1 and ξ2. For the scenario when ξ1 = −2, ξ2 = 2, the results are presented in Figures S1
and S2 in the web supplementary materials, which indicate that the results for the binary
component remain roughly consistent with the results from the previous simulation setting
when ξ1 = −2 and ξ2 = 0.8. However, for the count component, the performances of ZIP-
Ob and ZIP-Oc become worse with increased bias and much lower CPs as compared to
Figures 5 and 6, since models ZIP-Ob and ZIP-Oc constrain ξ2 = 1 and ξ2 = 2 deviates
more from one than ξ2 = 0.8. As a comparison, when ξ1 = −0.5 and ξ2 = 0.5, as shown
in Figures S3 and S4, the parameter estimates of the regression coefficients in the binary
component are less biased andCPs are closer to the nominal level compared to the previous
setting, since ξ1 = −0.5 is less deviated from 1 as compared to ξ1 = −2. The results of the
model fit for these additional simulation studies are presented in Tables S1 and S2, with
the results being consistent with the previous simulation setting showing model ZIP-Wb

outperforms the other competingmodels. In summary, the results based on themodel ZIP-
Wc suggest that ignoringmodeling the effect of varying exposure in the binary component
of the ZIP model can bias the estimation of the covariate effect in the binary component.
Such bias becomes more severe as the effect of varying exposure increases. The results
based on the ZIP-Ob and ZIP-Oc indicate that incorporating the varying exposure as an
offset term can lead to biased and inefficient parameter estimates in both the binary and
count components of the ZIP model. The simulation results confirmed that the degree
of bias and variation of the estimated regression coefficients depend on the effect of the
exposure variable.

In another set of the simulation study, we simulate data from ZIP-Oc model. Our results
(Figures S5 and S6) indicate that both ZIP-Wb and ZIP-Wc models provide parameter esti-
mates with negligible bias, low MSE and nominal coverage probabilities reasonably close
to 95%. Only ZIP-Ob yielded biased estimates for the binary component but not for the
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count component, since it imposes unreasonable assumption on the effect of exposure in
the binary component. Overall, it appears over parametrization by estimating ξ1 and ξ2
rather than restricting them equal to one as specified in the offset terms for both binary
and count component has negligible effects on inference.

We also run another set of simulations to ascertain whether the percentage of zeros is
an important feature in determining the impact of misspecification of the effect of varying
exposure. We generated data from the ZIP-Wb model with about 30%, 60%, and 90% of
zeros. Our simulation results are comparable to the results presented earlier.

6. Conclusion and future work

In this study, we reviewed zero-inflated regression models with a focus on investigating
the extent to which misspecification of modeling underlying population at risk on the esti-
mation of the regression coefficients and overall model fit for the zero-inflated model. We
showed that including an offset term could be very restrictive in the sense that it forces the
effect of exposure as one, which can be inconsistent with the data, as shown in our moti-
vating example. Therefore, we formulated and developed a framework to understand the
nature of zero-inflated models by allowing the extent of exposure to be included in both
parts of the binary and count components of the ZI model as a regular covariate.

The evidence provided in this paper serves as a warning not tomake strong assumptions
about the effect of exposure, like those embodied in using offset in a Poisson distribution.
It is wise at least to make a sensitivity check by estimating the effect of the varying expo-
sure. Also, the probability of excessive zero may also depend on the population at risk. The
relationship between exposure and the probability of excessive zero component, therefore,
needs to be carefully assessed and properly incorporated in the model.

In our motivating example, the ZIP model with varying exposure being included in
both the binary and count components as a covariate fits this particular data set well. How-
ever, in some situations, after accounting for zero-inflation and adjusting for the effects of
the covariates and varying exposure, the data may still suggest additional overdispersions.
The proposed modeling approach could then be applied to other zero-inflated models to
account for additional overdispersion, such as zero-inflated negative binomial model and
zero-inflated generalized Poisson model [12,33]. Score test could be conducted to help
determine whether a more complex model is appropriate, without fitting a more complex
model [33].

In addition, including varying exposure as a covariate in both the binary and count
components of the ZI model leads to an increase in the number of parameters to be esti-
mated. In the situation where many covariates are involved, the variable selection needs to
be conducted to address the potential over parametrization problem, especially when the
sample size is small. Traditional variable selection procedures, such as the automated vari-
able selection methods, may result in models that are unstable and not reproducible [3].
Penalized regression methods are popular for selecting variables, which keep all the vari-
ables in the model but constrain the regression coefficients by shrinking them toward zero.
A variety of penalty functions can be considered, such as Least Absolute Shrinkage and
Selection Operator (LASSO) [29], Smoothly Clipped Absolute Deviation penalty (SCAD)
[15], and minimax concave penalty (MCP) [37]. Penalized regression methods have been
extended for selecting parsimonious zero-inflated models [9,30,31,36]. Future studies will
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be conducted to evaluate the performance of the proposed modeling strategy with these
variable selection methods under different ratios of the number of candidate covariates to
the sample size.

Note that zero-inflated and hurdle models have been extended to model longitudinal or
clustered count measures with excess zeros by linking the binary and count components
using a shared subject-specific random effect term or bivariate normal distribution. The
linkage of the model components allows the dependence between the binary and count
components of the model [24,25]. As a result, the binary and count processes will not act
independently; that is, model misspecification for one component may have an impact on
the other component passed through the shared random effect terms. Future work will
be conducted to investigate the impact of misspecification of the exposure effect on such
correlated random effects models.

In our simulations and empirical studies, we considered the linear effect of the log of the
exposure variable. However, more flexiblemodeling of exposure-outcome associations can
be applied to avoid constraining a priori functional form of this relationship to a particular
parametric family of functions, such as conventionally used linear functions.
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