View full-text article in PMC J Appl Stat. 2021 Mar 16;48(13-15):2473–2498. doi: 10.1080/02664763.2021.1895088 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information © 2021 Informa UK Limited, trading as Taylor & Francis Group PMC Copyright notice Table 3. Regression estimators and their MSEs. Estimators MSE β^=(X′X)−1X′Y MSE(β^)=σ2(X′X)−1 β^MRSS=(X′MRSSXMRSS)−1XMRSS′YMRSS MSE(β^MRSS)=σMRSS2(X′MRSSXMRSS)−1 β~R=(X′X+kI)−1X′Y=Aβ^ MSE(β~R)=σ2A(X′X)−1A′+β′(I−A)′(I−A)β β~R(MRSS)=(X′MRSSXMRSS+kI)−1XMRSS′YMRSS=AR(MRSS)β^MRSS MSE(β~R(MRSS))=σMRSS2AR(MRSS)(X′MRSSXMRSS)−1AR(MRSS)′+β′(I−AR(MRSS))′(I−AR(MRSS))β β~LT=(X′X+kI)−1(X′Y+dβ~R)=ALTβ^ MSE(β~LT)=σ2ALT(X′X)−1ALT′+β′(I−ALT)′(I−ALT)β β~LT(MRSS)=(X′MRSSXMRSS+kI)−1(X′MRSSYMRSS+dβ~R(MRSS))=ALT(MRSS)β^MRSS MSE(β~LT(MRSS))=σ2ALT(MRSS)(X′MRSSXMRSS)−1ALT(MRSS)′+β′(I−ALT(MRSS))′(I−ALT(MRSS))β